
A Tree Parameterization for Efficiently Computing

Maximum Likelihood Maps using Gradient Descent
Giorgio Grisetti Cyrill Stachniss Slawomir Grzonka Wolfram Burgard

University of Freiburg, Department of Computer Science, 79110 Freiburg, Germany

Abstract— In 2006, Olson et al. presented a novel approach to
address the graph-based simultaneous localization and mapping
problem by applying stochastic gradient descent to minimize
the error introduced by constraints. Together with multi-level
relaxation, this is one of the most robust and efficient maxi-
mum likelihood techniques published so far. In this paper, we
present an extension of Olson’s algorithm. It applies a novel
parameterization of the nodes in the graph that significantly
improves the performance and enables us to cope with arbitrary
network topologies. The latter allows us to bound the complexity
of the algorithm to the size of the mapped area and not to
the length of the trajectory as it is the case with both previous
approaches. We implemented our technique and compared it to
multi-level relaxation and Olson’s algorithm. As we demonstrate
in simulated and in real world experiments, our approach
converges faster than the other approaches and yields accurate
maps of the environment.

I. INTRODUCTION

Models of the environment are needed for a wide range of

robotic applications, including search and rescue, automated

vacuum cleaning, and many others. Learning maps has there-

fore been a major research focus in the robotics community

over the last decades. Learning maps under uncertainty is

often referred to as the simultaneous localization and map-

ping (SLAM) problem. In the literature, a large variety of

solutions to this problem can be found. The approaches mainly

differ due to the underlying estimation technique such as

extended Kalman filters, information filters, particle filters, or

least-square error minimization techniques.

In this paper, we consider the so-called “graph-based” or

“network-based” formulation of the SLAM problem in which

the poses of the robot are modeled by nodes in a graph [2,

5, 6, 7, 11, 13]. Constraints between poses resulting from

observations or from odometry are encoded in the edges

between the nodes.

The goal of an algorithm designed to solve this problem

is to find the configuration of the nodes that maximizes the

observation likelihood encoded in the constraints. Often, one

refers to the negative observation likelihood as the error or the

energy in the network. An alternative view to the problem is

given by the spring-mass model in physics. In this view, the

nodes are regarded as masses and the constraints as springs

connected to the masses. The minimal energy configuration of

the springs and masses describes a solution to the mapping

problem. Figure 1 depicts such a constraint network as a

motivating example.

A popular solution to this class of problems are iterative

approaches. They can be used to either correct all poses

simultaneously [6, 9, 11] or to locally update parts of the

Fig. 1. The left image shows an uncorrected network with around 100k poses
and 450k constraints. The right image depicts the network after applying our
error minimization approach (100 iterations, 17s on a P4 CPU with 1.8GHz).

network [2, 5, 7, 13]. Depending on the used technique,

different parts of the network are updated in each iteration.

The strategy for defining and performing these local updates

has a significant impact on the convergence speed.

Our approach uses a tree structure to define and efficiently

update local regions in each iteration. The poses of the indi-

vidual nodes are represented in an incremental fashion which

allows the algorithm to automatically update successor nodes.

Our approach extends Olson’s algorithm [13] and converges

significantly faster to a network configuration with a low error.

Additionally, we are able to bound the complexity to the size

of the environment and not to the length of the trajectory.

The remainder of this paper is organized as follows. After

discussing the related work, Section III explains the graph-

based formulation of the mapping problem. Subsequently, we

explain the usage of stochastic gradient descent to find network

configurations with small errors. Section V introduces our

tree parameterization and in Section VI we explain how to

obtain such a parameterization tree from robot data. We finally

present our experimental results in Section VII.

II. RELATED WORK

Mapping techniques for mobile robots can be classified

according to the underlying estimation technique. The most

popular approaches are extended Kalman filters (EKFs), sparse

extended information filters, particle filters, and least square

error minimization approaches. The effectiveness of the EKF

approaches comes from the fact that they estimate a fully

correlated posterior about landmark maps and robot poses [10,

14]. Their weakness lies in the strong assumptions that have

to be made on both, the robot motion model and the sensor

noise. Moreover, the landmarks are assumed to be uniquely

identifiable. There exist techniques [12] to deal with unknown

data association in the SLAM context, however, if certain

assumptions are violated the filter is likely to diverge [8].

Frese’s TreeMap algorithm [4] can be applied to compute

nonlinear map estimates. It relies on a strong topological

assumption on the map to perform sparsification of the in-

formation matrix. This approximation ignores small entries in

the information matrix. In this way, Frese is able to perform

an update in O(log n) where n is the number of features.

An alternative approach is to find maximum likelihood maps

by least square error minimization. The idea is to compute

a network of relations given the sequence of sensor read-

ings. These relations represent the spatial constraints between

the poses of the robot. In this paper, we also follow this

way of formulating the SLAM problem. Lu and Milios [11]

first applied this approach in robotics to address the SLAM

problem using a kind of brute force method. Their approach

seeks to optimize the whole network at once. Gutmann and

Konolige [6] proposed an effective way for constructing such

a network and for detecting loop closures while running an

incremental estimation algorithm. Howard et al. [7] apply

relaxation to localize the robot and build a map. Duckett

et al. [2] propose the usage of Gauss-Seidel relaxation to

minimize the error in the network of constraints. In order to

make the problem linear, they assume knowledge about the

orientation of the robot. Frese et al. [5] propose a variant of

Gauss-Seidel relaxation called multi-level relaxation (MLR).

It applies relaxation at different resolutions. MLR is reported

to provide very good results and is probably the best relaxation

technique in the SLAM context at the moment.

Note that such maximum likelihood techniques as well as

our method focus on computing the best map and assume that

the data association is given. The ATLAS framework [1] or

hierarchical SLAM [3], for example, can be used to obtain

such data associations (constraints). They also apply a global

optimization procedure to compute a consistent map. One can

replace such optimization procedures by our algorithm and in

this way make ATLAS or hierarchical SLAM more efficient.

The approach closest to the work presented here is the

work of Olson et al. [13]. They apply stochastic gradient

descent to reduce the error in the network. They also propose

a representation of the nodes which enables the algorithm to

perform efficient updates. The approach of Olson et al. is

one of the current state-of-the-art approaches for optimizing

networks of constraints. In contrast to their technique, our

approach uses a different parameterization of the nodes in

the network that better takes into account the topology of

the environment. This results in a faster convergence of our

algorithm.

Highly sophisticated optimization techniques such as MLR

or Olson’s algorithm are restricted to networks that are built

in an incremental way. They require as input a sequence of

robot poses according to the traveled path. First, this makes it

difficult to use these techniques in the context of multi-robot

SLAM. Second, the complexity of the algorithm depends on

the length of the trajectory traveled by the robot and not on

the size of the environment. This dependency prevents to use

these approaches in the context of lifelong map learning.

One motivation of our approach is to build a system that

depends on the size of the environment and not explicitely

on the length of the trajectory. We designed our approach in

a way that it can be applied to arbitrary networks. As we

will show in the remainder of this paper, the ability to use

arbitrary networks allows us to prune the trajectory so that

the complexity of our approach depends only on the size

of the environment. Furthermore, our approach proposes a

more efficient parameterization of the network when applying

gradient descent.

III. ON GRAPH-BASED SLAM

Most approaches to graph-based SLAM focus on estimating

the most-likely configuration of the nodes and are therefore

referred to as maximum-likelihood (ML) techniques [2, 5, 6,

11, 13]. They do not consider to compute the full posterior

about the map and the poses of the robot. The approach

presented in this paper also belongs to this class of methods.

The goal of graph-based ML mapping algorithms is to find

the configuration of the nodes that maximizes the likelihood

of the observations. For a more precise formulation consider

the following definitions:

• x = (x1 · · · xn)T is a vector of parameters which

describes a configuration of the nodes. Note that the

parameters xi do not need to be the absolute poses of the

nodes. They are arbitrary variables which can be mapped

to the poses of the nodes in real world coordinates.

• δji describes a constraint between the nodes j and i. It

refers to an observation of node j seen from node i. These

constraints are the edges in the graph structure.

• Ωji is the information matrix modeling the uncertainty

of δji.

• fji(x) is a function that computes a zero noise observation

according to the current configuration of the nodes j and

i. It returns an observation of node j seen from node i.

Given a constraint between node j and node i, we can define

the error eji introduced by the constraint as

eji(x) = fji(x) − δji (1)

as well as the residual rji

rji(x) = −eji(x). (2)

Note that at the equilibrium point, eji is equal to 0 since

fji(x) = δji. In this case, an observation perfectly matches

the current configuration of the nodes. Assuming a Gaussian

observation error, the negative log likelihood of an observation

fji is

Fji(x) ∝ (fji(x) − δji)
T

Ωji (fji(x) − δji) (3)

= eji(x)T Ωjieji(x) (4)

= rji(x)T Ωjirji(x). (5)

Under the assumption that the observations are independent,

the overall negative log likelihood of a configuration x is

F (x) =
∑

〈j,i〉∈C

Fji(x) (6)

=
∑

〈j,i〉∈C

rji(x)T Ωjirji(x). (7)

Here C = {〈j1, i1〉 , . . . , 〈jM , iM 〉} is set of pairs of indices

for which a constraint δjmim
exists.

The goal of a ML approach is to find the configuration x∗

of the nodes that maximizes the likelihood of the observations.

This can be written as

x∗ = argmin
x

F (x). (8)

IV. STOCHASTIC GRADIENT DESCENT

FOR MAXIMUM LIKELIHOOD MAPPING

Olson et al. [13] propose to use a variant of the pre-

conditioned stochastic gradient descent (SGD) to address the

SLAM problem. The approach minimizes Eq. (8) by iteratively

selecting a constraint 〈j, i〉 and by moving the nodes of the

network in order to decrease the error introduced by the

selected constraint. Compared to the standard formulation

of gradient descent, the constraints are not optimized as a

whole but individually. The nodes are updated according to

the following equation:

xt+1 = xt + λ · H−1JT
jiΩjirji

︸ ︷︷ ︸

∆xji

(9)

Here x is the set of variables describing the locations of the

poses in the network and H−1 is a preconditioning matrix. Jji

is the Jacobian of fji, Ωji is the information matrix capturing

the uncertainty of the observation, and rji is the residual.

Reading the term ∆xji of Eq. (9) from right to left gives

an intuition about the sequential procedure used in SGD:

• rji is the residual which is the opposite of the error vector.

Changing the network configuration in the direction of the

residual rji will decrease the error eji.

• Ωji represents the information matrix of a constraint.

Multiplying it with rji scales the residual components

according to the information encoded in the constraint.

• JT
ji: The role of the Jacobian is to map the residual term

into a set of variations in the parameter space.

• H is the Hessian of the system and it represents the

curvature of the error function. This allows us to scale

the variations resulting from the Jacobian depending on

the curvature of the error surface. We actually use an

approximation of H which is computed as

H ≃
∑

〈j,i〉

JjiΩjiJ
T
ji. (10)

Rather than inverting the full Hessian which is computa-

tionally expensive, we approximate it by

H−1 ≃ [diag(H)]−1. (11)

• λ is a learning rate which decreases with the iteration

of SGD and which makes the system to converge to an

equilibrium point.

In practice, the algorithm decomposes the overall problem

into many smaller problems by optimizing the constraints

individually. Each time a solution for one of these subproblems

is found, the network is updated accordingly. Obviously,

updating the different constraints one after each other can have

opposite effects on a subset of variables. To avoid infinitive

oscillations, one uses the learning rate to reduce the fraction

of the residual which is used for updating the variables.

This makes the solutions of the different sub-problems to

asymptotically converge towards an equilibrium point that is

the solution reported by the algorithm.

This framework allows us to iteratively reduce the error

given the network of constraints. The optimization approach,

however, leaves open how the nodes are represented (parame-

terized). Since the parameterization defines also the structure

of the Jacobians, it has a strong influence on the performance

of the algorithm.

The next section addresses the problem of how to parame-

terize a graph in order to efficiently carry out the optimization

approach.

V. NETWORK PARAMETERIZATIONS

The poses p = {p1, . . . , pn} of the nodes define the

configuration of the network. The poses can be described by a

vector of parameters x such that a bijective mapping g between

p and x exists
x = g(p) p = g−1(x). (12)

As previously explained, in each iteration SGD decomposes

the problem into a set of subproblems and solves them

successively. In this work, a subproblem is defined as the

optimization of a single constraint. Different solutions to the

individual subproblems can have antagonistic effects when

combining them.

The parameterization g defines also the subset of variables

that are modified by a single constraint update. A good

parameterization defines the subproblems in a way that the

combination step leads only to small changes of the individual

solutions.

A. Incremental Pose Parameterization

Olson et al. propose the so-called incremental pose param-

eterization. Given a set of node locations pi and given a fixed

order on the nodes, the incremental parameters xi can be

computed as follows

xi = pi − pi−1. (13)

Note that xi is computed as the difference between two

subsequent nodes and not by motion composition. Under this

parameterization, the error in the global reference frame (in-

dicated by primed variables) has the following form

e′ji = pj − (pi ⊕ δji) (14)

=

(
j
∑

k=i+1

xk

)

+

(
i∏

k=1

R̃k

)

︸ ︷︷ ︸

Ri

δji, (15)

where ⊕ is the motion composition operator according to Lu

and Milios [11] and R̃k the homogenous rotation matrix of the

parameter xk. The term Rk is defined as the rotation matrix

of the pose pk. The information matrix in the global reference

frame can be computed as

Ω′
ji = RiΩjiR

T
i . (16)

According to Olson et al. [13], neglecting the contribution

of the angular terms of x0, . . . , xi to the Jacobian results in

the following simplified form

J ′
ji =

j
∑

k=i+1

Ik with Ik = (0 · · · 0 I
︸︷︷︸

k

0 · · · 0). (17)

Here 0 is the 3 by 3 zero matrix and I is the 3 by 3 identity.

Updating the network based on the constraint 〈j, i〉 with

such an Jacobian results in keeping the node i fixed and in

distributing the residual along all nodes between j and i.

Olson et al. weight the residual proportional to j−i which is

the number of nodes involved in the constraint. The parameter

xk of the node k with k = i + 1, . . . , j is updated as follows

∆xk = λwkΩ′
jir

′
ji, (18)

where the weight wk is computed as

wk = (j − i)

[
j
∑

m=i+1

D−1
m

]−1

D−1
k . (19)

In Eq. (19), Dk are the matrices containing the diagonal

elements of the kth block of the Hessian H. Intuitively, each

variable is updated proportional to the uncertainty about that

variable. Note that the simple form of the Jacobians allows us

to update the parameter vector for each node individually as

expressed by Eq. (18).

The approach presented in this section is currently one of the

best solutions to ML mapping. However, it has the following

drawbacks:

• In practice, the incremental parameterization cannot deal

with arbitrarily connected networks. This results from the

approximation made in Eq. (17), in which the angular

components are ignored when computing the Jacobian.

This approximation is only valid if the subsequent nodes

in Eq. (13) are spatially close. Furthermore, the way the

error is distributed over the network assumes that the

nodes are ordered according to poses along the trajectory.

This results in adding a large number of nodes to the

network whenever the robot travels for a long time in

the same region. This requirement prevents an approach

from merging multiple nodes into a single one. Merging

or pruning nodes, however, is a necessary precondition to

allow the robot lifelong map learning.

• When updating a constraint between the nodes j and i,

the parameterization requires to change the j-i nodes. As

a result, each node is likely to be updated by several

constraints. This leads to a high interaction between con-

straints and will typically reduce the convergence speed

of SGD. For example, the node k will be updated by all

constraints 〈j′, i′〉 with i′ < k ≤ j′. Note that using an

intelligent lookup structure, this operation can be carried

out in O(log n) time where n is the number of nodes in the

network [13]. Therefore, this is a problem of convergence

speed of SGD and not a computational problem.

B. Tree Parameterization

Investigating a different parameterization which preserves

the advantages of the incremental one but overcomes its

drawbacks is the main motivation for our approach. First,

our method should be able to deal with arbitrary network

topologies. This would enable us to compress the graph

whenever robot revisits a place. As a result, the size of the

network would be proportional to the visited area and not to

the length of the trajectory. Second, the number of nodes in

the graph updated by each constraint should mainly depend

on the topology of the environment. For example, in case of a

loop-closure a large number of nodes need to be updated but

in all other situations the update is limited to a small number

of nodes in order to keep the interactions between constraints

small.

Our idea is to first construct a spanning tree from the (arbi-

trary) graph. Given such a tree, we define the parameterization

for a node as

xi = pi − pparent(i), (20)

where pparent(i) refers to the parent of node i in the spanning

tree. As defined in Eq. (20), the tree stores the differences

between poses. As a consequence, one needs to process the

tree up to the root to compute the actual pose of a node in the

global reference frame.

However, to obtain only the difference between two arbi-

trary nodes, one needs to traverse the tree from the first node

upwards to the first common ancestor of both nodes and then

downwards to the second node. The same holds for computing

the error of a constraint. We refer to the nodes one needs to

traverse on the tree as the path of a constraint. For example,

Pji is the path from node i to node j for the constraint 〈j, i〉.

The path can be divided into an ascending part P
[−]
ji of the

path starting from node i and a descending part P
[+]
ji to node j.

We can then compute the error in the global frame by

e′ji = pj − (pi ⊕ δji) (21)

= pj − (pi + Riδji) (22)

=
∑

k[+]∈P
[+]
ji

xk[+] −
∑

k[−]∈P
[−]
ji

xk[−] − Riδji. (23)

Here Ri is the rotation matrix of the pose pi. It can be

computed according to the structure of the tree as the product

of the individual rotation matrices along the path to the root.

Note that this tree does not replace the graph as an internal

representation. The tree only defines the parameterization of

the nodes. It can furthermore be used to define an order in

which the optimization algorithm can efficiently process the

constraints as we will explain in the remainder of this section.

For illustration, Figure 2 (a) and (b) depict two graphs and

possible parameterization trees.

Similar to Eq. (16), we can express the information matrix

associated to a constraint in the global frame by

Ω′
ji = RiΩjiR

T
i . (24)

As proposed in [13], we neglect the contribution of the

rotation matrix Ri in the computation of the Jacobian. This ap-

proximation speeds up the computation significantly. Without

(a) (b) (c)

Fig. 2. (a) and (b): Two small example graphs and the trees used to determine the parameterizations. The small grey connections are constraints introduced
by observations where black ones result from odometry. (c) Processing the constraints ordered according to the node with the smallest level in the path avoids
the recomputation of rotational component of all parents. The same holds for subtrees with different root nodes on the same level.

this approximation the update of a single constraint influences

the poses of all nodes up to the root.

The approximation leads to the following Jacobian:

J ′
ji =

∑

k[+]∈P
[+]
ji

Ik[+] −
∑

k[−]∈P
[−]
ji

Ik[−] (25)

Compared to the approach described in the previous section,

the number of updated variables per constraint is in practice

smaller when using the tree. Our approach updates |Pji|
variables rather than j − i. The weights wk are computed as

wk = |Pji|





j
∑

m∈Pji

D−1
m





−1

D−1
k , (26)

where Dk is the k-th diagonal block element of H. This results

in the following update rule for the variable xk

∆xk = λwk · s(xk, i, j) · Ω′
jir

′
ji, (27)

where the value of s(xk, j, i) is +1 or −1 depending on where

the parameter xk is located on the path Pji:

s(xk, j, i) =

{

+1 if xk ∈ P
[+]
ji

−1 if xk ∈ P
[−]
ji

(28)

Our parameterization maintains the simple form of the

Jacobians which enables us to perform the update of each

parameter variable individually (as can be seen in Eq. (27)).

Note that in case one uses a tree that is degenerated to a list,

this parameterization is equal to the one proposed by Olson

et al. [13]. In case of a non-degenerated tree, our approach

offers several advantages as we will show in the experimental

section of this paper.

The optimization algorithm specifies how to update the

nodes but does not specify the order in which to process

the constraints. We can use our tree parameterization to sort

the constraints which allows us to reduce the computational

complexity of our approach.

To compute the residual of a constraint 〈j, i〉, we need to

know the rotational component of the node i. This requires to

traverse the tree up to the first node for which the rotational

component is known. In the worst case, this is the root of the

tree.

Let the level of a node be the distance in the tree between

the node itself and the root. Let zji be the node in the path of

the constraint 〈j, i〉 with the smallest level. The level of the

constraint is then defined as the level of zji.

Our parameterization implies that updating a constraint will

never change the configuration of a node with a level smaller

than the level of the constraint. Based on this knowledge, we

can sort the constraints according to their level and process

them in that order. As a result, it is sufficient to access the

parent of zji to compute the rotational component of the node i

since all nodes with a smaller level than zji have already been

corrected.

Figure 2 (c) illustrates such a situation. The constraint 〈7, 4〉
with the path 4, 3, 2, 7 does not change any node with a smaller

level than the one of node 2. It also does not influence other

subtrees on the same level such as the nodes involved in the

constraint 〈9, 8〉.
In the following section, we describe how we actually build

the tree given the trajectory of a robot or an arbitrary network

as input.

VI. CONSTRUCTION OF THE SPANNING TREE

When constructing the parameterization tree, we distinguish

two different situations. First, we assume that the input is a

sequence of positions belonging to a trajectory traveled by

the robot. Second, we explain how to build the tree given an

arbitrary graph of relations.

In the first case, the subsequent poses are located closely

together and there exist constraints between subsequent poses

resulting from odometry or scan-matching. Further constraints

between arbitrary nodes result from observations when revis-

iting a place in the environment. In this setting, we build our

parameterization tree as follows:

1) We assign a unique id to each node based on the

timestamps and process the nodes accordingly.

2) The first node is the root of the tree (and therefore has

no parent).

3) As the parent of a node, we choose the node with the

smallest id for which a constraint to the current node

exists.

This tree can be easily constructed on the fly. The Fig-

ures 2 (a) and (b) illustrates graphs and the corresponding

trees. This tree has a series of nice properties when applying

our optimization algorithm to find a minimal error configura-

tion of the nodes. These properties are:

• The tree can be constructed incrementally: when adding

a new node it is not required to change the existing tree.

• In case the robot moves through nested loops, the inter-

action between the updates of the nodes belonging to the

individual loops depends on the number of nodes the loops

have in common.

• When retraversing an already mapped area and adding

constraints between new and previously added nodes, the

length of the path in the tree between these nodes is small.

This means that only a small number of nodes need to be

updated.

The second property is illustrated in Figure 2 (a). The two

loops in that image are only connected via the constraint

between the nodes 3 and 7. They are the only nodes that are

updated by constraints of both loops.

The third property is illustrated in Figure 2 (b). Here, the

robot revisits a loop. The nodes 1 to 4 are chosen as the parents

for all further nodes. This results in short paths in the tree when

updating the positions of the nodes while retraversing known

areas.

The complexity of the approach presented so far depends

on the length of the trajectory and not on the size of the

environment. These two quantities are different in case the

robot revisits already known areas. This becomes important

whenever the robot is deployed in a bounded environment for

a long time and has to update its map over time. This is also

known as lifelong map learning. Since our parameterization

is not restricted to a trajectory of sequential poses, we have

the possibility of a further optimization. Whenever the robot

revisits a known place, we do not need to add new nodes to

the graph. We can assign the current pose of the robot to an

already existing node in the graph.

Note that this can be seen as an approximation similar to

adding a rigid constraint neglecting the uncertainty of the

corresponding observation. However, in case local maps (e.g.,

grid maps) are used as nodes in the network, it makes sense

to use such an approximation since one can localize a robot

in an existing map quite accurately.

To also avoid adding new constraints to the network, we can

refine an existing constraint between two nodes in case of a

new observation. Given a constraint δ
(1)
ji between the nodes j

and i in the graph and a new constraint δ
(2)
ji based on the

current observation. Both constraints can be combined to a

single constraint which has the following information matrix

and mean:

Ωji = Ω
(1)
ji + Ω

(2)
ji (29)

δji = Ω−1
ji (Ω

(1)
ji · δ

(1)
ji + Ω

(2)
ji · δ

(2)
ji) (30)

As a result, the size of the problem does not increase when

revisiting known locations. As the experiments illustrate, this

node reduction technique leads to an increased convergence

speed.

In case the input to our algorithm is an arbitrary graph

and no natural order of the nodes is provided, we compute

a minimal spanning tree to define the parameterization. Since

no additional information (like consecutive poses according

to a trajectory) is available, we cannot directly infer which

parts of the graph are well suited to form a subtree in the

parameterization tree. The minimal spanning tree appears

to yield comparable results with respect to the number of

iterations needed for convergence in all our experiments.

Fig. 3. The map of the Intel Research Lab before (left) and after (right)
execution of our algorithm (1000 nodes, runtime <1s).

VII. EXPERIMENTS

This section is designed to evaluate the properties of our

tree parameterization for learning maximum likelihood maps.

We first show that such a technique is well suited to generate

accurate occupancy grid maps given laser range data and

odometry from a real robot. Second, we provide simulation

experiments on large-scale datasets. We furthermore provide

a comparison between our approach, Olson’s algorithm [13],

and multi-level relaxation by Frese et al. [5]. Finally, we

analyze our approach and investigate properties of the tree

parameterization in order to explain why we obtain better

results then the other methods.

A. Real World Experiments

The first experiment is designed to illustrate that our ap-

proach can be used to build maps from real robot data. The

goal was to build an accurate occupancy grid map given the

laser range data obtained by the robot. The nodes of our graph

correspond to the individual poses of the robot during data

acquisition. The constraints result from odometry and from

the pair-wise matching of laser range scans. Figure 3 depicts

two maps of the Intel Research Lab in Seattle. The left one is

constructed from raw odometry and the right one is the result

obtained by our algorithm. As can be seen, the corrected map

shows no inconsistencies such as double corridors. Note that

this dataset is freely available on the Internet.

B. Simulated Experiments

The second set of experiments is designed to measure the

performance of our approach quantitatively. Furthermore, we

compare our technique to two current state-of-the-art SLAM

approaches that work on constraint networks, namely multi-

level relaxation by Frese et al. [5] and Olson’s algorithm [13].

In the experiments, we used the two variants of our method:

the one that uses the node reduction technique described in

Section VI and the one that maintains all the nodes in the

graph.

In our simulation experiments, we moved a virtual robot

on a grid world. An observation is generated each time the

current position of the robot was close to a previously visited

location. We corrupted the observations with a variable amount

of noise for testing the robustness of the algorithms. We

simulated different datasets resulting in graphs with a number

of constraints between around 4,000 and 2 million.

Fig. 4. Results of Olson’s algorithm (first row) and our approach (second row) after 1, 10, 50, 100, 300 iterations for a network with 64k constraints. The
black areas in the images result from constraints between nodes which are not perfectly corrected after the corresponding iteration (for timings see Figure 6).

Fig. 5. The result of MLR strongly depends on the initial configuration of
the network. Left: small initial pose error, right: large initial pose error.

Figure 4 depicts a series of graphs obtained by Olson’s

algorithm and our approach after different iterations. As can

be seen, our approach converges faster. Asymptotically, both

approaches converge to a similar solution.

In all our experiments, the results of MLR strongly de-

pended on the initial positions of the nodes. In case of a good

starting configuration, MLR converges to an accurate solution

similar to our approach as shown in Figure 5 (left). Otherwise,

it is likely to diverge (right). Olson’s approach as well as our

technique are more or less independent of the initial poses of

the nodes.

To evaluate our technique quantitatively, we first measured

the error in the network after each iteration. The left image

of Figure 6 depicts a statistical experiments over 10 networks

with the same topology but different noise realizations. As

can be seen, our approach converges significantly faster than

the approach of Olson et al. For medium size networks, both

approaches converge asymptotically to approximatively the

same error value (see middle image). For large networks,

the high number of iterations needed for Olson’s approach

prevented us from showing this convergence experimentally.

Due to the sake of brevity, we omitted comparisons to EKF and

Gauss Seidel relaxation because Olson et al. already showed

that their approach outperforms such techniques.

Additionally, we evaluated in Figure 6 (right) the average

computation time per iteration of the different approaches.

As a result of personal communication with Edwin Olson,

we furthermore analyzed a variant of his approach which is

restricted to spherical covariances. It yields similar execution

 0

 0.1

 0.2

 0.3

 0.4

 0 1000 2000 3000 4000av
er

ag
e

am
p
li

tu
d
e

[m
]

iteration

Olson’s algorithm
Our approach

Fig. 7. The average amplitude of the oscillations of the nodes due to the
antagonistic effects of different constraints.

times per iteration than our approach. However, this restricted

variant has still the same converge speed with respect to the

number of iterations than Olson’s unrestricted technique. As

can be seen from that picture, our node reduction technique

speeds up the computations up to a factor of 20.

C. Analysis of the Algorithm

The experiments presented above illustrated that our algo-

rithm offers significant improvements compared to both other

techniques. The goal of this section is to experimentally point

out the reasons for these improvements.

The presented tree parameterization allows us to decompose

the optimization of the whole graph into a set of weakly

interacting problems. A good measure for evaluating the

interaction between the constraints is the average number l

of updated nodes per constraint. For example, a network with

a large value of l has typically a higher number of interacting

constraints compared to networks with low values of l. In all

experiments, our approach had a value between 3 and 7. In

contrast to that, this values varies between 60 and 17,000 in

Olson’s approach on the same networks. Note that such a high

average path length reduces the convergence speed of Olson’s

algorithm but does not introduce a higher complexity.

The optimization approach used in this paper as well as

in Olson’s algorithm updates for each constraint the involved

nodes to minimize the error in the network. As a result,

different constraints can update poses in an antagonistic way

during one iteration. This leads to oscillations in the position

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

er
ro

r
p

er
 c

o
n

st
ra

in
t

iteration

Olson’s approach
Tree approach + node reduction

Tree approach

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2000 4000 6000 8000 10000

er
ro

r
p

er
 c

o
n

st
ra

in
t

iteration

Olson’s approach (big noise)
Tree approach (big noise)

Olson’s approach (small noise)
Tree approach (small noise)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

1.9M720k360k64k30k3.7k

ex
ec

u
ti

o
n
 t

im
e

p
er

 i
te

ra
ti

o
n
 [

s]

number of constraints

Olson’s algorithm
Olson’s algorithm, spheric covariances

MLR
Our approach

Our approach with node reduction

Fig. 6. The left image illustrates shows the error of our and Olson’s approach in a statistical experiment (σ = 0.05 confidence). The image in the middle
shows that both techniques converge asymptotically to the same error. The right image shows the average execution time per iteration for different networks.
For the 1.9M constraints network, the executing of MLR required memory swapping and the result is therefore omitted.

of a node before convergence. Figure 7 illustrates the average

amplitude of such an oscillations for Olson’s algorithm as well

as for our approach. As can be seen, our techniques converges

faster to an equilibrium point. This a further reason for the

higher convergence speed of our approach.

D. Complexity

Due to the nature of gradient descent, the complexity of

our approach per iteration depends linearly on the number of

constraints. For each constraint 〈j, i〉, our approach modifies

exactly those nodes which belong to the path Pji in the

tree. Since each constraint has an individual path length,

we consider the average path length l. This results in an

complexity per iteration of O(M · l), where M is the number

of constraints. In all our experiments, l was approximatively

log N , where N is the number of nodes. Note that given our

node reduction technique, M as well as N are bounded by the

size of the environment and not by the length of the trajectory.

A further advantage of our technique compared to MLR

is that it is easy to implement. The function that performs a

single iteration requires less than 100 lines of C++ code. An

open source implementation, image and video material, and

the datasets are available at the authors’ web-pages.

VIII. CONCLUSION

In this paper, we presented a highly efficient solution to

the problem of learning maximum likelihood maps for mo-

bile robots. Our technique is based on the graph-formulation

of the simultaneous localization and mapping problem and

applies a gradient descent based optimization scheme. Our

approach extends Olson’s algorithm by introducing a tree-

based parameterization for the nodes in the graph. This has a

significant influence on the convergence speed and execution

time of the method. Furthermore, it enables us to correct

arbitrary graphs and not only a list of sequential poses. In

this way, the complexity of our method depends on the size

of the environment and not directly on the length of the input

trajectory. This is an important precondition to allow a robot

lifelong map learning in its environment.

Our method has been implemented and exhaustively tested

on simulation experiments as well as on real robot data. We

furthermore compared our method to two existing, state-of-

the-art solutions which are multi-level relaxation and Olson’s

algorithm. Our approach converges significantly faster than

both approaches and yields accurate maps with low errors.

ACKNOWLEDGMENT

The authors would like to gratefully thank Udo Frese

for his insightful comments and for providing us his MLR

implementation for comparisons. Further thanks to Edwin

Olson for his helpful comments on this paper. This work

has partly been supported by the DFG under contract number

SFB/TR-8 (A3) and by the EC under contract number FP6-

2005-IST-5-muFly and FP6-2005-IST-6-RAWSEEDS.

REFERENCES

[1] M. Bosse, P.M. Newman, J.J. Leonard, and S. Teller. An ALTAS
framework for scalable mapping. In Proc. of the IEEE Int. Conf. on

Robotics & Automation, pages 1899–1906, Taipei, Taiwan, 2003.
[2] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of globally

consistent maps. Autonomous Robots, 12(3):287 – 300, 2002.
[3] C. Estrada, J. Neira, and J.D. Tardós. Hierachical slam: Real-time ac-

curate mapping of large environments. IEEE Transactions on Robotics,
21(4):588–596, 2005.

[4] U. Frese. Treemap: An o(logn) algorithm for indoor simultaneous
localization and mapping. Autonomous Robots, 21(2):103–122, 2006.

[5] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm
for simultaneous localisation and mapping. IEEE Transactions on

Robotics, 21(2):1–12, 2005.
[6] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic

environments. In Proc. of the IEEE Int. Symp. on Comp. Intelligence in

Robotics and Automation, pages 318–325, Monterey, CA, USA, 1999.
[7] A. Howard, M.J. Matarić, and G. Sukhatme. Relaxation on a mesh:

a formalism for generalized localization. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, pages 1055–1060, 2001.
[8] S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach for fil-

tering nonlinear systems. In Proc. of the American Control Conference,
pages 1628–1632, Seattle, WA, USA, 1995.

[9] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai. A practical,
decision-theoretic approach to multi-robot mapping and exploration. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pages 3232–3238, Las Vegas, NV, USA, 2003.

[10] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on Robotics and

Automation, 7(4):376–382, 1991.
[11] F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. Autonomous Robots, 4:333–349, 1997.
[12] J. Neira and J.D. Tardós. Data association in stochastic mapping

using the joint compatibility test. IEEE Transactions on Robotics and

Automation, 17(6):890–897, 2001.
[13] E. Olson, J.J. Leonard, and S. Teller. Fast iterative optimization of pose

graphs with poor initial estimates. In Proc. of the IEEE Int. Conf. on

Robotics & Automation, pages 2262–2269, 2006.
[14] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial

realtionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous

Robot Vehicles, pages 167–193. Springer Verlag, 1990.

