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Abstract— State-of-the-art neural microprobes contain hun-
dreds of electrodes within a single shaft. Due to hardware and
wiring restrictions, it is usually only possible to measure a small
subset of the available electrodes simultaneously. The selection
of the best channels is typically performed offline either manu-
ally or automatically. However, having a fixed selection for long-
term observation does not allow the system to react to changes
in the neural activity, and may therefore lead to the loss of
important information. In this paper, we formulate the process
of autonomously selecting the best subset of electrodes as a
combinatorial multi-armed bandit problem with non-stationary
rewards, thus allowing the probe to adapt its selection policies
online. In order to minimize exploratory actions of the probe,
we furthermore take advantage of the existing dependencies
between neighboring channels. Our approach is an adaptation
of the discounted upper confidence bounds (D-UCB) algorithm,
and identifies the electrodes providing the largest amount of
non-redundant information. To the best of our knowledge,
this is the first online approach for the problem of electrode
selection. In extensive experiments, we demonstrate that our
solution is not only able to converge towards an average optimal
selection policy, but it is also able to react to changes in the
neural activity or to damages of the recording electrodes.

I. INTRODUCTION

There is a growing interest in the development of high-
resolution neural microprobes capable of recording the activ-
ity of single neurons. This capacity allows for further investi-
gation of the complex interactions between brain regions, and
may lead to a better understanding of the neural processes
occurring in the brain. In the future, intelligent microprobes
are expected to become a key component in the field of brain-
computer interfaces (BCI), thus inheriting a wide spectrum
of applications. Envisaged applications include monitoring
and reacting to diseases such as epilepsy or depression, for
instance, by detecting pathological patterns in brain activity
and by providing appropriate electrical stimulation to specific
brain regions. Such a desired smart behavior requires the
probe to interpret the measured signals and to select actions
without the intervention of human experts.

With state-of-the-art integrated circuits technology, it is
possible to integrate hundreds of electrodes along a single
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Fig. 1: Neural microprobe with 188 electrodes distributed
along the shaft.

probe and to electronically switch the available output chan-
nels to read out a subset of electrodes. Figure 1 shows the
optical micrograph of such a probe [1]. The contact pads
for reading out measurements on the probe base are used
to interface the probe in order to record electrophysiological
signals from selected electrodes on the probe shaft and to
control the integrated switch matrix. Neves et al. [2] orig-
inally proposed this concept of an electronic depth control
(EDC) probe. Typically, an experimenter scans the shaft for
neural activity at the individual recording sites and selects
the most informative ones for long-term recording. As the
number of available electrodes increases, however, the task of
manually selecting an optimal subset of electrodes becomes
impracticable and inefficient. Therefore, we addressed the
problem of autonomously selecting informative electrodes in
our previous work [4]. While this approach is able to provide
near-optimal selections with a greedy approach, it relies on
information collected in a pre-processing step.

In this paper, we present a novel approach to au-
tonomously learn and update electrode selection policies dur-
ing long-term observation, which is desirable in a complex
and dynamic environment such as the human brain. We
model this problem within the multi-armed bandit (MAB)
framework. In this way, our approach is able to explore
the environment and learn optimal selection policies online.
Furthermore, we extend the selection strategy by taking
into account dependencies between neighboring electrodes.
Thereby, we avoid recording of redundant information and
increase exploitation of acquired knowledge. By monitoring
changes in the reward distribution, we are able to react
to changes in the environment and to adapt the selection
policies. We validate our approach in extensive experiments
on real neural data.

II. RELATED WORK

There are just a few studies in the area of automatic
channel selection for neural microprobes. Seidl et al. [5]
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propose a semi-supervised approach which computes the
signal-to-noise ratio (SNR) of the recorded electrodes in
order to assist the experimenter in the selection process.
Similarly, Van Dijck et al. [6] present an automatic approach
which employs the SNR as a quality measure for each
electrode, and additionally penalizes each channel according
to its similarity with respect to the already selected ones.
Van Dijck et al. [6] also evaluate different strategies for
measuring the similarity between the recorded signals based
on the spike trains detected on each channel. Applying the
penalization avoids the recording of redundant information
and leads to a better distribution of the recording channels
in a simulated neuronal model. In our previous work [4], we
proposed a selection strategy based on nonparametric sparse
Gaussian processes for predicting neural activity across
neighboring channels. In this approach, we use the signal
prediction capabilities of each recorded channel in order
to find the subset of electrodes that minimizes the overall
prediction error and thus, maximizes the amount of collected
information. In contrast to these selection strategies, which
find a subset of optimal electrodes for long-term recordings
offline, the approach introduced in this paper operates online
and updates its selection policies according to the recorded
information. In this way, it is able to react to changes in the
environment.

Our approach is based on the widely studied multi-armed
bandit (MAB) framework [7], in which the received rewards
may change over time corresponding to the non-stationary
nature of the recorded signals. The non-stationary MAB
problem has received considerable attention and different
solutions have been proposed in the last decades. Thierens [§]
proposes a modification of the standard pursuit approach
called Adaptive Pursuit. This method outperforms probability
matching strategies when dealing with non-stationary envi-
ronments. Exploiting the success and mathematical back-
ground of the upper confidence bounds (UCB) policies
[9], Kocsis and Szepesvari [10] and Garivier and Moulines
[11] have implemented some adaptations to the standard
algorithm that solve the non-stationary problem: Discounted
UCB (D-UCB) and sliding window UCB (SW-UCB), re-
spectively. The D-UCB strategy relies on a discount factor
which assigns higher weights to recent rewards, while SW-
UCB makes use of a fixed-size horizon, thus forgetting old
rewards. Hartland er al. [12] present an extension of the
UCB policies named Adapt-EvE, which features an adaptive
change point detection test devised for controlling the ratio
between exploration and exploitation in abruptly changing
environments.

III. LEARNING CHANNEL SELECTION POLICIES

The task of our smart neural probe system is to select a
subset of electrodes for recording neural activity: from a set
of K available electrodes, it has to choose a subset m < K in
order to maximize the amount of recorded information. We
frame this as a multi-armed bandit problem [7] in which the
agent repeatedly chooses between different possible actions
and obtains a reward after each trial. In the stationary case,
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Fig. 2: Neural signal measured by our probe: we consider
spikes which are at least 5 times larger than the local noise
variance (dashed line) during the computation of the reward.
An extracted spike is shown at the bottom.

these rewards come from an initially unknown but constant
probability distribution. The goal of the agent is to maximize
the expected cumulative reward over time by identifying
optimal selection policies. Thus, it needs to explore the utility
of the possible actions while also exploiting the already
acquired information.

In our channel selection problem, the agent can choose
more than one action, that is multiple electrodes at a time.
Following the terminology proposed by Chen et al. [13],
we define a super arm as a group of electrodes which
are selected and recorded simultaneously in each trial. Fur-
thermore, the reward distribution might change over time,
that is the signals measured on individual channels may
change due to varying neural activity, tissue adaptation or
relative probe movements. This requires the algorithm to
adapt its selection policies. In the following, we detail the
computation of the rewards, the identification of correlations
and dependencies between electrodes and the detection of
changes in the environment.

A. Computing the reward of an electrode

The reward obtained after recording a set of electrodes
depends on the quality of the recorded signals. Because
of their practical importance in the field of neuroscience
[4,6,14,15], we define quality in terms of the number and
the amplitude of the neural spikes detected on each recorded
electrode. Fig. 2 shows a segment of one of the recorded
signals along with the spikes detected with an automatic
amplitude threshold [5]. For each detected spike, we extract
a 1 ms time window around its peak. Thereby, we compute
the reward for each individual recorded electrode 7 as

J
R; =) RMS(Spike;), (1)

j=1

where J is the number of spikes extracted from electrode <,
and RMS computes the root mean square value of each spike.
The total reward received at a given play would be equivalent
to the sum of the individual rewards R;.
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B. The D-UCB selection strategy

In order to learn and adapt electrode selection policies,
we build on the D-UCB algorithm proposed by Kocsis and
Szepesvari [10]. It is a variant of the UCB policies designed
to deal with non-stationary environments by adapting its
selection policies according to the most recent observations.
In each round or trial 7T, the algorithm selects a set of
electrodes ¢ which maximize their upper confidence bound
Ip(i)

I7(2) = p (i) + cr(2). 2

The upper confidence bound considers an estimate of the
expected reward (i) and a measure of the uncertainty
of our observations given by a so called padding function
cp(i). Considering the uncertainty ensures exploration of
unobserved or presumably less rewarding regions. Due to
the combinatorial nature of our problem [13], the algorithm
not only selects one channel but a subset Sel composed of
the top m electrodes with the highest expected rewards.
For each of the K available electrodes 7, D-UCB maintains
an estimate of these quantities: it updates the discounted
average [ip(7) at the end of each play T according to

T
— N Zt:l thg
NT(z) - T
D Wi
where the weights w; assigned to each reward are equal to

1
Wy = F’ “4)
and the discount factor v < 1 ensures that recent ob-
servations receive higher weights. Decreasing v makes the
algorithm “forget” previous observations faster, but may also
prevent convergence to strong and valid estimates.
The padding function cp () increases the likelihood of
selecting electrodes which have not been recorded for a long
period of time

Vi € Sel, 3)

elnnp
Nr(i)

with ¢ controlling the trade-off between exploration and ex-
ploitation: high values favoring exploration and small values
encouraging exploitation. The value of Ny (7) is updated as

Nu%_WMH@+Miﬁ€M
e YNp_1(i), otherwise

When electrode ¢ is selected, that is when ¢ € Sel, the
discount factor  limits the increment of N (). On the con-
trary, when electrode i is not selected, scaling down N (7)
increases the uncertainty of the corresponding electrode. The
value of nr is usually defined as the total number of plays
so far, and we compute it as

K

nr =Y Nr(i). (7

i=1

er(i) = VieK, (5)

Vie K. (6)

This selection strategy is easy to implement and, as our

experiments show, ensures a rapid exploration and conver-
gence to reasonable reward estimates. Furthermore, it is
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Fig. 3: Dependencies between nelghbormg electrodes: the
spikes observed in both electrodes are shown in red and the
spikes detected only in one of the electrodes are shown in
black.

able to quickly adapt to changes. In environments with
small infrequent changes such as the human brain, however,
exploitation is suboptimal due to the required constant ex-
ploration. Therefore, we describe in the following how to
exploit dependencies between electrodes in order to reduce
exploration time and improve exploitation of information.

IV. MODELING DEPENDENCIES BETWEEN ELECTRODES

Since the electrodes are closely spaced along the probe [1],
neighboring electrodes may record similar neural activity. As
an example, Fig. 3 shows a portion of the neural activity
recorded simultaneously from two close-by electrodes. In
this case, the first electrode measures redundant information
and it would be sufficient to record the second electrode.
Following the definition of the reward stated in Eq. (1), we
define the dependency of electrode ¢ from electrode j as the
percentage of the reward from ¢ which we simultaneously
obtain from electrode j.

The following table shows an estimate of the dependency
matrix X for the electrodes presented in Fig. 3.

i J
i | 100% | 100 %
Jj| 55% | 100 %

When recording ¢, we simultaneously obtain around 55 % of
the reward expected from j. When we record j, in contrast,
we simultaneously obtain 100 % of the information expected
from i. By learning and keeping track of these dependencies
between electrodes, our aim is to reduce exploration time and
to encourage exploitation of highly informative electrodes.

A. Initializing the dependency matrix

At the beginning of the experiment, we sequentially scan
the microprobe to obtain an initial estimate of the expected
rewards. Similar to updating the estimates about the expected
rewards in Eq. (3), we continuously update the dependency
matrix by means of a weighted average. Here, we also assign
higher weights to recent observations. We compute both the
mean >, and the standard deviation Y, of the observed
dependencies.

The length of the initialization period depends on the
number of available electrodes and the selection size. As the
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Fig. 4: Initialization sequence: we simultaneously record
neighboring electrodes to learn their dependencies. In this
example, we can select 8 out of 20 electrodes. Thus, scanning
the entire probe completes after 4 plays.

distance between the electrodes increases, we expect their
dependency to decrease. Potentials of single neurons, for
instance, can only be measured at sufficiently high SNR
for distances below 50um [16]. For this reason, it is not
necessary to initialize and update the entire matrix. Instead,
we only consider the dependencies between neighboring
electrodes. In general, we allow for four to five complete
scans of the microprobe. Fig. 4 shows the scanning sequence
for initializing the algorithm.

B. Detecting changes

Knowing the dependencies between electrodes reduces the
time needed for exploration of the probe. Similar to the
estimates of the expected rewards, however, the dependencies
between the electrodes may change over time due to different
neural activity or due to undesired displacements of the
microprobe. Thus, we need to ensure that the matrix X is
up-to-date. In principle, we could achieve this by scheduling
periodic re-initializing scans, as presented in Fig. 4. Without
knowing the rate of change of the environment, however,
it is suboptimal to periodically stop exploiting in order to
update the estimates. In contrast, it is more efficient to scan
specific regions of the probe only when we believe that a
change has occurred. To detect such changes in our rewards
distribution, we use the change-point-detection algorithm of
Hartland et al. [12]. The key idea is to monitor, using the
Page-Hinkley (PH) statistical test [17], whether or not the
series of rewards gathered during the last steps belong to a
single statistical distribution (null hypothesis) or not (change-
point-detection). In detail, the PH test considers a cumulative
variable m’. defined as the difference between the observed
reward values 7i; (¢), . .., Zp (i) from Eq. (3) and their mean

X, at electrode ¢ up to the current moment 7
T

mr, =Y (i) — Xi — 6), ®)
t=1

where §; corresponds to the magnitude of change that should
not raise an alarm. We furthermore compute the minimum
value of mp: Mp = min(m;) fort = 1,...,T, and monitor
the difference between M7 and m. When the difference is
greater than a given threshold A, we reject the null hypothesis
and trigger a change detection alarm. Table I summarizes the

Microprobe
O
[
O
[

Fig. 5: Scanning sequence after detecting a change in the
recorded neural activity in the highlighted electrode: we use
a portion of the available channels to scan the region of
interest and to update the dependency matrix.

procedure. The PH test involves two parameters: we set §
equal to two times the standard deviation of our individual
estimates, thus only considering changes which lie outside
a 95% confidence level around our current estimate; the
second parameter A\ depends on the desired false detection
rate. While Hartland et al. [12] propose an adaptive control
for autonomously adjusting A, its implementation lies outside
the scope of this work and we set it manually in this paper.

Whenever we observe a change in a specific area of the
microprobe, we update our estimates about rewards and
dependencies in that region. To achieve this, we use a portion
of the available channels to scan the electrodes around the
region of interest in which the change occurred, as illustrated
in Fig. 5. Before scanning, we reset the estimates regarding
dependency and expected reward.

V. EXPLOITING DEPENDENCIES FOR ELECTRODE
SELECTION

So far, we described how we model and keep track of de-
pendencies between electrodes by means of the dependency
matrix Y. In the following, we use this information to adapt
the D-UCB selection strategy (Sec. III-B) in order to improve
the selection of informative electrodes.

A. Avoiding redundant information

In each play, our algorithm selects electrodes in a greedy
and sequential way. It first sorts the electrodes according to
their upper confidence bound I; (Eq. (2)), and iteratively se-
lects the one with the highest estimate. To avoid the recording
of redundant information, we discourage the simultaneous
selection of strongly dependent electrodes. To this end, we
penalize, after each selection, all remaining reward estimates

TABLE I: The PH statistical test returns true if it detects a
change on one of the available electrodes <.

Xi= X ()
mr, = S (A () — Xi — 6;)
M7, = max(my,;), t=1,...,T
PHT; = My, —mr,
i = 0.4X;
Return(PHT; > \;)
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in proportion to their maximum dependency with any of the
already selected electrodes

uTu>=:uTu>(1—-nwx (zuu,@-—zou7@>), ©

seSel

Due to the negative effect that wrong penalties could have
on the selection process, we aim for a conservative penal-
ization by subtracting the standard deviation X, from our
dependency estimates X,,. We repeat this process until m
electrodes have been selected.

B. Avoiding unnecessary exploration

When we record an electrode and do not observe sig-
nificant changes in our estimates, we have no reason to
believe that any of the non-recorded and strongly dependent
neighbors have changed. Thus, in order to avoid exploration
of such likely non-informative regions, we avoid increasing
the uncertainty of those non-recorded electrodes.

As explained in the beginning of Section III-B, the un-
certainty of each electrode ¢ can be controlled by means of
the padding function ¢y (7), which in turn is a function of
Nr(i). Decreasing N (i) in Eq. (6) increases the uncertainty
of those electrodes which were not selected. This step in the
standard D-UCB algorithm ensures permanent exploration
independently of the rewards of the non-optimal electrodes.
In contrast, we dynamically adapt the discount factor by
modifying Eq. (6) as follows

Nﬂ“:{wypua+m
1) Ny (),

if i € Sel vie K,
otherwise

(10)
where our new discount factor 7(¢) is a function of the
estimated dependencies to the selected electrodes

n(i) =7+ max (S,(i,5) ~ Zq(i,s)) (11007> . (1D
In other words, n(i) € [y,1] is a linear function of the
dependency between electrode ¢ and the current selection set
Sel which takes a maximum value of 1 when the electrodes
are 100% dependent. Thus, the uncertainty of electrode 7
increases as the dependency of the non-observed electrode
i to the current selection decreases. When electrode ¢ is
independent of our current selection, its uncertainty increases
as in the D-UCB algorithm, which increases its likelihood
for selection in the future.

As we will show in the experimental evaluation, exploiting
the dependencies across electrodes in this way improves the
long-run performance of our selection strategy. Furthermore,
since we detect changes and update our estimates, the strat-
egy is still capable of reacting to changes in the environment.

VI. DATA ACQUISITION

In order to evaluate the performance of the described
algorithm, we used a dataset of neural activity recorded
in vivo from the neocortex of Wistar rats. The data was
collected at the Institute for Psychology of the Hungar-
ian Academy of Sciences following the respective animal
care regulations [18]. Four different microprobes with 188

electrodes each were placed in different brain regions and
measurements were recorded in highly active regions of
interest on each probe. The recorded extracellular potentials
were sampled at 20 kHz and bandpass filtered in the range
of 300Hz to 3kHz. Since only eight electrodes can be
recorded simultaneously, the region of interest consisting of
20 electrodes was observed in sequential scans of overlap-
ping regions similar to the protocol shown in Fig. 4. This
scanning protocol was designed to collect data for our offline
selection procedure [4] in order to maximize information
about neighboring electrodes.

VII. RESULTS

With the datasets described above, we simulate the prob-
lem of online electrode selection and build an artificial
dataset by combining the recordings of 72 observed chan-
nels. In our experiments, we evaluate the performance of
the algorithm to learn and adapt selection policies for the
simultaneous observation of eight electrodes. We compare
our approach that takes into account dependencies between
electrodes to a standard D-UCB selection strategy and to an
offline greedy selection strategy that keeps the selection fixed
during the entire recording session.

The performance in the MAB framework is usually de-
fined in terms of the regret. The regret is computed as the
difference between the received reward and the reward of an
optimal policy. In this paper, we define the optimal policy
as the subset of electrodes which, on average, would receive
the highest cumulative reward while avoiding the recording
of redundant information. In the following experiments, we
experimentally set the duration of a play to a value of
0.5s. Increasing this value makes the algorithm converge
too slowly, while decreasing it does not allow the algorithm
to collect enough information during the recording period.
Additionally, we set the values of v and ¢ to 0.99 and
0.05, respectively. These values were chosen by tuning the
performance of the standard D-UCB algorithm to the point
where the system quickly converges to a near-optimal selec-
tion policy while still reacting effectively to changes in the
environment. It is important to note that if we compute the
reward as stated in Eq. (1), the standard D-UCB algorithm
has no means of avoiding redundant information. To address
this issue, we apply a penalization such that only the largest
of any simultaneous spikes contributes to the overall received
reward in a play. Since our approach learns the dependencies
between the electrodes, we apply this penalization only to the
reward estimates of the D-UCB algorithm. When comparing
the performance of both algorithms, however, we compute
the regrets after penalizing the rewards.

The main advantage of our online selection strategy is
the capability to adapt its selection policies to recent neural
activity. For this reason, we evaluate how our approach deals
with simulated changes in the environment. We consider
two types of changes: first, a displacement of the neural
probe, for instance, due to tissue relaxation, and second, the
activation or deactivation of specific neural areas, and thus
changes in the signals of individual electrodes. Whenever we
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Fig. 6: Regret of different selection policies when simulating
a three-row downward displacement of the neural microprobe
after 15 minutes. The data was smoothed by averaging 50
consecutive plays.
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Fig. 7: Comparison of different selection policies in terms
of the average percentage of the optimal reward over time
for ten different datasets. In this experiment, we simulated
an eight-row downward shift after 15 minutes.

artificially introduce these types of changes, we determine a
new optimal policy.

In the first experiment, we simulate a three-row downward
displacement of the neural probe by shifting the signals
in the available dataset after 15 minutes. Fig. 6 shows the
performance of both algorithms and a fixed long-term selec-
tion for this experiment. In the first part of the experiment,
before the change, both algorithms converge towards the
average optimal selection. Due to permanent exploration,
neither of them achieves optimal performance. By taking
advantage of the strong dependencies between electrodes,
however, our approach achieves higher rewards than the D-
UCB strategy. Since the fixed selection has no means of
adapting its selection, its performance is only optimal as
long as the neural activity does not change and decreases
after the simulated change. The standard D-UCB algorithm,
in contrast, adapts its selection policies according to the
most recent recorded activity, thus reacting quickly to the
simulated change. Similarly, our algorithm is able to detect
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Fig. 8: Regret of the different selection policies when sim-
ulating a change in half of the optimal electrodes. The data

was smoothed by averaging 50 consecutive plays.
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Fig. 9: Simulating a significant change in two non-optimal
electrodes. Although our approach eventually detects the
introduced change, the outdated dependency matrix misleads
the exploration process and avoids the frequent recording
of the new optimal electrodes. The D-UCB algorithm, in
contrast, quickly reacts to the simulated change.

the change in the distribution and updates both its reward
estimates and the dependency matrix. It requires a longer
time to adapt to the change but it outperforms the standard D-
UCB algorithm after convergence of the reward estimation.
We also carried out a statistical evaluation for a simulated 8-
row downward displacement of the probe in ten different data
sets. Fig. 7 summarizes the results in terms of the fraction
of the optimal reward achieved at different points in time.
Again, our approach requires more time to converge to an
accurate reward estimate but achieves a higher reward after
convergence compared to the standard D-UCB strategy.

Another kind of change may occur due to the activa-
tion or deactivation of specific neurons. Fig. 8 shows the
performance of the different policies when we manipulate
the signals from half of the optimal electrodes in order to
appear in different locations. Non-optimal recordings are
then mapped to the previously optimal channels. The task of
the algorithm is to identify that a change has occurred and
to adapt its selection policies to the new optimal electrodes.
In this experiment, although our approach quickly identifies
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the change, thus outperforming the fixed selection policy,
it requires almost 15 minutes to identify the new optimal
electrodes. In contrast, the D-UCB policy only requires two
minutes to adapt. Once the reward estimates are updated,
however, our algorithm outperforms the D-UCB policy.

One of the worst-case scenarios in a non-stationary MAB
problem is a change in one or more of the non-optimal
arms such that they suddenly become optimal. Since these
arms are selected less frequently, their estimates get updated
much slower. Fig. 9 shows the performance of the proposed
algorithm when we manipulate only two of the non-optimal
electrodes such that their rewards suddenly increase. Our
proposed approach requires almost 25 minutes to detect the
change and adjust the selection policy. This lack of adapt-
ability is due to an outdated dependency matrix. Although
the algorithm eventually explores each of the available elec-
trodes, the dependency estimates acquired before the change
mislead the exploration process. It is important to note,
however, that in a real experiment and due to the proximity
between electrodes, not only one but several neighboring
channels would provide evidence of any significant change in
neural activity. Thus, our approach should be able to identify
changes much faster and to adjust its selection policies
accordingly.

VIII. CONCLUSION

In this paper, we presented an approach to autonomous
channel selection for neural microprobes using the multi-
armed bandit framework. By adapting a discounted upper
confidence selection strategy, we are able to deal with the
non-stationary nature of neural signals and to learn electrode
selection policies in an online manner. Since we exploit
dependencies between close-by electrodes that potentially
measure redundant information, we furthermore reduce the
time required for exploration of the probe and are able to
achieve higher rewards compared to a standard D-UCB strat-
egy. In experiments with real neural data, we demonstrated
that our approach is able to identify near-optimal electrode
selection policies and to adapt to changes in the environment.
In this way, it maximizes the amount of recorded informa-
tion and outperforms fixed long-term selections in changing
environments.

Although we considered a computationally simple way of
estimating the quality of the recorded signals, our approach
is flexible in this respect. Future research could explore
different ways of computing the reward of the recorded
signals according to the type of experiment. It could, for
instance, include spike sorting capabilities, in order to iden-
tify and monitor specific neuronal activity and to improve
the evaluation of the electrode’s dependencies. In this study,
we evaluated our approach using offline recorded datasets
and simulated changes. It would be interesting to analyze the
behavior of neural activity and to evaluate the performance of
our approach over time on a larger set of recording channels

as the amount of available electrodes reaches the capabilities
of state-of-the-art microprobes.
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