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Abstract— Recently, Rao-Blackwellized particle filters have
been introduced as an effective means to solve the simultaneous
localization and mapping problem. This approach uses a particle
filter in which each particle carries an individual map of the
environment. Accordingly, a key question is how to reduce the
number of particles. In this paper, we present adaptive techniques
for reducing this number in a Rao-Blackwellized particle filter
for learning grid maps. We propose an approach to compute
an accurate proposal distribution taking into account not only
the movement of the robot but also the most recent observation.
This drastically decreases the uncertainty about the robot’s pose
in the prediction step of the filter. Furthermore, we present an
approach to selectively carry out resampling operations which
seriously reduces the problem of particle depletion. Experimental
results carried out with real mobile robots in large-scale indoor
as well as in outdoor environments illustrate the advantages of
our methods over previous approaches.

Index Terms— SLAM, Rao-Blackwellized particle filter, adap-
tive resampling, motion-model, improved proposal

I. I NTRODUCTION

Building maps is one of the fundamental tasks of mobile
robots. In the literature, the mobile robot mapping problemis
often referred to as thesimultaneous localization and mapping
(SLAM) problem[4, 6, 9, 15, 16, 26, 29, 32, 39]. It is
considered to be a complex problem, because for localization
a robot needs a consistent map and for acquiring a map a
robot requires a good estimate of its location. This mutual
dependency between the pose and the map estimates makes
the SLAM problem hard and requires searching for a solution
in a high-dimensional space.

Murphy, Doucet, and colleagues [6, 32] introduced Rao-
Blackwellized particle filters as an effective means to solve
the simultaneous localization and mapping problem. The main
problem of the Rao-Blackwellized approaches is their com-
plexity measured in terms of the number of particles required
to build an accurate map. Therefore, reducing this quantity
is one of the major challenges for this family of algorithms.
Additionally, the resampling step can potentially eliminate
the correct particle. This effect is also known as the particle
depletion problem or as particle impoverishment [44].

In this work, we present two approaches to substantially
increase the performance of Rao-Blackwellized particle filters
applied to solve the SLAM problem with grid maps:

• A proposal distribution that considers the accuracy of the
robot’s sensors and allows us to draw particles in a highly
accurate manner.

• An adaptive resampling technique which maintains a
reasonable variety of particles and in this way enables
the algorithm to learn an accurate map while reducing
the risk of particle depletion.

The proposal distribution is computed by evaluating the like-
lihood around a particle-dependent most likely pose obtained
by a scan-matching procedure combined with odometry in-
formation. In this way, the most recent sensor observation is
taken into account for creating the next generation of particles.
This allows us to estimate the state of the robot according to
a more informed (and thus more accurate) model than the
one obtained based only on the odometry information. The
use of this refined model has two effects. The map is more
accurate since the current observation is incorporated into the
individual mapsafter considering its effect on the pose of
the robot. This significantly reduces the estimation error so
that less particles are required to represent the posterior. The
second approach, the adaptive resampling strategy, allowsus
to perform a resampling step only when needed and in this
way keeping a reasonable particle diversity. This results in a
significantly reduced risk of particle depletion.

The work presented in this paper is an extension of our
previous work [14] as it further optimizes the proposal dis-
tribution to even more accurately draw the next generation
of particles. Furthermore, we added a complexity analysis,a
formal description of the used techniques, and provide more
detailed experiments in this paper. Our approach has been
validated by a set of systematic experiments in large-scale
indoor and outdoor environments. In all experiments, our
approach generated highly accurate metric maps. Additionally,
the number of the required particles is one order of magnitude
lower than with previous approaches.

This paper is organized as follows. After explaining how a
Rao-Blackwellized filter can be used in general to solve the
SLAM problem, we describe our approach in Section III. We
then provide implementation details in Section IV. Experi-
ments carried out on real robots are presented in Section VI.
Finally, Section VII discusses related approaches.

II. M APPING WITH RAO-BLACKWELLIZED PARTICLE

FILTERS

According to Murphy [32], the key idea of the Rao-
Blackwellized particle filter for SLAM is to estimate the joint
posteriorp(x1:t, m | z1:t, u1:t−1) about the mapm and the
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trajectoryx1:t = x1, . . . , xt of the robot. This estimation is
performed given the observationsz1:t = z1, . . . , zt and the
odometry measurementsu1:t−1 = u1, . . . , ut−1 obtained by
the mobile robot. The Rao-Blackwellized particle filter for
SLAM makes use of the following factorization

p(x1:t, m | z1:t, u1:t−1) =

p(m | x1:t, z1:t) · p(x1:t | z1:t, u1:t−1). (1)

This factorization allows us to first estimate only the trajectory
of the robot and then to compute the map given that trajectory.
Since the map strongly depends on the pose estimate of
the robot, this approach offers an efficient computation. This
technique is often referred to as Rao-Blackwellization.

Typically, Eq. (1) can be calculated efficiently since the pos-
terior over mapsp(m | x1:t, z1:t) can be computed analytically
using “mapping with known poses” [31] sincex1:t and z1:t

are known.
To estimate the posteriorp(x1:t | z1:t, u1:t−1) over the po-

tential trajectories, one can apply a particle filter. Each particle
represents a potential trajectory of the robot. Furthermore, an
individual map is associated with each sample. The maps are
built from the observations and the trajectory representedby
the corresponding particle.

One of the most common particle filtering algorithms is
the sampling importance resampling (SIR) filter. A Rao-
Blackwellized SIR filter for mapping incrementally processes
the sensor observations and the odometry readings as they
are available. It updates the set of samples that representsthe
posterior about the map and the trajectory of the vehicle. The
process can be summarized by the following four steps:

1) Sampling: The next generation of particles{x(i)
t } is ob-

tained from the generation{x(i)
t−1} by sampling from the

proposal distributionπ. Often, a probabilistic odometry
motion model is used as the proposal distribution.

2) Importance Weighting: An individual importance weight
w

(i)
t is assigned to each particle according to the impor-

tance sampling principle

w
(i)
t =

p(x
(i)
1:t | z1:t, u1:t−1)

π(x
(i)
1:t | z1:t, u1:t−1)

. (2)

The weights account for the fact that the proposal distri-
butionπ is in general not equal to the target distribution
of successor states.

3) Resampling: Particles are drawn with replacement pro-
portional to their importance weight. This step is nec-
essary since only a finite number of particles is used to
approximate a continuous distribution. Furthermore, re-
sampling allows us to apply a particle filter in situations
in which the target distribution differs from the proposal.
After resampling, all the particles have the same weight.

4) Map Estimation: For each particle, the corresponding
map estimatep(m(i) | x

(i)
1:t, z1:t) is computed based on

the trajectoryx
(i)
1:t of that sample and the history of

observationsz1:t.
The implementation of this schema requires to evaluate

the weights of the trajectories from scratch whenever a new
observation is available. Since the length of the trajectory

increases over time, this procedure would lead to an obviously
inefficient algorithm. According to Doucetet al. [7], we obtain
a recursive formulation to compute the importance weights by
restricting the proposalπ to fulfill the following assumption

π(x1:t | z1:t, u1:t−1) = π(xt | x1:t−1, z1:t, u1:t−1)

·π(x1:t−1 | z1:t−1, u1:t−2). (3)

Based on Eq. (2) and (3), the weights are computed as

w
(i)
t =

p(x
(i)
1:t | z1:t, u1:t−1)

π(x
(i)
1:t | z1:t, u1:t−1)

(4)

=
ηp(zt | x

(i)
1:t, z1:t−1)p(x

(i)
t | x

(i)
t−1, ut−1)

π(x
(i)
t | x

(i)
1:t−1, z1:t, u1:t−1)

·
p(x

(i)
1:t−1 | z1:t−1, u1:t−2)

π(x
(i)
1:t−1 | z1:t−1, u1:t−2)

︸ ︷︷ ︸

w
(i)
t−1

(5)

∝
p(zt | m

(i)
t−1, x

(i)
t )p(x

(i)
t | x

(i)
t−1, ut−1)

π(xt | x
(i)
1:t−1, z1:t, u1:t−1)

· w
(i)
t−1.(6)

Here η = 1/p(zt | z1:t−1, u1:t−1) is a normalization factor
resulting from Bayes’ rule that is equal for all particles.

Most of the existing particle filter applications rely on the
recursive structure of Eq. (6). Whereas the generic algorithm
specifies a framework that can be used for learning maps, it
leaves open how the proposal distribution should be computed
and when the resampling step should be carried out. Through-
out the remainder of this paper, we describe a technique that
computes an accurate proposal distribution and that adaptively
performs resampling.

III. RBPF WITH IMPROVED PROPOSALS ANDADAPTIVE

RESAMPLING

In the literature, several methods for computing improved
proposal distributions and for reducing the risk of particle
depletion have been proposed [7, 30, 35]. Our approach applies
two concepts that have previously been identified as key
pre-requisites for efficient particle filter implementations (see
Doucet et al. [7]), namely the computation of an improved
proposal distribution and an adaptive resampling technique.

A. On the Improved Proposal Distribution

As described in Section II, one needs to draw samples from
a proposal distributionπ in the prediction step in order to ob-
tain the next generation of particles. Intuitively, the better the
proposal distribution approximates the target distribution, the
better is the performance of the filter. For instance, if we were
able to directly draw samples from the target distribution,the
importance weights would become equal for all particles and
the resampling step would no longer be needed. Unfortunately,
in the context of SLAM a closed form of this posterior is not
available in general.

As a result, typical particle filter applications [3, 29] use
the odometry motion model as the proposal distribution. This
motion model has the advantage that it is easy to compute for
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Fig. 1. The two components of the motion model. Within the interval L(i)

the product of both functions is dominated by the observation likelihood in
case an accurate sensor is used.

most types of robots. Furthermore, the importance weights
are then computed according to the observation modelp(zt |
m, xt). This becomes clear by replacingπ in Eq. (6) by the
motion modelp(xt | xt−1, ut−1)

w
(i)
t = w

(i)
t−1

ηp(zt | m
(i)
t−1, x

(i)
t )p(x

(i)
t | x

(i)
t−1, ut−1)

p(x
(i)
t | x

(i)
t−1, ut−1)

(7)

∝ w
(i)
t−1 · p(zt|m

(i)
t−1, x

(i)
t ). (8)

This proposal distribution, however, is suboptimal especially
when the sensor information issignificantly more precisethan
the motion estimate of the robot based on the odometry,
which is typically the case if a robot equipped with a laser
range finder (e.g., with a SICK LMS). Figure 1 illustrates
a situation in which the meaningful area of the observation
likelihood is substantially smaller than the meaningful area of
the motion model. When using the odometry model as the
proposal distribution in such a case, the importance weights
of the individual samples can differ significantly from each
other since only a fraction of the drawn samples cover the
regions of state space that have a high likelihood under the
observation model (areaL(i) in Figure 1). As a result, one
needs a comparably high number of samples to sufficiently
cover the regions with high observation likelihood.

A common approach – especially in localization – is to use
a smoothed likelihood function, which avoids that particles
close to the meaningful area get a too low importance weight.
However, this approach discards useful information gathered
by the sensor and, at least to our experience, often leads to
less accurate maps in the SLAM context.

To overcome this problem, one can consider the most recent
sensor observationzt when generating the next generation of
samples. By integratingzt into the proposal one can focus
the sampling on the meaningful regions of the observation
likelihood. According to Doucet [5], the distribution

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1) =

p(zt | m
(i)
t−1, xt)p(xt | x

(i)
t−1, ut−1)

p(zt | m
(i)
t−1, x

(i)
t−1, ut−1)

(9)

is the optimal proposal distribution with respect to the variance
of the particle weights. Using that proposal, the computation

of the weights turns into

w
(i)
t = w

(i)
t−1

ηp(zt | m
(i)
t−1, x

(i)
t )p(x

(i)
t | x

(i)
t−1, ut−1)

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1)

(10)

∝ w
(i)
t−1

p(zt | m
(i)
t−1, x

(i)
t )p(x

(i)
t | x

(i)
t−1, ut−1)

p(zt|m
(i)
t−1

,xt)p(xt|x
(i)
t−1

,ut−1)

p(zt|m
(i)

t−1
,x

(i)

t−1
,ut−1)

(11)

= w
(i)
t−1 · p(zt | m

(i)
t−1, x

(i)
t−1, ut−1) (12)

= w
(i)
t−1 ·

∫

p(zt | x′)p(x′ | x
(i)
t−1, ut−1) dx′. (13)

When modeling a mobile robot equipped with an accurate
sensor like, e.g., a laser range finder, it is convenient to use
such an improved proposal since the accuracy of the laser
range finder leads to extremely peaked likelihood functions.
In the context of landmark-based SLAM, Montemerloet
al. [26] presented a Rao-Blackwellized particle filter that uses
a Gaussian approximation of the improved proposal. This
Gaussian is computed for each particle using a Kalman filter
that estimates the pose of the robot. This approach can be used
when the map is represented by a set of features and if the
error affecting the feature detection is assumed to be Gaussian.
In this work, we transfer the idea of computing an improved
proposal to the situation in which dense grid maps are used
instead of landmark-based representations.

B. Efficient Computation of the Improved Proposal

When modeling the environment with grid maps, a closed
form approximation of an informed proposal is not directly
available due to the unpredictable shape of the observation
likelihood function.

In theory, an approximated form of the informed proposal
can be obtained using theadaptedparticle filter [35]. In this
framework, the proposal for each particle is constructed by
computing a sampled estimate of the optimal proposal given
in Eq. (9). In the SLAM context, one would first have to
sample a set of potential posesxj of the robot from the motion
model p(xt | x

(i)
t−1, ut−1). In a second step, these samples

need to be weighed by the observation likelihood to obtain
an approximation of the optimal proposal. However, if the
observation likelihood is peaked the number of pose samples
xj that has to be sampled from the motion model is high,
since a dense sampling is needed for sufficiently capturing
the typically small areas of high likelihood. This results in a
similar problem than using the motion model as the proposal:
a high number of samples is needed to sufficiently cover the
meaningful region of the distribution.

One of our observations is that in the majority of cases
the target distribution has only a limited number of maxima
and it mostly has only a single one. This allows us to sample
positionsxj covering only the area surrounding these maxima.
Ignoring the less meaningful regions of the distribution saves a
significant amount of computational resources since it requires
less samples. In the previous version of this work [14], we
approximatedp(xt | x

(i)
t−1, ut−1) by a constantk within the

interval L(i) (see also Figure 1) given by

L(i) =
{

x
∣
∣
∣ p(zt | m

(i)
t−1, x) > ǫ

}

. (14)
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(a) (b) (c)

Fig. 2. Particle distributions typically observed during mapping. In an open
corridor, the particles distribute along the corridor (a).In a dead end corridor,
the uncertainty is small in all dimensions (b). Such posteriors are obtained
because we explicitely take into account the most recent observation when
sampling the next generation of particles. In contrast to that, the raw odometry
motion model leads less peaked posteriors (c).

In our current approach, we consider both components, the
observation likelihood and the motion model within that
interval L(i). We locally approximate the posteriorp(xt |

m
(i)
t−1, x

(i)
t−1, zt, ut−1) around the maximum of the likelihood

function reported by a scan registration procedure.
To efficiently draw the next generation of samples, we

compute a Gaussian approximationN based on that data.
The main differences to previous approaches is that we first
use a scan-matcher to determine the meaningful area of
the observation likelihood function. We then sample in that
meaningful area and evaluate the sampled points based on
the target distribution. For each particlei, the parametersµ(i)

t

and Σ
(i)
t are determined individually forK sampled points

{xj} in the intervalL(i). We furthermore take into account
the odometry information when computing the meanµ(i) and
the varianceΣ(i). We estimate the Gaussian parameters as

µ
(i)
t =

1

η(i)
·

K∑

j=1

xj · p(zt | m
(i)
t−1, xj)

·p(xj | x
(i)
t−1, ut−1) (15)

Σ
(i)
t =

1

η(i)
·

K∑

j=1

p(zt | m
(i)
t−1, xj)

·p(xj | x
(i)
t−1, ut−1)

·(xj − µ
(i)
t )(xj − µ

(i)
t )T (16)

with the normalization factor

η(i) =
K∑

j=1

p(zt | m
(i)
t−1, xj) · p(xj | x

(i)
t−1, ut−1). (17)

In this way, we obtain a closed form approximation of the
optimal proposal which enables us to efficiently obtain the
next generation of particles. Using this proposal distribution,
the weights can be computed as

w
(i)
t = w

(i)
t−1 · p(zt | m

(i)
t−1, x

(i)
t−1, ut−1) (18)

= w
(i)
t−1 ·

∫

p(zt | m
(i)
t−1, x

′) · p(x′ | x
(i)
t−1, ut−1) dx

≃ w
(i)
t−1 ·

K∑

j=1

p(zt | m
(i)
t−1, xj) · p(xj | x

(i)
t−1, ut−1)

= w
(i)
t−1 · η

(i). (19)

Note thatη(i) is the same normalization factor that is used in
the computation of the Gaussian approximation of the proposal
in Eq. (17).

C. Discussion about the Improved Proposal

The computations presented in this section enable us to
determine the parameters of a Gaussian proposal distribution
for each particle individually. The proposal takes into account
the most recent odometry reading and laser observation while
at the same time allowing us efficient sampling. The resulting
densities have a much lower uncertainty compared to situations
in which the odometry motion model is used. To illustrate this
fact, Figure 2 depicts typical particle distributions obtained
with our approach. In case of a straight featureless corridor,
the samples are typically spread along the main direction of
the corridor as depicted in Figure 2 (a). Figure 2 (b) illustrates
the robot reaching the end of such a corridor. As can be seen,
the uncertainty in the direction of the corridor decreases and all
samples are centered around a single point. In contrast to that,
Figure 2 (c) shows the resulting distribution when sampling
from the raw motion model.

As explained above, we use a scan-matcher to determine
the mode of the meaningful area of the observation likelihood
function. In this way, we focus the sampling on the important
regions. Most existing scan-matching algorithms maximizethe
observation likelihood given a map and an initial guess of the
robot’s pose. When the likelihood function is multi-modal,
which can occur when, e.g., closing a loop, the scan-matcher
returns for each particle the maximum which is closest to the
initial guess. In general, it can happen that additional maxima
in the likelihood function are missed since only a single mode
is reported. However, since we perform frequent filter updates
(after each movement of0.5 m or a rotation of25◦) and
limit the search area of the scan-matcher, we consider that the
distribution has only a single mode when sampling data points
to compute the Gaussian proposal. Note that in situations like a
loop closure, the filter is still able to keep multiple hypotheses
because the initial guess for the starting position of the scan-
matcher when reentering a loop is different for each particle.

Nevertheless, there are situations in which the filter can – at
least in theory – become overly confident. This might happen
in extremely cluttered environments and when the odometry
is highly affected by noise. A solution to this problem is to
track the multiple modes of the scan-matcher and repeat the
sampling process separately for each node. However, in our
experiments carried out using real robots we never encountered
such a situation.

During filtering, it can happen that the scan-matching
process fails because of poor observations or a too small
overlapping area between the current scan and the previously
computed map. In this case, the raw motion model of the
robot which is illustrated in Figure 2 (c) is used as a proposal.
Note that such situations occur rarely in real datasets (seealso
Section VI-E).
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D. Adaptive Resampling

A further aspect that has a major influence on the per-
formance of a particle filter is the resampling step. During
resampling, particles with a low importance weightw(i) are
typically replaced by samples with a high weight. On the one
hand, resampling is necessary since only a finite number of
particles are used to approximate the target distribution.On
the other hand, the resampling step can remove good samples
from the filter which can lead to particle impoverishment.
Accordingly, it is important to find a criterion for deciding
when to perform the resampling step. Liu [23] introduced the
so-called effective sample size to estimate how well the current
particle set represents the target posterior. In this work,we
compute this quantity according to the formulation of Doucet
et al. [7] as

Neff =
1

∑N

i=1

(
w̃(i)

)2 , (20)

wherew̃(i) refers to the normalized weight of particlei.
The intuition behindNeff is as follows. If the samples were

drawn from the target distribution, their importance weights
would be equal to each other due to the importance sampling
principle. The worse the approximation of the target distri-
bution, the higher is the variance of the importance weights.
Since Neff can be regarded as a measure of the dispersion
of the importance weights, it is a useful measure to evaluate
how well the particle set approximates the target posterior.
Our algorithm follows the approach proposed by Doucetet
al. [7] to determine whether or not the resampling step should
be carried out. We resample each timeNeff drops below the
threshold ofN/2 where N is the number of particles. In
extensive experiments, we found that this approach drastically
reduces the risk of replacing good particles, because the
number of resampling operations is reduced and they are only
performed when needed.

E. Algorithm

The overall process is summarized in Algorithm 1. Each
time a new measurement tuple(ut−1, zt) is available, the
proposal is computed for each particle individually and is then
used to update that particle. This results in the following steps:

1) An initial guessx
′(i)
t = x

(i)
t−1 ⊕ ut−1 for the robot’s

pose represented by the particlei is obtained from the
previous posex(i)

t−1 of that particle and the odometry
measurementsut−1 collected since the last filter update.
Here, the operator⊕ corresponds to the standard pose
compounding operator [24].

2) A scan-matching algorithm is executed based on the map
m

(i)
t−1 starting from the initial guessx′(i)

t . The search
performed by the scan-matcher is bounded to a limited
region aroundx′(i)

t . If the scan-matching reports a fail-
ure, the pose and the weights are computed according to
the motion model (and the steps 3 and 4 are ignored).

3) A set of sampling points is selected in an interval
around the posêx(i)

t reported scan-matcher. Based on
this points, the mean and the covariance matrix of
the proposal are computed by pointwise evaluating the

target distributionp(zt | m
(i)
t−1, xj)p(xj | x

(i)
t−1, ut−1) in

the sampled positionsxj . During this phase, also the
weighting factorη(i) is computed according to Eq. (17).

4) The new posex(i)
t of the particlei is drawn from the

Gaussian approximationN (µ
(i)
t , Σ

(i)
t ) of the improved

proposal distribution.
5) Update of the importance weights.
6) The mapm(i) of particle i is updated according to the

drawn posex(i)
t and the observationzt.

After computing the next generation of samples, a resampling
step is carried out depending on the value ofNeff .

IV. I MPLEMENTATION ISSUES

This section provides additional information about imple-
mentation details used in our current system. These issues are
not required for the understanding of the general approach but
complete the precise description of our mapping system. In
the following, we briefly explain the used scan-matching ap-
proach, the observation model, and how to pointwise evaluate
the motion model.

Our approach applies a scan-matching technique on a per
particle basis. In general, an arbitrary scan-matching technique
can be used. In our implementation, we use the scan-matcher
“vasco” which is part of the Carnegie Mellon Robot Naviga-
tion Toolkit (CARMEN) [27, 36]. This scan-matcher aims to
find the most likely pose by matching the current observation
against the map constructed so far

x̂
(i)
t = argmax

x

p(x | m
(i)
t−1, zt, x

′(i)
t ), (21)

wherex
′(i)
t is the initial guess. The scan-matching technique

performs a gradient descent search on the likelihood function
of the current observation given the grid map. Note that in our
mapping approach, the scan-matcher is only used for finding
the local maximum of the observation likelihood function.
In practice, any scan-matching technique which is able to
compute the best alignment between a reference mapm

(i)
t−1

and the current scanzt given an initial guessx′(i)
t can be

used.
In order to solve Eq. (21), one applies Bayes’ rule and

seeks for the pose with the highest observation likelihood
p(zt | m, x). To compute the likelihood of an observation,
we use the so called “beam endpoint model” [40]. In this
model, the individual beams within a scan are considered
to be independent. Furthermore, the likelihood of a beam is
computed based on the distance between the endpoint of the
beam and the closest obstacle from that point. To achieve a
fast computation, one typically uses a convolved local grid
map.

Additionally, the construction of our proposal requires to
evaluatep(zt | m

(i)
t−1, xj)p(xj | x

(i)
t−1, ut−1) at the sampled

points xj . We compute the first component according to the
previously mentioned “beam endpoint model”. To evaluate the
second term, several closed form solutions for the motion es-
timate are available. The different approaches mainly differ in
the way the kinematics of the robot are modeled. In our current
implementation, we computep(xj | xt−1, ut−1) according to
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Algorithm 1 Improved RBPF for Map Learning
Require:
St−1, the sample set of the previous time step
zt, the most recent laser scan
ut−1, the most recent odometry measurement

Ensure:
St, the new sample set

St = {}

for all s
(i)
t−1 ∈ St−1 do

< x
(i)
t−1, w

(i)
t−1, m

(i)
t−1 >= s

(i)
t−1

// scan-matching
x
′(i)
t = x

(i)
t−1 ⊕ ut−1

x̂
(i)
t = argmaxx p(x | m

(i)
t−1, zt, x

′(i)
t )

if x̂
(i)
t = failure then

x
(i)
t ∼ p(xt | x

(i)
t−1, ut−1)

w
(i)
t = w

(i)
t−1 · p(zt | m

(i)
t−1, x

(i)
t )

else
// sample around the mode
for k = 1, . . . , K do

xk ∼ {xj | |xj − x̂(i)| < ∆}
end for

// compute Gaussian proposal
µ

(i)
t = (0, 0, 0)T

η(i) = 0
for all xj ∈ {x1, . . . , xK} do

µ
(i)
t = µ

(i)
t +xj ·p(zt | m

(i)
t−1, xj)·p(xt | x

(i)
t−1, ut−1)

η(i) = η(i) + p(zt | m
(i)
t−1, xj) · p(xt | x

(i)
t−1, ut−1)

end for
µ

(i)
t = µ

(i)
t /η(i)

Σ
(i)
t = 0

for all xj ∈ {x1, . . . , xK} do
Σ

(i)
t = Σ

(i)
t + (xj − µ(i))(xj − µ(i))T ·

p(zt | m
(i)
t−1, xj) · p(xj | x

(i)
t−1, ut−1)

end for
Σ

(i)
t = Σ

(i)
t /η(i)

// sample new pose
x

(i)
t ∼ N (µ

(i)
t , Σ

(i)
t )

// update importance weights
w

(i)
t = w

(i)
t−1 · η

(i)

end if
// update map
m

(i)
t = integrateScan(m

(i)
t−1, x

(i)
t , zt)

// update sample set
St = St ∪ {< x

(i)
t , w

(i)
t , m

(i)
t >}

end for

Neff = 1∑
N

i=1
(w̃(i))

2

if Neff < T then
St = resample(St)

end if

the Gaussian approximation of the odometry motion model
described in [41]. We obtain this approximation through Taylor
expansion in an EKF-style procedure. In general, there are
more sophisticated techniques estimating the motion of the
robot. However, we use that model to estimate a movement
between two filter updates which is performed after the robot
traveled around0.5 m. In this case, this approximation works
well and we did not observed a significant difference between
the EKF-like model and the in general more accurate sample-
based velocity motion model [41].

V. COMPLEXITY

This section discusses the complexity of the presented
approach to learn grid maps with a Rao-Blackwellized particle
filter. Since our approach uses a sample set to represent the
posterior about maps and poses, the numberN of samples
is the central quantity. To compute the proposal distribution,
our approach samples around the most likely position reported
by the scan-matcher. This sampling is done for each particle
a constant number of times (K) and there is no dependency
between the particles when computing the proposal. Further-
more, the most recent observationzt used to computeµ(i)

andΣ(i) covers only an area of the mapm (bounded by the
odometry error and the maximum range of the sensor), so the
complexity depends only on the numberN of particles. The
same holds for the update of the individual maps associated
to each of the particles.

During the resampling step, the information associated to a
particle needs to be copied. In the worst case,N − 1 samples
are replaced by a single particle. In our current system, each
particle stores and maintains its own grid map. To duplicate
a particle, we therefore have to copy the whole map. As a
result, a resampling action introduces a worst case complexity
of O(NM), whereM is the size of the corresponding grid
map. However, using the adaptive resampling technique, only
very few resampling steps are required during mapping.

To decide whether or not a resampling is needed, the
effective sample size (see Eq. (20)) needs to be taken into
account. Again, the computation of the quantity introducesa
complexity ofO(N).

As a result, if no resampling operation is required, the
overall complexity for integrating a single observation depends
only linearly on the number of particles. If a resampling is
required, the additional factorM which represents the size of
the map is introduced and leads to a complexity ofO(NM).
The complexity of each individual operation is depicted in
Table I.

Note that the complexity of the resampling step can be
reduced by using a more intelligent map representation as
done in DP-SLAM [9]. It can be shown, that in this case the
complexity of a resampling step is reduced toO(AN2 log N),
whereA is the area covered by the sensor. However, building
an improved map representation is not the aim of this paper.
We actually see our approach as orthogonal to DP-SLAM
because both techniques can be combined. Furthermore, in
our experiments using real world data sets, we figured out
the resampling steps are not the dominant part and they occur
rarely due to the adaptive resampling strategy.
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TABLE I

COMPLEXITY OF THE DIFFERENT OPERATIONS FOR INTEGRATING ONE

OBSERVATION.

Operation Complexity
Computation of the proposal distribution O(N)
Update of the grid map O(N)
Computation of the weights O(N)
Test if resampling is required O(N)
Resampling O(NM)

Fig. 3. Different types of robot used to acquire real robot data used for
mapping (ActivMedia Pioneer 2 AT, Pioneer 2 DX-8, and an iRobot B21r).

VI. EXPERIMENTS

The approach described above has been implemented and
tested using real robots and datasets gathered with real robots.
Our mapping approach runs online on several platforms like
ActivMedia Pioneer2 AT, Pioneer 2 DX-8, and iRobot B21r
robots equipped with a SICK LMS and PLS laser range
finders (see Figure 3). The experiments have been carried
out in a variety of environments and showed the effective-
ness of our approach in indoor and outdoor settings. Most
of the maps generated by our approach can be magnified
up to a resolution of1 cm, without observing considerable
inconsistencies. Even in big real world datasets covering an
area of approximately250 m by 250 m, our approach never
required more than 80 particles to build accurate maps. In
the reminder of this section, we discuss the behavior of the
filter in different datasets. Furthermore, we give a quantitative
analysis of the performance of the presented approach. Highly
accurate grid maps have been generated with our approach
from several datasets. These maps, raw data files, and an
efficient implementation of our mapping system are available
on the web [38].

Fig. 4. The Intel Research Lab.The robot starts in the upper part of the
circular corridor, and runs several times around the loop, before entering the
rooms. The left image depicts the resulting map generated with 15 particles.
The right image shows a cut-out with1 cm grid resolution to illustrate the
accuracy of the map in the loop closure point.

Fig. 5. The Freiburg Campus. The robot first runs around the external
perimeter in order to close the outer loop. Afterwards, the internal parts of
the campus are visited. The overall trajectory has a length of 1.75 km and
covers an area of approximately250 m by 250 m. The depicted map was
generated using 30 particles.

A. Mapping Results

The datasets discussed here have been recorded at the Intel
Research Lab in Seattle, at the campus of the University of
Freiburg, and at the Killian Court at MIT. The maps of these
environments are depicted in Figures 4, 5, and 6.

a) Intel Research Lab:The Intel Research Lab is de-
picted in the left image of Figure 4 and has a size of28 m
by 28 m. The dataset has been recorded with a Pioneer II
robot equipped with a SICK sensor. To successfully correct
this dataset, our algorithm needed only 15 particles. As can
be seen in the right image of Figure 4, the quality of the final
map is so high that the map can be magnified up to1 cm of
resolution without showing any significant errors.

b) Freiburg Campus: The second dataset has been
recorded outdoors at the Freiburg campus. Our system needed
only 30 particles to produce a good quality map such as the
one shown in Figure 5. Note that this environment partly
violates the assumptions that the environment is planar. Ad-
ditionally, there were objects like bushes and grass as well
as moving objects like cars and people. Despite the resulting
spurious measurements, our algorithm was able to generate an
accurate map.

c) MIT Killian Court: The third experiment was per-
formed with a dataset acquired at the MIT Killian court1

and the resulting map is depicted in Figure 6. This dataset is
extremely challenging since it contains several nested loops,
which can cause a Rao-Blackwellized particle filter to fail due
to particle depletion. Using this dataset, the selective resam-
pling procedure turned out to be important. A consistent and
topologically correct map can be generated with 60 particles.
However, the resulting maps sometimes show artificial double
walls. By employing 80 particles it is possible to achieve high
quality maps.

1Note that there exist two different versions of that dataseton the web.
One has a pre-corrected odometry and the other one has not. Weused the
raw version without pre-corrected odometry information.
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a
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cd
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fg

Fig. 6. The MIT Killian Court. The robot starts from the point labeleda
and then traverses the first loop labeledb. It then moves through the loops
labeledc, d and moves back to the place labeleda and the loop labeledb. It
the visits the two big loops labeledf andg. The environment has a size of
250 m by 215 m and the robot traveled1.9 km . The depicted map has been
generated with 80 particles. The rectangles show magnifications of several
parts of the map.

TABLE II

THE NUMBER OF PARTICLES NEEDED BY OUR ALGORITHM COMPARED TO

THE APPROACH OFHÄHNEL et al. [16].

Proposal Distribution Intel MIT Freiburg
our approach 8 60 20

approach of [16] 40 400 400

B. Quantitative Results

In order to measure the improvement in terms of the number
of particles, we compared the performance of our system using
the informed proposal distribution to the approach done by
Hähnelet al. [16]. Table II summarizes the number of particles
needed by a RBPF for providing a topologically correct map
in at least 60% of all applications of our algorithm.

It turns out that in all of the cases, the number of particles
required by our approach was approximately one order of
magnitude smaller than the one required by the other approach.
Moreover, the resulting maps are better due to our improved
sampling process that takes the last reading into account.

Figure 7 summarizes results about the success ratio of our
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Fig. 7. Success rate of our algorithm in different environments depending
on the number of particles. Each success rate was determinedusing 20 runs.
For the experiment MIT-2 we disabled the adaptive resampling.

A B C D

100

75

25

50

N
ef

f/N
 [%

]

time

Fig. 8. The graph plots the evolution of theNeff function over time during
an experiment in the environment shown in the top image. At time B the
robot closes the small loop. At time C and D resampling actions are carried
after the robots closes the big loop.

algorithm in the environments considered here. The plots show
the percentage of correctly generated maps, depending on the
number of particles used. The question if a map is consistentor
not has been evaluated by visual inspection in a blind fashion
(the inspectors were not the authors). As a measure of success,
we used the topological correctness.

C. Effects of Improved Proposals and Adaptive Resampling

The increased performance of our approach is due to
the interplay of two factors, namely the improved proposal
distribution, which allows us to generate samples with an
high likelihood, and the adaptive resampling controlled by
monitoringNeff . For proposals that do not consider the whole
input history, it has been proven thatNeff can only decrease
(stochastically) over time [7]. Only after a resampling opera-
tion, Neff recovers its maximum value. It is important to notice
that the behavior ofNeff depends on the proposal: the worse
the proposal, the fasterNeff drops.

We found that the evolution ofNeff using our proposal
distribution shows three different behaviors depending onthe
information obtained from the robot’s sensors. Figure 8 illus-
trates the evolution ofNeff during an experiment. Whenever
the robot moves through unknown terrain,Neff typically drops
slowly. This is because the proposal distribution becomes
less peaked and the likelihoods of observations often differ
slightly. The second behavior can be observed when the robot
moves through a known area. In this case, each particle keeps
localized within its own map due to the improved proposal
distribution and the weights are more or less equal. This
results in a more or less constant behavior ofNeff . Finally,
when closing a loop, some particles are correctly aligned with
their map while others are not. The correct particles have a
high weight, while the wrong ones have a low weight. Thus
the variance of the importance weights increases andNeff

substantially drops.
Accordingly, the threshold criterion applied onNeff typi-

cally forces a resampling action when the robot is closing a
loop. In all other cases, the resampling is avoided and in this
way the filter keeps a variety of samples in the particle set.
As a result, the risk of particle depletion problem is seriously
reduced. To analyze this, we performed an experiment in
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Fig. 9. Maps from the ACES building at University of Texas, the 4th floor
of the Sieg Hall at the University of Washington, the Belgioioso building, and
building 101 at the University of Freiburg.

which we compared the success rate of our algorithm to that
of a particle filter which resamples at every step. As Figure 7
illustrates, our approach more often converged to the correct
solution (MIT curve) for the MIT dataset compared to the
particle filter with the same number of particles and a fixed
resampling strategy (MIT-2 curve).

To give a more detailed impression about the accuracy of
our new mapping technique, Figure 9 depicts maps learned
from well known and freely available [18] real robot datasets
recorded at the University of Texas, at the University of
Washington, at Belgioioso, and at the University of Freiburg.
Each map was built using 30 particles to represent the posterior
about maps and poses.

Fig. 10. The effect of considering the odometry in the computation of the
proposal on the particle cloud. The left image depicts the particle distribution
if only the laser range finder data is used. By taking into account the odometry
when computing the proposal distribution, the particles can be drawn in a more
accurate manner. As can be seen in the right image, the particle cloud is more
focused, because it additionally incorporates the odometry information.

D. The Influence of the Odometry on the Proposal

This experiment is designed to show the advantage of the
proposal distribution, which takes into account the odome-
try information to draw particles. In most cases, the purely
laser-based proposal like the one presented in our previous
approach [14] is well-suited to predict the motion of the
particles. However, in a few situations the knowledge about
the odometry information can be important to focus the
proposal distribution. This is the case if only very poor features
are available in the laser data that was used to compute
the parameters of the Gaussian proposal approximation. For
example, an open free space without any obstacles or a long
featureless corridor can lead to high variances in the computed
proposal that is only based on laser range finder data. Figure10
illustrates this effect based on simulated laser data.

In a further experiment, we simulated a short-range laser
scanner (like, e.g., the Hokuyo URG scanner). Due to the
maximum range of 4 m, the robot was unable to see the
end of the corridor in most cases. This results in an high
pose uncertainty in the direction of the corridor. We recorded
several trajectories in this environment and used them to
learn maps with and without considering the odometry when
computing the proposal distribution. In this experiment, the
approach considering the odometry succeeded in100% of all
cases to learn a topologically correct map. In contrast to that,
our previous approach which does not take into account the
odometry succeeded only in50% of all cases. This experiment
indicates the importance of the improved proposal distribution.
Figure 11 depicts typical maps obtained with the different
proposal distributions during this experiment. The left map
contains alignment errors caused by the high pose uncertainty
in the direction of the corridor. In contrast to that, a robotthat
also takes into account the odometry was able to maintain the
correct pose hypotheses. A typical example is depicted in the
right image.

Note that by increasing the number of particles, both ap-
proaches are able to map the environment correctly in100%
of all cases, but since each particle carries its own map, it
is of utmost importance to keep the number of particles as
low as possible. Therefore, this improved proposal is a means
to limit the number of particles during mapping with Rao-
Blackwellized particle filters.

E. Situations in Which the Scan-Matcher Fails

As reported in Section III, it can happen that the scan-
matcher is unable to find a good pose estimate based on
the laser range data. In this case, we sample from the raw
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alignment
errors

Fig. 11. Different mapping results for the same data set obtained using
the proposal distribution which ignores the odometry (leftimage) and which
considers the odometry when drawing the next generation of particles (right
image).

odometry model to obtain the next generation of particles. In
most tested indoor dataset, however, such a situation never
occurred at all. In the MIT dataset, this effect was observed
once due to a person walking directly in front of the robot
while the robot was moving though a corridor that mainly
consists of glass panes.

In outdoor datasets, such a situation can occur if the robot
moves through large open spaces because in this case the laser
range finder mainly reports maximum range readings. While
mapping the Freiburg campus, the scan-matcher also reported
such an error at one point. In this particular situation, therobot
entered the parking area (in the upper part of the map, compare
Figure 5). On that day, all cars were removed from the parking
area due to construction work. As a result, no cars or other
objects caused reflections of the laser beams and most parts
of the scan consisted of maximum range readings. In such
a situation, the odometry information provides the best pose
estimate and this information is used by our mapping system
to predict the motion of the vehicle.

F. Runtime Analysis

In this last experiment, we analyze the memory and com-
putational resources needed by our mapping system. We used
a standard PC with a 2.8 GHz processor. We recorded the
average memory usage and execution time using the default
parameters that allows our algorithm to learn correct maps for
nearly all real world datasets provided to us. In this setting,
30 particles are used to represent the posterior about maps and
poses and a new observation, consisting of a full laser range
scan, is integrated whenever the robot moved more than0.5 m
or rotated more than25◦. The Intel Research Lab dataset (see
Figure 4) contains odometry and laser range readings which
have been recorded over45 min. Our implementation required
150 MB of memory to store all the data using a maps with a
size of approx.40 m by 40 m and a grid resolution of5 cm.
The overall time to correct the log file using our software was
less than30 min. This means that the time to record a log file
is around1.5 times longer than the time to correct the log file.
Table III depicts the average execution time for the individual
operations.

TABLE III

AVERAGE EXECUTION TIME USING A STANDARDPC.

Operation Average Execution Time
Computation of the proposal distribu-
tion, the weights, and the map update

1910 ms

Test if resampling is required 41 ms

Resampling 244 ms

VII. R ELATED WORK

Mapping techniques for mobile robots can be roughly clas-
sified according to the map representation and the underlying
estimation technique. One popular map representation is the
occupancy grid [31]. Whereas such grid-based approaches
are computationally expensive and typically require a huge
amount of memory, they are able to represent arbitrary objects.
Feature-based representations are attractive because of their
compactness. However, they rely on predefined feature extrac-
tors, which assumes that some structures in the environments
are known in advance.

The estimation algorithms can be roughly classified ac-
cording to their underlying basic principle. The most pop-
ular approaches are extended Kalman filters (EKFs), maxi-
mum likelihood techniques, sparse extended information filters
(SEIFs), smoothing techniques, and Rao-Blackwellized parti-
cle filters. The effectiveness of the EKF approaches comes
from the fact that they estimate a fully correlated posterior
over landmark maps and robot poses [21, 37]. Their weakness
lies in the strong assumptions that have to be made on both
the robot motion model and the sensor noise. Moreover, the
landmarks are assumed to be uniquely identifiable. There exist
techniques [33] to deal with unknown data association in the
SLAM context, however, if these assumptions are violated, the
filter is likely to diverge [12]. Similar observations have been
reported by Julieret al. [20] as well as by Uhlmann [43]. The
unscented Kalman filter described in [20] is one way of better
dealing with the non-linearities in the motion model of the
vehicle.

A popular maximum likelihood algorithm computes the
most likely map given the history of sensor readings by
constructing a network of relations that represents the spatial
constraints between the poses of the robot [8, 13, 15, 24].
Gutmannet al. [15] proposed an effective way for constructing
such a network and for detecting loop closures, while running
an incremental maximum likelihood algorithm. When a loop
closure is detected, a global optimization on the network of
relation is performed. Recently, Hähnelet al. [17], proposed
an approach which is able to track several map hypotheses
using an association tree. However, the necessary expansions
of this tree can prevent the approach from being feasible for
real-time operation.

Thrun et al. [42] proposed a method to correct the poses
of robots based on the inverse of the covariance matrix. The
advantage of the sparse extended information filters (SEIFs)
is that they make use of the approximative sparsity of the
information matrix and in this way can perform predictions
and updates in constant time. Eusticeet al. [10] presented a
technique to make use of exactly sparse information matrices
in a delayed-state framework. Paskin [34] presented a solution
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to the SLAM problem using thin junction trees. In this way,
he is able to reduce the complexity compared to the EKF
approaches since thinned junction trees provide a linear-time
filtering operation.

Folkessenet al. [11] proposed an effective approach for
dealing with symmetries and invariants that can be found in
landmark based representation. This is achieved by represent-
ing each feature in a low dimensional space (measurement
subspace) and in the metric space. The measurement subspace
captures an invariant of the landmark, while the metric space
represents the dense information about the feature. A mapping
between the measurement subspace and the metric space
is dynamically evaluated and refined as new observations
are acquired. Such a mapping can take into account spatial
constraints between different features. This allows the authors
to consider these relations for updating the map estimate.

Very recently, Dellaert proposed a smoothing method called
square root smoothing and mapping [2]. It has several ad-
vantages compared to EKF since it better covers the non-
linearities and is faster to compute. In contrast to SEIFs, it
furthermore provides an exactly sparse factorization of the
information matrix.

In a work by Murphy, Doucet, and colleagues [6, 32], Rao-
Blackwellized particle filters (RBPF) have been introduced
as an effective means to solve the SLAM problem. Each
particle in a RBPF represents a possible robot trajectory
and a map. The framework has been subsequently extended
by Montemerlo et al. [28, 29] for approaching the SLAM
problem with landmark maps. To learn accurate grid maps,
RBPFs have been used by Eliazar and Parr [9] and Hähnel
et al. [16]. Whereas the first work describes an efficient map
representation, the second presents an improved motion model
that reduces the number of required particles. Based on the
approach of Hähnelet al., Howard presented an approach to
learn grid maps with multiple robots [19]. The focus of this
work lies in how to merge the information obtained by the
individual robots and not in how to compute better proposal
distributions.

Bosseet al. [1] describe a generic framework for SLAM in
large-scale environments. They use a graph structure of local
maps with relative coordinate frames and always represent the
uncertainty with respect to a local frame. In this way, they
are able to reduce the complexity of the overall problem.
In this context, Modayilet al. [25] presented a technique
which combines metrical SLAM with topological SLAM. The
topology is utilized to solve the loop-closing problem, whereas
metric information is used to build up local structures. Similar
ideas have been realized by Lisienet al. [22], which introduce
a hierarchical map in the context of SLAM.

The work described in this paper is an improvement of the
algorithm proposed by Hähnelet al. [16]. Instead of using
a fixed proposal distribution, our algorithm computes an im-
proved proposal distribution on a per-particle basis on thefly.
This allows us to directly use the information obtained from
the sensors while evolving the particles. The work presented
here is also an extension of our previous approach [14], which
lacks the ability to incorporate the odometry information into
the proposal. Especially, in critical situations in which only

poor laser features for localization are available, our approach
performs better than our previous one.

The computation of the proposal distribution is done in
a similar way as in FastSLAM-2 presented by Montemerlo
et al. [26]. In contrast to FastSLAM-2, our approach does
not rely on predefined landmarks and uses raw laser range
finder data to acquire accurate grid maps. Particle filters using
proposal distributions that take into account the most recent
observation are also called look-ahead particle filters. Moralez-
Menéndezet al. [30] proposed such a method to more reliably
estimate the state of a dynamic system where accurate sensors
are available.

The advantage of our approach is twofold. Firstly, our algo-
rithm draws the particles in a more effective way. Secondly,the
highly accurate proposal distribution allows us to utilizethe
effective sample size as a robust indicator to decide whether
or not a resampling has to be carried out. This further reduces
the risk of particle depletion.

VIII. C ONCLUSIONS

In this paper, we presented an improved approach to learn-
ing grid maps with Rao-Blackwellized particle filters. Our
approach computes a highly accurate proposal distribution
based on the observation likelihood of the most recent sensor
information, the odometry, and a scan-matching process. This
allows us to draw particles in a more accurate manner which
seriously reduces the number of required samples. Addition-
ally, we apply a selective resampling strategy based on the
effective sample size. This approach reduces the number of
unnecessary resampling actions in the particle filter and thus
substantially reduces the risk of particle depletion.

Our approach has been implemented and evaluated on data
acquired with different mobile robots equipped with laser
range scanners. Tests performed with our algorithm in different
large-scale environments have demonstrated its robustness and
the ability of generating high quality maps. In these experi-
ments, the number of particles needed by our approach often
was one order of magnitude smaller compared to previous
approaches.
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