
Collaborative Dynamic 3D Scene Graphs for Automated Driving

Elias Greve1∗, Martin Büchner1∗, Niclas Vödisch1∗, Wolfram Burgard2, and Abhinav Valada1

Abstract— Maps have played an indispensable role in enabling
safe and automated driving. Although there have been many
advances on different fronts ranging from SLAM to semantics,
building an actionable hierarchical semantic representation
of urban dynamic scenes and processing information from
multiple agents are still challenging problems. In this work, we
present Collaborative URBan Scene Graphs (CURB-SG) that
enable higher-order reasoning and efficient querying for many
functions of automated driving. CURB-SG leverages panoptic
LiDAR data from multiple agents to build large-scale maps
using an effective graph-based collaborative SLAM approach
that detects inter-agent loop closures. To semantically decompose
the obtained 3D map, we build a lane graph from the paths
of ego agents and their panoptic observations of other vehicles.
Based on the connectivity of the lane graph, we segregate the
environment into intersecting and non-intersecting road areas.
Subsequently, we construct a multi-layered scene graph that
includes lane information, the position of static landmarks and
their assignment to certain map sections, other vehicles observed
by the ego agents, and the pose graph from SLAM including
3D panoptic point clouds. We extensively evaluate CURB-SG
in urban scenarios using a photorealistic simulator. We release
our code at http://curb.cs.uni-freiburg.de.

I. INTRODUCTION

Spatial and semantic understanding of the environment is

crucial for the safe and autonomous navigation of mobile

robots and self-driving cars. Recent autonomy systems

leverage high-definition (HD) map information as effective

priors for several downstream tasks in automated driving (AD)

including perception [1], localization [2], planning [3], and

control [4]. HD maps are often constructed and maintained

in a top-down manner [5], i.e., relying on traffic authorities

or via arduous labeling efforts. In contrast, automatic bottom-

up AD mapping approaches show high accuracy [6], [7]

while being limited to occupancy or semantic mapping

using, e.g., dense voxel grid manifolds. With respect to

AD, map representations should ideally fulfill the following

requirements [8]: 1) completeness and accuracy while scaling

to large areas; 2) frequent updates to capture structural

changes; 3) higher-level topological information grounded in

rich sensor data; 4) efficient access and information querying.

Given these requirements, typical SLAM maps only enable

classical spatial or point-level semantic querying. We envision

that modern AD mapping approaches should provide the

means to process vision and language queries, e.g., from
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Inter-agent loop closure detection, global map optimization,

lane graph extraction, and scene graph construction.
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Fig. 1. For our proposed collaborative urban scene graphs (CURB-SG),
multiple agents send keyframe packages with their local odometry estimates
and panoptic LiDAR scans to a central server that performs global graph
optimization. We subsequently partition the environment based on a lane
graph from agent paths and other detected cars. Together with the 3D map,
the lane graph forms the base of the large-scale hierarchical scene graph.

foundation models [9]. Enabling such demands can only

become feasible by abstracting from given maps using sparse

representations.

In this work, we propose Collaborative URBan Scene

Graphs (CURB-SG) that effectively address the aforemen-

tioned requirements by constructing a hierarchical graph

structure of the environment as shown in Fig. 1. 3D scene

graphs enable efficient data storage of large environments

while being queryable and preserving spatial information.

Previous works on 3D scene graphs [10]–[12] focus on indoor

environments, whose taxonomy cannot be directly transferred

to large-scale urban domains. To close this gap, we introduce

the following analogy to indoor variants: Cities (buildings)

can be separated into intersections and roads (rooms), which

contain static landmarks such as traffic signs (furniture) as

well as dynamic objects such as vehicles (humans). We enable

this partitioning by generating an online lane graph that serves

as a common link among multiple graph layers. Addressing

frequent updates and multi-agent cooperation, our method

leverages a centralized collaborative SLAM approach that

combines panoptic LiDAR data and local odometry estimates

into a single 3D map while optimizing a global pose graph that
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benefits from inter-agent loop closures. Following the spirit

of previous works on scene graphs [10]–[12], we extensively

evaluate our proposed method on simulated data using the

CARLA simulator [13].

To summarize, the main contributions are as follows:

1) We introduce a novel algorithm for representing urban

driving environments as dynamic 3D scene graphs

that are constructed from multi-agent observations to

efficiently cover large areas.

2) We demonstrate an effective partitioning of urban envi-

ronments using lane graphs constructed on the fly from

panoptic LiDAR observations in a cooperative manner.

3) We present an efficient collaborative graph SLAM

method to continuously update semantic maps while

addressing scalability via edge contraction.

4) We provide extensive evaluations of the building blocks

of our proposed framework.

5) We make our code and sample data publicly available

at http://curb.cs.uni-freiburg.de.

II. RELATED WORK

In this section, we first present a summary of LiDAR-based

odometry and mapping, followed by an overview of multi-

agent SLAM, and scene graphs in automated driving (AD).

LiDAR SLAM: LiDAR-based mapping has been pioneered by

LOAM [14] that estimates robot motion from scan registration

via ICP between subsequent point clouds. To address the

full SLAM problem, HDL Graph SLAM [7] combines

LiDAR odometry with local loop closure detection and

performs joint pose graph optimization. Leveraging semantic

segmentation, SUMA++ [6] masks dynamic classes during the

mapping stage and proposes a semantic-aided variant of ICP.

PADLoC [15] exploits panoptic segmentation during training

to stabilize both loop closure detection and registration. In

this work, we use panoptic point clouds to create a large-scale

semantic 3D map forming the base layer of our scene graph.

Collaborative SLAM: To cover large environments and to

increase mapping speed, SLAM research begins to shift

towards multi-agent methods [16]. Generally, collaborative

SLAM can be realized in a centralized or distributed manner.

Initial works such as C2TAM [17] belong to the centralized

category, performing global bundle adjustment on a server and

localization on the clients. A similar paradigm is adopted by

CVI-SLAM [18] and COVINS [19], proposing visual-inertial

(VI) SLAM systems for a fleet of UAVs. While the robots run

local VI odometry, a central server collects this information,

searches for inter-agent loop closures to perform global opti-

mization, and removes redundant data. With respect to LiDAR

SLAM, LAMP 2.0 [20] allows collaboration between different

types of robots to map large-scale underground environments.

A similar use case is addressed by Swarm-SLAM [21], which

supports further sensor modalities. Following a distributed

paradigm, information is directly shared between the agents

using peer-to-peer communication. Kimera-Multi [22] is a

VI SLAM method that includes semantic information in the

generated 3D mesh. For data fusion, it employs distributed

pose graph optimization (PGO). Finally, DisCo-SLAM [23]

proposes a LiDAR-based approach addressing the initially

unknown relative position of the agents. For this, they use

Scan Context [24] descriptors for global loop closure detection

without spatial priors. In this work, we follow the centralized

paradigm since we leverage collaborative SLAM to generate

a single consistent scene graph that can be made available to

other traffic participants to query information.

Scene Graphs for Automated Driving: 3D scene graphs

constitute an effective interface unifying pose graphs from

large-scale mapping and local information [25] such as frame-

wise object detections [26], topological mapping [27], [28],

or semantic segmentation [29], [30]. Additionally, graphs

enable the structural disassembly of large-scale scenes into

objects and their relationships and facilitate higher-level

reasoning, e.g., in the vision and language domain [31].

This further allows for efficient hierarchical abstraction

in both spatial and semantic regimes [12], [32]. So far,

3D scene graphs for environment representation have only

been applied in indoor domains. The first work in this

field [12] proposes an offline, multi-layered hierarchical

representation based on RGB images. Kim et al. [33] were

the first to generate 3D scene graphs from RGB-D images for

visual question answering [34] and task planning. Using

a learning-based pipeline, Wald et al. [35] construct a

3D scene graph from an instance-segmented point cloud

while predicting node and edge semantics in an offline

manner. Rosinol et al. [32] present an offline framework

capable of generating hierarchical scene graphs from dynamic

indoor scenes that are divided into buildings, rooms, places,

objects, and agents, as well as a metric-semantic mesh.

Different from the aforementioned frameworks, Hydra [11],

SceneGraphFusion [36], and S-Graphs [25] present real time-

capable approaches. While Hydra does not tightly couple

the optimized pose graph with the 3D scene graph, the non-

hierarchical S-Graphs [25] close this gap. The follow-up work

S-Graphs+ [10] also encodes hierarchies. In this work, we

combine collaborative SLAM and 3D scene graphs to build

hierarchical maps for AD. To the best of our knowledge,

our work constitutes the first approach to 3D scene graph

construction of urban driving scenes with a tightly coupled

integration of inter-agent loop closures. Furthermore, we show

how multi-agent cooperation facilitates frequent map updates

and completeness.

III. TECHNICAL APPROACH

In this section, we present our CURB-SG approach for

collaborative urban scene graphs. As illustrated in Fig. 2,

CURB-SG is comprised of several components. In Sec. III-A,

we describe our approach for collaborative SLAM to effec-

tively combine panoptic information. Here, multiple agents

transmit their onboard LiDAR odometry estimates along with

panoptic point clouds to a central compute unit. This server

combines the data by detecting intra- and inter-agent loop

closures and performs pose graph optimization (PGO) to

generate a globally consistent 3D map. In Sec. III-B, we

propose to further aggregate the paths of the agents and other

http://curb.cs.uni-freiburg.de
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Fig. 2. Overview of CURB-SG: Multiple agents obtain panoptically segmented LiDAR data and provide an odometry estimate based on the static parts of
the point cloud. A centralized server instance then performs pose graph optimization (PGO) including inter-agent loop closure detection and edge contraction
based on the agents’ inputs. Tightly coupled to the pose graph, we aggregate a lane graph from panoptic observations of other vehicles as well as the
agent’s trajectories. Next, the lane graph is partitioned to retrieve a topological separation that allows for the hierarchical abstraction of larger environments.

observed vehicles to extract an online lane graph allowing

for partitioning the city into intersections and roads. Finally,

the server registers dynamic traffic participants on the lane

graph and generates a hierarchical scene graph by assigning

static landmarks to the closest intersection or road.

A. Collaborative SLAM

We leverage collaborative LiDAR SLAM as the backend in

our proposed CURB-SG. Due to its reliable performance and

well-maintained code base, we build on top of HDL Graph

SLAM [7] and extend it to a multi-agent scenario following

a centralized approach as described in Sec. II. In this section,

we describe the steps performed by each agent, followed by

the centralized PGO as depicted in Fig. 2. Finally, we provide

further details on how CURB-SG explicitly addresses both

long-term and large-scale mapping.

Agents: Each agent is equipped with a LiDAR sensor to

capture sparse 3D point clouds, which contain spatial infor-

mation as well as point-wise panoptic segmentation labels.

Initially, a point cloud is separated into its static and dynamic

components following the conventional categorization of

“stuff” and “thing” classes [37]. Similar to SUMA++ [6],

we extract the static points for creating the map. In contrast

to HDL Graph SLAM [7], we utilize different voxel grid

sizes for the various semantic classes. This approach retains

more dense information where required, e.g., poles and traffic

signs are being processed at a more fine-grained level than

roads or buildings. Next, we perform point cloud registration

via FAST-GICP [38] between subsequent LiDAR scans to

estimate the motion of an agent. Following the common

methodology and to reduce the required bandwidth between

the agents and the server, we generate keyframes after a

specified traveled distance based on LiDAR odometry. Each

keyframe is sent to the server and contains an estimated

pose and the static LiDAR point cloud with semantic labels,

i.e., the “stuff” points. Since car instances (dynamic objects)

contribute to the online construction of a lane graph (see

Sec. III-B), the “thing” points from all the LiDAR scans are

transformed relative to the pose of the previous keyframe and

sent separately.

Server: The centralized server receives keyframes from all

the agents and processes them as outlined in the green box

of Fig. 2: First, upon receiving the first keyframe sent by

an agent, the server registers this agent to the global pose

graph. Second, the server searches for loop closure candidates

between the added keyframe and the existing nodes in the

pose graph to find both intra- and inter-agent loop closures.

We rely on the original loop closure detection technique of

HDL Graph SLAM [7], i.e., all nodes within a local search

radius are considered to be candidates. If the fitness score

of the ICP algorithm is below a threshold, a loop closure

edge is added to the pose graph. Due to relying on an initial

guess, we utilize the absolute ground truth value for the

registration of a new agent. In practice, this could either

be solved with GNSS measurements or by conducting an

efficient global search for loop closure candidates leveraging

point cloud descriptors [23]. Third, the server performs PGO

using g2o [39] to integrate the newly added keyframes and

detected loop closures. To address scalability, we employ edge

contraction as detailed in the following paragraph. Finally,

we apply the same semantics-based voxelization to the entire

3D map as performed by the agents on their local LiDAR

scans.

Long-Term and Large-Scale Mapping: If not handled ex-

plicitly, the pose graph would continue to grow while the

mapping progresses. Since every keyframe contains a 3D

point cloud, this not only significantly slows down the PGO

but also increases memory consumption and disk storage. To

address both problems, we remove the nodes and edges from

the graph that carry redundant information (edge contraction

& node merging). In Fig. 3, two agents have driven along

the same road yielding multiple loop closures. Using a

heuristic-driven approach, the loop closure edges that carry

redundant information are being contracted by merging nodes.

By redirecting the edges of the omitted to the remaining

node, we ensure the legal connectivity of the pose graph.

Notably, this is done after the PGO step. Consequently, the

final pose graph becomes easier to maintain and more efficient

to query when searching for new loop closures. The point

cloud data associated with a removed node is combined

with the data of the persisting node while omitting older

data to guarantee up-to-date map information. In contrast,

the dynamic observations linked to a node are completely
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Fig. 3. In this example, two agents drive along the same road while passing
each other at the dashed line. The detected loop closures yield additional
edges in the pose graph. After optimization, the edges that carry redundant
information are contracted by merging the older node into the more recently
added node to update the map information.

transferred as they contribute towards the construction of the

lane graph explained in Sec. III-B. For the same reason, each

removed node is turned into a passive observation that stores

the driven path of an ego agent.

B. Scene Graph Generation

The second key component of CURB-SG is a scalable

environment representation of urban outdoor scenes for

AD. Besides the aforementioned 3D semantic map, CURB-

SG constructs a tightly coupled hierarchical abstraction

of the environment as shown in Fig. 2. By analogy with

the separation of indoor scenes into buildings, rooms, and

places [11], [12], [32], we decompose a constructed lane graph

into intersecting and non-intersecting road areas allowing for

spatial and semantic abstraction.

The root of our CURB-SG representation is given by

Layer A that holds environment/city-level information. This

environment is then spatially divided into intersections

and their connecting roads (Layer B), which serve as the

categorical counterparts to rooms and corridors in indoor

scenes. Since the partitioning of our environment is based

on a lane graph (presented in Layer E), the connectivity

of Layer B is implicitly given by the connectivity of the

lane graph (colored segments, Fig. 2). Next, we map static

landmarks such as traffic signs and poles contained in Layer C

including their bounding box to their corresponding spatial

area defined by Layer B. These landmarks can serve as priors

for localization or object detection. Layer D holds all currently

observed dynamic vehicles. We map dynamic vehicles to their

closest respective lane graph node, as defined in Layer E, to

provide efficient access for downstream tasks, e.g., trajectory

prediction. Central to this approach, Layer E is a directed lane

graph to encode the low-level topology for vehicle navigation

and is inferred from the paths of the ego agents as well as

other perceived vehicles. We provide further details in the

next paragraph. The lane graph defines the connectivity of the

different spatial regions in the urban environment, comparable

to edges among rooms in indoor scene graph variants. Finally,

Layer F contains the pose graph from our SLAM backend

and encodes LiDAR data in the form of semantic point

clouds. As discussed in Sec. III-A, this layer is subject to

continuous optimization and dynamic restructuring, e.g., due

to loop closure detection and edge contraction. Based on the

edges between the keyframes in this layer and spatial areas

(Layer B), 3D map information is easily accessible given a

rough road-level position estimate.

Lane Graph Construction: We generate a lane graph of the

environment leveraging the trajectories of the ego agents as

well as observations of surrounding vehicles. As the LiDAR

point clouds of the agents contain instance IDs, we are able

to differentiate between multiple observed vehicle instances

in the agents’ surroundings. For each observed vehicle, we

extract the centroid of its partial point cloud. The position

of a centroid is stored relative to the most recent keyframe.

After transmitting the data to the server, the position of

this dynamic observation can be retrieved given the link

to its corresponding keyframe. Consequently, the positions

of all the dynamic observations benefit from continuous

keyframe updates due to PGO. To evenly sample paths,

we further filter the observations using both hand-crafted

heuristics and DBSCAN [40] based on timestamps, angles,

and relative displacements. This is particularly important for

stationary and occluded objects as well as outliers caused

by odometry noise. Following an iterative yaw-respective

aggregation scheme [27], we convert all trajectories into

directed graphs, apply Laplacian smoothing, and merge

them to build a complete lane graph. Employing the same

processing scheme, we add agent trajectories to this graph.

Since CURB-SG maintains a connection between the lane

graph and the keyframes used in SLAM, we can continuously

propagate refinements from PGO to the lane graph.

Environment Partitioning: Urban outdoor driving scenes

exhibit a vastly different topology compared to indoor

environments that have been represented using scene graphs

so far. We found that classical methods such as wall dilation

for retrieving disjoint environment graphs [11] are not

directly applicable to urban environments. In our work, we

propose to separate outdoor environments into intersecting

and non-intersecting areas using the obtained lane graph

(see above). Ultimately, this gives rise to the hierarchical

environment abstraction introduced in CURB-SG enabling

efficient querying for downstream tasks such as trajectory

prediction. In particular, we detect intersections based on the

following heuristics: First, we cluster high-degree lane graph

nodes to find agglomerations of graph splits and merges.

Second, we detect lane graph edges that intersect. These

two approaches can be applied to various environments

to efficiently handle challenging conditions such as multi-

lane roads or non-trivial intersections. After identifying

intersection nodes, the remaining disconnected sub-graphs fall

into non-intersecting road areas. To assign components from

other layers of the scene graph to the extracted partitions,

we extend these areas beyond the lane node surroundings as

illustrated in Fig. 2.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate CURB-SG with respect to the

collaborative SLAM backend, the constructed lane graph, and

the proposed partitioning based on road intersections.



A. Experimental Setup

We evaluate CURB-SG on various urban driving scenarios

using the CARLA simulator [13] due to a lack of real-world

multi-agent datasets providing LiDAR scans. In particular, we

perform experiments on a set of four diverse environments

including town01, town02, town07, and town10. Following

previous works [11], we use the panoptic annotations with

temporally consistent instance IDs provided by the simulator.

Where applicable, we demonstrate the efficacy of CURB-SG

for one, two, and three agents and average results over

ten randomly initialized runs. Due to the semantics-based

voxelization on the server, the total number of map points

of a fully explored town is relatively stable. As the path

planning of the agents is randomized, it can take a long time

until this number is reached. Therefore, we approximate full

exploration by using 85% as the termination criterion.

B. Collaborative SLAM

In this section, we evaluate the collaborative SLAM

backend of our proposed CURB-SG with respect to both

accuracy and cooperative gain in long-term scenarios.

Mapping and Localization: In Tab. I, we present the root

mean squared errors (RMSE) of the agents’ keyframes and the

estimated position of the street signs to represent localization

and mapping accuracy, respectively. We compute the position

of a street sign as the geometric center of the corresponding

bounding box that is inferred from the 3D map. We observe

that both errors are reduced when more agents contribute

towards the collaborative pose graph. Except for the case of

two agents in town07, this holds true for the mean as well

as the standard deviation across all environments. We further

illustrate the robustness of our approach against noisy sensor

data by imposing realistic metric Gaussian noise N (0, 0.02)
on the LiDAR scans [41] of the agents in town01 and town02.

As shown in Tab. I, the noise does not significantly alter the

errors indicating that downstream tasks such as lane graph

estimation do not degrade either.

Long-Term Mapping: We demonstrate the efficacy of our

proposed adaptions of HDL Graph SLAM [7] (see Sec. III-A)

to address long-term mapping of large areas. In the rightmost

column of Tab. I, we report the time required to map a town

when using one, two, or three agents. Generally, the higher

the number of contributing agents, the smaller the time

required to explore the map. Similarly, in Fig. 4, we illustrate

the mapping progress measured by the number of 3D points

versus the simulation steps. While the results confirm the

aforementioned general trend towards faster exploration in

a multi-agent setup, the pure mapping speed will reach an

upper bound above that additional agents will not further

increase the speed. However, even afterward, these agents

will keep sending measurements and vehicle observations

contributing towards frequent map updates and enhancing

the lane graph (see Sec. IV-C). We present further results

for town01 and town10 in the suppl. material Sec. S.3.

Finally, we demonstrate that our proposed edge contraction

successfully limits the number of nodes contained in the

TABLE I

EVALUATION OF LOCALIZATION AND MAPPING PERFORMANCE

Environment
Agent RMSE (agents) RMSE (street signs) Exploration time

count [m] [m] [sim. steps]

town01

1 0.735 ± 0.492 0.865 ± 0.485 2502.50

2 0.368 ± 0.343 0.480 ± 0.358 1267.70

3 0.132 ± 0.096 0.169 ± 0.096 1134.40

+ noise 3 0.159 ± 0.093 0.225 ± 0.101 –

town02

1 0.306 ± 0.208 0.297 ± 0.194 2079.00

2 0.249 ± 0.176 0.299 ± 0.238 943.80

3 0.126 ± 0.109 0.164 ± 0.148 597.60

+ noise 3 0.119 ± 0.078 0.140 ± 0.064 –

1 0.564 ± 0.406 – 3632.70

town07 2 0.234 ± 0.182 – 1760.20

3 0.218 ± 0.198 – 910.00

1 0.333 ± 0.185 – 923.70

town10 2 0.310 ± 0.185 – 724.00

3 0.116 ± 0.106 – 391.10

Mean and standard deviation over ten runs of the RMSE of the agents’
keyframes and the estimated position of the street signs representing
localization and mapping accuracy, respectively. Note that the environ-
ments town07 and town10 do not contain street signs. The rightmost
column lists the mean time required to map 85% of the entire town
measured in simulation steps.
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Fig. 4. The mapping progress in town02 (top) and town07 (bottom) for
one, two, and three agents. Our collaborative SLAM method benefits from
receiving inputs from multiple agents.

pose graph. In Fig. 5, we show the example of three agents

operating in town02 and compare the number of optimizable

graph nodes with the total number of keyframes sent by the

agents. We observe that without edge contraction, the pose

graph continuously grows with the number of keyframes sent,

rendering frequent optimization infeasible.

C. Lane Graph

We evaluate our proposed online lane graph generation

approach from the paths of the ego agents and their obser-

vations of other vehicles (Sec. III-B). We present qualitative

results in Fig. 6 for two scenarios simulated in town02 with

30 additional non-agent vehicles: the left figure visualizes the

lane graph in a single-agent scenario terminated as soon as

the agent starts to repeatedly revisit intersections. Although

the path of the agent, shown in blue, does not cover all the

lanes, including the paths of the observed vehicles allows for a

substantial extension of the lane graph. The right figure depicts

a long-term scenario with three agents demonstrating that

collaboration further boosts performance. Our method yields

an almost complete lane graph even though several lanes

have only been driven by the agents in the opposite direction.
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Fig. 5. Our proposed edge contraction mechanism effectively reduces the
number of nodes in the pose graph to maintain the capability of frequent
graph optimization. This plot shows three agents operating in town02.

TABLE II

LANE GRAPH EVALUATION

Ego Obs. TOPO P / R GEO P / R APLS SDA4.5 SDA9.0 Graph IoU

1-agent scenario

✓ 0.810 / 0.281 0.923 / 0.415 0.658 0.000 0.042 0.386

✓ ✓ 0.678 / 0.562 0.855 / 0.812 0.724 0.278 0.394 0.690

3-agents scenario

✓ 0.715 / 0.583 0.874 / 0.762 0.800 0.188 0.357 0.658

✓ ✓ 0.574 / 0.712 0.751 / 0.925 0.756 0.250 0.452 0.751

Quantitative results obtained in town02. The two left columns indicate
whether only the paths of the ego agents or also the estimated positions of
other observed vehicles have been used. For the TOPO and GEO metrics,
we provide both precision (P) and recall (R).

We quantify these findings in Tab. II following previous

works on lane graphs: precision and recall of the TOPO and

GEO metrics [28], APLS [42], SDAR [27] with the subscript

denoting the search radius in meters, and the graph IoU [27].

We observe that except for the TOPO/GEO precision and

the APLS in the 3-agent scenario, all the metrics show an

improvement when using not only the paths of the ego agents

but also of the observed vehicles. We attribute the decrease

in precision to the noise in the estimated position of the

other vehicles. Since we approximate the center of a vehicle

by the geometric mean of the respective 3D points, there is

a bias towards the center line of a road for all oncoming

cars. We further observe that increasing the number of agents

does have a positive impact on all the metrics except for

the TOPO/GEO precision and the SDA4.5 demonstrating the

efficacy of our method.

D. Environment Partitioning

We evaluate our approach for environment partitioning

(Sec. III-B) by comparing it against the ground-truth intersec-

tion points of the underlying map. Throughout exploring the

environment, the recall is normalized using the point cloud of

the road surface obtained thus far. Our proposed lane graph-

based method (LG) is compared against a morphological

image skeletonization baseline (SK) that uses medial axes of

the bird’s-eye-view projected point cloud of the road surface.

Kernelized smoothing and dilation followed by thresholding

the obtained bird’s-eye-view image helps in filtering false

positive points and noise. In order to further increase precision,

the SK baseline includes clustering culmination of intersection

points in local areas that originate from artifacts in the

skeleton graph. We report the precision and recall values

across ten exploration runs on town02 in Fig. 7. We observe

1-agent scenario 3-agents scenario

Estimated lane graph True lane graph Driven by ego agent(s)

Fig. 6. Visualization of the constructed lane graph of town02 when using
one or three agents. Lanes marked in blue have been traversed by an ego
agent. Others are reconstructed from observing surrounding vehicles.
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Fig. 7. Intersection detection quality of our lane graph-based detection
of intersections (LG) and an image-based skeletonization baseline of the
road surface (SK). Average precision (P) and recall (R) of both approaches
across 10 runs with 3 agents and 40 vehicles on town02 as well as the size
of the investigated road surface point cloud are shown.

that our approach (LG) achieves at least 20% greater precision

while showing comparable or exceeding recall scores. As our

approach relies on observed vehicle trajectories, we attribute

the lower initial recall of the LG method to a small number of

initially seen trajectories while the point cloud-based baseline

already processes a larger extent of the surroundings at this

stage. Nonetheless, we observe that the SK baseline yields

vastly different partitioning solutions throughout exploration

as it is not robust to artifacts such as occlusions due to

vehicles or sparse LiDAR readings of distant road surfaces.

We believe that a conservative, high-precision classifier is

beneficial as under-segmentation increases the number of

roads and intersections unnecessarily. Further explanations

are provided in suppl. material Sec. S.4. Additionally, we

observe that simply extracting intersections from the pose

graph produces low recalls as every path has to be traversed by

the agents instead of relying on more descriptive observations.

V. CONCLUSION

In this work, we introduced CURB-SG as a novel approach

to building large-scale hierarchical dynamic 3D urban scene

graphs from multi-agent observations. We furthermore demon-

strated how our collaborative SLAM approach facilitates

frequent map updates and rapid exploration while scaling to

large environments. To foster further research in this direction,

we made our code publicly available. In future work, we will

address the reliance on simulated panoptic labels and known

initial poses of the agents. Orthogonal to that, follow-up work

could address a decentralized variant that operates under real-

time constraints. Furthermore, we plan to include pedestrian

information as well as additional topological elements such

as road boundaries.
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