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Abstract—Being able to build a map of the environment and
to simultaneously localize within this map is an essential skill for
mobile robots navigating in unknown environments in absence
of external referencing systems such as GPS. This so-called
simultaneous localization and mapping (SLAM) problem has
been one of the most popular research topics in mobile robotics
for the last two decades and efficient approaches for solving this
task have been proposed. One intuitive way of formulating SLAM
is to use a graph whose nodes correspond to the poses of the robot
at different points in time and whose edges represent constraints
between the poses. The latter are obtained from observations
of the environment or from movement actions carried out by
the robot. Once such a graph is constructed, the map can be
computed by finding the spatial configuration of the nodes that
is mostly consistent with the measurements modeled by the
edges. In this paper, we provide an introductory description
to the graph-based SLAM problem. Furthermore, we discuss
a state-of-the-art solution that is based on least-squares error
minimization and exploits the structure of the SLAM problems
during optimization. The goal of this tutorial is to enable the
reader to implement the proposed methods from scratch.

I. I NTRODUCTION

To efficiently solve many tasks envisioned to be carried out
by mobile robots including transportation, search and rescue,
or automated vacuum cleaning robots need a map of the
environment. The availability of an accurate map allows forthe
design of systems that can operate in complex environments
only based on their on-board sensors and without relying
on external reference system like, e.g., GPS. The acquisition
of maps of indoor environments, where typically no GPS is
available, has been a major research focus in the robotics
community over the last decades. Learning maps under pose
uncertainty is often referred to as the simultaneous localization
and mapping (SLAM) problem. In the literature, a large variety
of solutions to this problem is available. These approaches
can be classified either as filtering or smoothing. Filtering
approaches model the problem as an on-line state estimation
where the state of the system consists in thecurrent robot po-
sition and the map. The estimate is augmented and refined by
incorporating the new measurements as they become available.
Popular techniques like Kalman and information filters [28],
[3], particle filters [22], [12], [9], or information filters[7],
[31] fall into this category. To highlight their incremental
nature, the filtering approaches are usually referred to as
on-line SLAM methods. Conversely, smoothing approaches
estimate the full trajectory of the robot from the full set of
measurements [21], [5], [27]. These approaches address the
so-called full SLAM problem, and they typically rely on least-
square error minimization techniques.

Figure 1 shows three examples of real robotic systems
that use SLAM technology: an autonomous car, a tour-guide

robot, and an industrial mobile manipulation robot. Image
(a) shows the autonomous car Junior as well as a model
of a parking garage that has been mapped with that car.
Thanks to the acquired model, the car is able to park itself
autonomously at user selected locations in the garage. Image
(b) shows the TPR-Robina robot developed by Toyota which
is also used in the context of guided tours in museums. This
robot uses SLAM technology to update its map whenever the
environment has been changed. Robot manufacturers such as
KUKA, recently presented mobile manipulators as shown in
Image (c). Here, SLAM technology is needed to operate such
devices in flexible way in changing industrial environments.
Figure 2 illustrates 2D and 3D maps that can be estimated by
the SLAM algorithm discussed in this paper.

An intuitive way to address the SLAM problem is via
its so-called graph-based formulation. Solving a graph-based
SLAM problem involves to construct a graph whose nodes
represent robot poses or landmarks and in which an edge
between two nodes encodes a sensor measurement that con-
strains the connected poses. Obviously, such constraints can be
contradictory since observations are always affected by noise.
Once such a graph is constructed, the crucial problem is to
find a configuration of the nodes that is maximally consistent
with the measurements. This involves solving a large error
minimization problem.

The graph-based formulation of the SLAM problem has
been proposed by Lu and Milios in 1997 [21]. However, it
took several years to make this formulation popular due to the
comparably high complexity of solving the error minimization
problem using standard techniques. Recent insights into the
structure of the SLAM problem and advancements in the fields
of sparse linear algebra resulted in efficient approaches to
the optimization problem at hand. Consequently, graph-based
SLAM methods have undergone a renaissance and currently
belong to the state-of-the-art techniques with respect to speed
and accuracy. The aim of this tutorial is to introduce the SLAM
problem in its probabilistic form and to guide the reader to
the synthesis of an effective and state-of-the-art graph-based
SLAM method. To understand this tutorial a good knowledge
of linear algebra, multivariate minimization, and probability
theory are required.

II. PROBABILISTIC FORMULATION OF SLAM

Solving the SLAM problem consists of estimating the robot
trajectory and the map of the environment as the robot moves
in it. Due to the inherent noise in the sensor measurements, a
SLAM problem is usually described by means of probabilistic
tools. The robot is assumed to move in an unknown environ-
ment, along a trajectory described by the sequence of random
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Fig. 1. Applications of SLAM technology. (a) An autonomous instrumented car developed at Stanford. This car can acquire maps by utilizing only its
on-board sensors. These maps can be subsequently used for autonomous navigation. (b) The museum guide robot TPR-Robina developed by Toyota (picture
courtesy of Toyota Motor Company). This robot acquires a new map every time the museum is reconfigured. (c) The KUKA Concept robot “Omnirob”, a
mobile manipulator designed autonomously navigate and operate in the environment with the sole use of its on-board sensors (picture courtesy of KUKA
Roboter GmbH).

variablesx1:T = {x1, . . . ,xT }. While moving, it acquires a
sequence of odometry measurementsu1:T = {u1, . . . ,uT }
and perceptions of the environmentz1:T = {z1, . . . , zT }.
Solving the full SLAM problem consists of estimating the
posterior probability of the robot’s trajectoryx1:T and the
mapm of the environment given all the measurements plus
an initial positionx0:

p(x1:T ,m | z1:T ,u1:T ,x0). (1)

The initial positionx0 defines the position of the map and
can be chosen arbitrarily. For convenience of notation, in the
remainder of this document we will omitx0. The posesx1:T

and the odometryu1:T are usually represented as 2D or 3D
transformations inSE(2) or in SE(3), while the map can be
represented in different ways. Maps can be parametrized as
a set of spatially located landmarks, by dense representations
like occupancy grids, surface maps, or by raw sensor measure-
ments. The choice of a particular map representation depends
on the sensors used, on the characteristics of the environment,
and on the estimation algorithm. Landmark maps [28], [22] are
often preferred in environments where locally distinguishable
features can be identified and especially when cameras are
used. In contrast, dense representations [33], [12], [9] are
usually used in conjunction with range sensors. Independently
of the type of the representation, the map is defined by the
measurements and the locations where these measurements
have been acquired [17], [18]. Figure 2 illustrates three typical
dense map representations for 3D and 2D: multilevel surface
maps, point clouds and occupancy grids. Figure 3 shows a
typical 2D landmark based map.

Estimating the posterior given in (1) involves operating in
high dimensional state spaces. This would not be tractable if
the SLAM problem would not have a well defined structure.
This structure arises from certain and commonly done assump-
tions, namely the static world assumption and the Markov
assumption. A convenient way to describe this structure is via
the dynamic Bayesian network (DBN) depicted in Figure 4.
A Bayesian network is a graphical model that describes a
stochastic process as a directed graph. The graph has one node
for each random variable in the process, and a directed edge (or
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Fig. 3. Landmark based maps acquired at the German Aerospace Center. In
this setup the landmarks consist in white circles painted on the ground that
are detected by the robot through vision, as shown in the leftimage. The right
image illustrates the trajectory of the robot and the estimated positions of the
landmarks. These images are courtesy of Udo Frese and Christoph Hertzberg.
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Fig. 4. Dynamic Bayesian Network of the SLAM process.

arrow) between two nodes models a conditional dependence
between them.

In Figure 4, one can distinguish blue/gray nodes indicating
the observed variables (herez1:T andu1:T ) and white nodes
which are the hidden variables. The hidden variablesx1:T

and m model the robot’s trajectory and the map of the
environment. The connectivity of the DBN follows a recurrent
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Fig. 2. (a) A 3D map of the Stanford parking garage acquired with an instrumented car (bottom), and the corresponding satellite view (top). This map has
been subsequently used to realize an autonomous parking behavior. (b) Point cloud map acquired at the university of Freiburg (courtesy of Kai. M. Wurm)
and relative satellite image. (c) Occupancy grid map acquiredat the hospital of Freiburg. Top: a bird’s eye view of the area, bottom: the occupancy grid
representation. The gray areas represent unobserved regions, the white part represents traversable space while the black points indicate occupied regions.

pattern characterized by the state transition model and by the
observation model. The transition modelp(xt | xt−1,ut) is
represented by the two edges leading toxt and represents the
probability that the robot at timet is in xt given that at time
t − 1 it was in xt and it acquired an odometry measurement
ut.

The observation modelp(zt | xt,mt) models the probabil-
ity of performing the observationzt given that the robot is at
locationxt in the map. It is represented by the arrows entering
in zt. The exteroceptive observationzt depends only on the
current locationxt of the robot and on the (static) mapm.
Expressing SLAM as a DBN highlights its temporal structure,
and therefore this formalism is well suited to describe filtering
processes that can be used to tackle the SLAM problem.

An alternative representation to the DBN is via the so-called
“graph-based” or “network-based” formulation of the SLAM
problem, that highlights the underlying spatial structure. In
graph-based SLAM, the poses of the robot are modeled by
nodes in a graph and labeled with their position in the
environment [21], [18]. Spatial constraints between posesthat
result from observationszt or from odometry measurements
ut are encoded in the edges between the nodes. More in
detail, a graph-based SLAM algorithm constructs a graph out
of the raw sensor measurements. Each node in the graph
represents a robot position and a measurement acquired at
that position. An edge between two nodes represents a spatial
constraint relating the two robot poses. A constraint consists
in a probability distribution over the relative transformations
between the two poses. These transformations are either odom-
etry measurements between sequential robot positions or are
determined by aligning the observations acquired at the two
robot locations. Once the graph is constructed one seeks to
find the configuration of the robot poses that best satisfies
the constraints. Thus, in graph-based SLAM the problem
is decoupled in two tasks: constructing the graph from the
raw measurements (graph construction), determining the most
likely configuration of the poses given the edges of the graph
(graph optimization). The graph construction is usually called

Fig. 5. Pose-graph corresponding to a data-set recorded at MIT Killian
Court (courtesy of Mike Bosse and John Leonard) (left) and after (right)
optimization. The maps are obtained by rendering the laser scans according
to the robot positions in the graph.

front-end and it is heavily sensor dependent, while the second
part is called back-end and relies on an abstract representation
of the data which is sensor agnostic. A short example of a
front-end for 2D laser SLAM is described in Section V-A.
In this tutorial we will describe an easy-to-implement but
efficient back-end for graph-based SLAM. Figure 5 depicts an
uncorrected pose-graph and the corresponding corrected one.

III. R ELATED WORK

There is a large variety of SLAM approaches available in
the robotics community. Throughout this tutorial we focus on
graph-based approaches and therefore will consider such ap-
proaches in the discussion of related work. Lu and Milios [21]
were the first to refine a map by globally optimizing the system
of equations to reduce the error introduced by constraints.
Gutmann and Konolige [11] proposed an effective way for
constructing such a network and for detecting loop closures
while running an incremental estimation algorithm. Since then,
many approaches for minimizing the error in the constraint
network have been proposed. For example, Howardet al. [15]
apply relaxation to localize the robot and build a map. Frese
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et al. [8] propose a variant of Gauss-Seidel relaxation called
multi-level relaxation (MLR). It applies relaxation at different
resolutions. Dellaert and Kaess [5] were the first to exploit
sparse matrix factorizations to solve the linearized problem
in off-line SLAM. Subsequently Kaesset al. [16] presented
iSAM, an on-line version that exploits partial reorderingsto
compute the sparse factorization.

Recently, Konoligeet al. [19] proposed an open-source
implementation of a pose-graph method that constructs the
linearized system in an efficient way. Olsonet al. [27] pre-
sented an efficient optimization approach which is based on
the stochastic gradient descent and can efficiently correcteven
large pose-graphs. Grisettiet al. proposed an extension of
Olson’s approach that uses a tree parametrization of the nodes
in 2D and 3D. In this way, they increase the convergence
speed [10].

GraphSLAM [32] applies variable elimination techniques to
reduce the dimensionality of the optimization problem. The
ATLAS framework [2] constructs a two-level hierarchy of
graphs and employs a Kalman filter to construct the bottom
level. Then, a global optimization approach aligns the local
maps at the second level. Similar to ATLAS, Estradaet al.
proposed Hierarchical SLAM [6] as a technique for using
independent local maps.

Most optimization techniques focus on computing the best
map given the constraints and are called SLAM back-ends.
In contrast to that, SLAM front-ends seek to interpret the
sensor data to obtain the constraints that are the basis for
the optimization approaches. Olson [25], for example, pre-
sented a front-end with outlier rejection based on spectral
clustering. For making data associations in the SLAM front-
ends statistical tests such as theχ2 test or joint compatibility
test [23] are often applied. The work of Nüchter et al. [24]
aims at building an integrated SLAM system for 3D mapping.
The main focus lies on the SLAM front-end for finding
constraints. For optimization, a variant of the approach of
Lu and Milios [21] for 3D settings is applied. The methods
proposed in this paper can be effectively applied to all these
front-ends.

IV. GRAPH-BASED SLAM

A graph-based SLAM approach constructs a simplified esti-
mation problem by abstracting the raw sensor measurements.
These raw measurements are replaced by the edges in the
graph which can then be seen as “virtual measurements”.
More in detail an edge between two nodes is labeled with
a probability distribution over the relative locations of the two
poses, conditioned to their mutual measurements. In general,
the observation modelp(zt | xt,mt) is multi-modal and
therefore the Gaussian assumption does not hold. This means
that a single observationzt might result in multiple potential
edges connecting different poses in the graph and the graph
connectivity needs itself to be described as a probability
distribution. Directly dealing with this multi-modality in the
estimation process would lead to a combinatorial explosionof
the complexity. As a result of that, most practical approaches
restrict the estimate to the most likely topology. Thus, one

x1

x2 x3

xixj

xt−1xt

xT

〈eij ,Ωij〉

Fig. 6. A pose-graph representation of a SLAM process. Everynode in the
graph corresponds to a robot pose. Nearby poses are connected by edges that
model spatial constraints between robot poses arising from measurements.
Edgeset−1 t between consecutive poses model odometry measurements,
while the other edges represent spatial constraints arising from multiple
observations of the same part of the environment.

needs to determine the most likely constraint resulting from
an observation. This decision depends on the probability
distribution over the robot poses. This problem is known
as data association and is usually addressed by the SLAM
front-end. To compute the correct data-association, a front-end
usually requires a consistent estimate of the conditional prior
over the robot trajectoryp(x1:T | z1:T ,u1:T ). This requires
to interleave the execution of the front-end and of the back-
end while the robot explores the environment. Therefore, the
accuracy and the efficiency of the back-end is crucial to the
design of a good SLAM system. In this tutorial, we will
not describe sophisticated approaches to the data association
problem. Such methods tackle association by means of spectral
clustering [27], joint compatibility branch and bound [23], or
backtracking [13]. We rather assume that the given front-end
provides consistent estimates.

If the observations are affected by (locally) Gaussian noise
and the data association is known, the goal of a graph-based
mapping algorithm is to compute a Gaussian approximation of
the posterior over the robot trajectory. This involves computing
the mean of this Gaussian as the configuration of the nodes
that maximizes the likelihood of the observations. Once this
mean is known the information matrix of the Gaussian can
be obtained in a straightforward fashion, as explained in
Section IV-B. In the following we will characterize the taskof
finding this maximum as a constraint optimization problem.
We will also introduce parts of the notation illustrated in
Figure 6.

Let x = (x1, . . . ,xT )
T be a vector of parameters, where

xi describes the pose of nodei. Let zij andΩij be respectively
the mean and the information matrix of a virtual measurement
between the nodei and the nodej. This virtual measurement
is a transformation that makes the observations acquired from
i maximally overlap with the observation acquired fromj. Let
ẑij(xi,xj) be the prediction of a virtual measurement given a
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Fig. 7. Aspects of an edge connecting the vertexxi and the vertexxj .
This edge originates from the measurementzij . From the relative position
of the two nodes, it is possible to compute the expected measurement ẑij
that representsxj seen in the frame ofxi. The erroreij(xi,xj) depends on
the displacement between the expected and the real measurement. An edge is
fully characterized by its error functioneij(xi,xj) and by the information
matrix Ωij of the measurement that accounts for its uncertainty.

configuration of the nodesxi andxj . Usually this prediction
is the relative transformation between the two nodes. The log-
likelihood lij of a measurementzij is therefore

lij ∝ [zij − ẑij(xi,xj)]
TΩij [zij − ẑij(xi,xj)]. (2)

Let e(xi,xj , zij) be a function that computes a difference
between the expected observationẑij and the real observation
zij gathered by the robot. For simplicity of notation, we will
encode the indices of the measurement in the indices of the
error function

eij(xi,xj) = zij − ẑij(xi,xj). (3)

Figure 7 illustrates the functions and the quantities that play
a role in defining an edge of the graph. LetC be the set of
pairs of indices for which a constraint (observation)z exists.
The goal of a maximum likelihood approach is to find the
configuration of the nodesx∗ that minimizes the negative log
likelihood F(x) of all the observations

F(x) =
∑

〈i,j〉∈C

eTijΩijeij
︸ ︷︷ ︸

Fij

, (4)

thus, it seeks to solve the following equation:

x∗ = argmin
x

F(x). (5)

In the remainder of this section we will describe an approach
to solve Eq. 5 and to compute a Gaussian approximation
of the posterior over the robot trajectory. Whereas the pro-
posed approach utilizes standard optimization methods, like
the Gauss-Newton or the Levenberg-Marquardt algorithms,
it is particularly efficient because it effectively exploits the
structure of the problem.

We first describe a direct implementation of traditional non-
linear least-squares optimization. Subsequently, we introduce
a workaround that allows to deal with the singularities in the
representation of the robot poses in an elegant manner.

A. Error Minimization via Iterative Local Linearizations

If a good initial guess̆x of the robot’s poses is known, the
numerical solution of Eq. (5) can be obtained by using the
popular Gauss-Newton or Levenberg-Marquardt algorithms.
The idea is to approximate the error function by its first order
Taylor expansion around the current initial guessx̆

eij(x̆i +∆xi, x̆j +∆xj) = eij(x̆+∆x) (6)

≃ eij + Jij∆x. (7)

Here,Jij is the Jacobian ofeij(x) computed inx̆ andeij
def.
=

eij(x̆). Substituting Eq. (7) in the error termsFij of Eq. (4),
we obtain:

Fij(x̆+∆x)

= eij(x̆+∆x)TΩijeij(x̆+∆x) (8)

≃ (eij + Jij∆x)T Ωij (eij + Jij∆x) (9)

= e
T
ijΩijeij

︸ ︷︷ ︸

cij

+2 eT
ijΩijJij

︸ ︷︷ ︸

bij

∆x+∆x
T
J
T
ijΩijJij

︸ ︷︷ ︸

Hij

∆x(10)

= cij + 2bij∆x+∆x
T
Hij∆x (11)

With this local approximation, we can rewrite the function
F(x) in Eq. (4) as

F(x̆+∆x) =
∑

〈i,j〉∈C

Fij(x̆+∆x) (12)

≃
∑

〈i,j〉∈C

cij + 2bij∆x+∆x
T
Hij∆x (13)

= c + 2bT
∆x+∆x

T
H∆x. (14)

The quadratic form in Eq. (14) is obtained from Eq. (13) by
setting c =

∑
cij , b =

∑
bij , andH =

∑
Hij . It can be

minimized in∆x by solving the linear system

H∆x∗ = −b. (15)

The matrixH is the information matrix of the system, since
it is obtained by projecting the measurement error in the
space of the trajectories via the Jacobians. It is sparse by
construction, having non-zeros between poses connected bya
constraint. Its number of non-zero blocks is twice the number
of constrains plus the number of nodes. This allows to solve
Eq. (15) by sparse Cholesky factorization. An efficient yet
compact implementation of sparse Cholesky factorization can
be found in the library CSparse [4].

The linearized solution is then obtained by adding to the
initial guess the computed increments

x∗ = x̆+∆x∗. (16)

The popular Gauss-Newton algorithm iterates the linearization
in Eq. (14), the solution in Eq. (15), and the update step in
Eq. (16). In every iteration, the previous solution is used as
the linearization point and the initial guess.

The procedure described above is a general approach to
multivariate function minimization, here derived for the special
case of the SLAM problem. The general approach, however,
assumes that the space of parametersx is Euclidean, which is
not valid for SLAM and may lead to sub-optimal solutions.
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B. Considerations about the Structure of the Linearized Sys-
tem

According to Eq. (14), the matrixH and the vectorb are
obtained by summing up a set of matrices and vectors, one for
every constraint. Every constraint will contribute to the system
with an addend term. Thestructureof this addend depends on
the Jacobian of the error function. Since the error function
of a constraint depends only on the values of two nodes, the
Jacobian in Eq. (7) has the following form:

Jij =




0 · · ·0 Aij

︸︷︷︸

node i

0 · · ·0 Bij
︸︷︷︸

node j

0 · · ·0




 . (17)

HereAij andBij are the derivatives of the error function with
respect toxi andxj . From Eq. (10) we obtain the following
structure for the block matrixHij :

Hij =












. . .
AT

ijΩijAij · · · AT
ijΩijBij

...
. . .

...
BT

ijΩijAij · · · BT
ijΩijBij

. ..












(18)

bij =












...
AT

ijΩijeij
...

BT
ijΩijeij

...












(19)

For simplicity of notation we omitted the zero blocks.
Algorithm 1 summarizes an iterative Gauss-Newton proce-

dure to determine both the mean and the information matrix
of the posterior over the robot poses. Since most of the
structures in the system are sparse, we recommend to use
memory efficient representations to store the HessianH of
the system. Since the structure of the Hessian is known in
advance from the connectivity of the graph, we recommend to
pre-allocate the Hessian once at the beginning of the iterations
and to update it in place by looping over all edges whenever
a new linearization is required. Each edge contributes to the
blocks H[ii], H[ij], H[ji], and H[jj] and to the blocksb[i]

andb[j] of the coefficient vector. An additional optimization
is to compute only the upper triangular part ofH, since it
is symmetric. Note that the error of a constrainteij depends
only on the relative position of the connected posesxi and
xj . Accordingly, the errorF(x) of a particular configuration
of the posesx is invariant under a rigid transformation of all
the poses. This results in Eq. 15 being under determined. To
numerically solve this system it is therefore common practice
to constrain one of the increments∆xk to be zero. This can be
done by adding the identity matrix to thekth diagonal block
H[kk]. Without loss of generality in Algorithm 1 we fix the
first nodex1. An alternative way to fix a particular node of
the pose-graph consists in suppressing thekth block row and
the kth block column of the linear system in Eq. 15.

Algorithm 1 Computes the meanx∗ and the information
matrix H∗ of the multivariate Gaussian approximation of the
robot pose posterior from a graph of constraints.

Require: x̆ = x̆1:T : initial guess. C = {〈eij(·),Ωij〉}:
constraints

Ensure: x∗ : new solution,H∗ new information matrix
// find the maximum likelihood solution
while ¬converged do
b← 0 H← 0

for all 〈eij ,Ωij〉 ∈ C do
// Compute the JacobiansAij and Bij of the error
function
Aij ←

∂eij(x)
∂xi

∣
∣
∣
x=x̆

Bij ←
∂eij(x)
∂xj

∣
∣
∣
x=x̆

// compute the contribution of this constraint to the
linear system
H[ii] += AT

ijΩijAij H[ij] += AT
ijΩijBij

H[ji] += BT
ijΩijAij H[jj] += BT

ijΩijBij

// compute the coefficient vector
b[i] += AT

ijΩijeij b[j] += BT
ijΩijeij

end for
// keep the first node fixed
H[11] += I

// solve the linear system using sparse Cholesky factor-
ization
∆x← solve(H∆x = −b)
// update the parameters
x̆ += ∆x

end while
x∗ ← x̆

H∗ ← H

// release the first node
H∗

[11] −= I

return 〈x∗,H∗〉

C. Least Squares on a Manifold

A common approach in numeric to deal with non-Euclidean
spaces is to perform the optimization on a manifold. A mani-
fold is a mathematical space that is not necessarily Euclidean
on a global scale, but can be seen as Euclidean on a local
scale [20]. Note that the manifold-based approach described
here is similar to the way of minimizing functions inSO(3)
as described by Taylor and Kriegman [30].

In the context of the SLAM problem, each parameter
block xi consists of a translation vectorti and a rotational
componentαi. The translationti clearly forms a Euclidean
space, while the rotational componentsαi span over the non-
Euclidean 2D or 3D rotation groupSO(2) or SO(3). To
avoid singularities, these spaces are usually described inan
over-parametrized way, e.g., by rotation matrices or quater-
nions. Directly applying Eq. (16) to these over-parametrized
representations breaks the constraints induced by the over-
parametrization. The over-parametrization results in additional
degrees of freedom and thus introduces errors in the solution.
To overcome this problem, one can use a minimal represen-
tation for the rotation (like, e.g., Euler angles in 3D). This,
however, is subject to singularities. The singularities inthe
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2D case can be easily recovered by normalizing the angle,
however in 3D this procedure is not straightforward.

An alternative idea is to consider the underlying space as
a manifold and to define an operator⊞ that maps a local
variation ∆x in the Euclidean space to a variation on the
manifold,∆x 7→ x⊞∆x. We refer the reader to the work of
Hertzberg [14] for the mathematical details. With this operator,
a new error function can be defined as

ĕij(∆x̃i,∆x̃j)
def.
= eij(x̆i ⊞∆x̃i, x̆j ⊞∆x̃j) (20)

= eij(x̆⊞∆x̃) ≃ ĕij + J̃ij∆x̃,(21)

where x̆ spans over the original over-parametrized space,
for instance quaternions. The term∆x̃ is a small increment
around the original position̆x and is expressed in a minimal
representation.

As an example, in 3D SLAM a good choice of the
parametrization of the rotations is thevector partof the unit
quaternion. In more detail, one can represent the increments
∆x̃ as 6D vectors∆x̃

T = (∆t̃
T
q̃T ), where∆t̃ denotes

the translation and̃qT = (∆qx ∆qy ∆qz)
T is the vector

part of the unit quaternion representing the 3D rotation.
Conversely,̆xT = (t̆T q̆T ) uses a quaternion̆q to encode the
rotational part. Thus, the operator⊞ can be expressed by first
converting∆q̃ to a full quaternion∆q and then applying the
transformation∆xT = (∆tT ∆qT ) to x̆. In the equations
describing the error minimization, these operations can nicely
be encapsulated by the⊞ operator. The JacobiañJij can be
expressed by

J̃ij =
∂eij(x̆⊞∆x̃)

∂∆x̃

∣
∣
∣
∣
∆x̃=0

. (22)

Since in the previous equatione depends only on∆x̃i and
∆x̃j we can further expand it as follows:

J̃ij (23)

=









· · ·
∂eij(x̆⊞∆x̃)

∂∆x̃i

∣
∣
∣
∣
∆x̃=0

︸ ︷︷ ︸

Ãij

· · ·
∂eij(x̆⊞∆x̃)

∂∆x̃j

∣
∣
∣
∣
∆x̃=0

︸ ︷︷ ︸

B̃ij

· · ·









Using the rule for the partial derivatives and exploiting the
fact that the Jacobian is evaluated in∆x̃ = 0, the non-zero
blocks become:

∂eij(x̆⊞∆x̃i)

∂∆x̃i

=
∂eij(x̆)

∂x̆i
︸ ︷︷ ︸

Aij

·
x̆i ⊞∆x̃i

∂∆x̃i

∣
∣
∣
∣
∆x̃=0

︸ ︷︷ ︸

Mi

(24)

∂eij(x̆⊞∆x̃j)

∂∆x̃j

=
∂eij(x̆)

∂x̆j
︸ ︷︷ ︸

Bij

·
x̆j ⊞∆x̃j

∂∆x̃j

∣
∣
∣
∣
∆x̃=0

︸ ︷︷ ︸

Mj

(25)

Accordingly, one can easily derive from the Jacobian not
defined on a manifold of Eq. 17 a Jacobian on a manifold
just by multiplying its non-zero blocks with the derivativeof
the⊞ operator computed in̆xi and x̆j .

Fig. 8. A typical robot used in 2D mapping experiments. The platform is a
standard ActivMedia Pioneer 2 equipped with a SICK-LMS range finder.

With a straightforward extension of the notation, we can
insert Eq. (21) in Eq. (9). This leads to the following linear
system:

H̃∆x̃
∗ = −b̃. (26)

Since the increments∆x̃
∗ are computed in the local Euclidean

surroundings of the initial guess̆x, they need to be re-mapped
into the original over-parametrized space by the⊞ operator.
Accordingly, the update rule of Eq. (16) becomes

x∗ = x̆⊞∆x̃
∗. (27)

Thus, formalizing the minimization problem on a manifold
consists of first computing a set of increments in a local
Euclidean approximation around the initial guess by Eq. (26),
and second accumulating the increments in the global non-
Euclidean space by Eq. (27). Note that the linear system
computed on a manifold representation has the same structure
of the linear system computed on an Euclidean space. One
can easily derive a manifold version of a graph minimization
from a non-manifold version, only by defining an⊞ operator
and its JacobianMi w.r.t. the corresponding parameter block.
Algorithm 2 provides a manifold version of the Gauss-Newton
method for SLAM.

The HessianH̃ of the manifold problem no longer rep-
resents the information matrix of the trajectories but of the
trajectory increments∆x̃. To obtain the information matrix of
the trajectory Algorithm 2 computesH in the original space
of the posesx.

V. PRACTICAL APPLICATIONS

In this section we describe some applications of the pro-
posed methods. In the first scenario we describe a complete
2D mapping system, and in the second scenario we briefly de-
scribe a 3D mapping system and we highlight the advantages
of a manifold representation.

A. 2D Laser Based Mapping

We processed the data recorded with the mobile robot
equipped with a laser range finder illustrated in Figure 8 at
the Intel Research Laboratory in Seattle. This data consists
of odometry measurements describing 2D transformations
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Algorithm 2 Manifold version of Algorithm 1. While this al-
gorithm has the same computational complexity, it is substan-
tially more robust than the non-manifold version, especially in
the 3D case.
Require: x̆ = x̆1:T : initial guess. C = {〈eij(·),Ωij〉}:

constraints
Ensure: x∗ : new solution,H̆∗ new information matrix

// find the maximum likelihood solution
while ¬converged do

// Compute the auxiliary JacobiansM1:T over the mani-
fold
for all x̆i ∈ x̆ do
Mi ←

x̆i⊞∆x̃i

∂∆x̃i

∣
∣
∣
∆x̃=0

end for
b̃← 0 H̃← 0

for all 〈eij ,Ωij〉 ∈ C do
// Compute the JacobiansAij and Bij of the error
function
Aij ←

∂eij(x)
∂xi

∣
∣
∣
x=x̆

Bij ←
∂eij(x)
∂xj

∣
∣
∣
x=x̆

// Project the Jacobians through the manifold
Ãij ← AijMi B̃ij ← BijMj

// compute the nonzero Hessian blocks
H̃[ii] += ÃT

ijΩijÃij H̃[ij] += ÃT
ijΩijB̃ij

H̃[ji] += B̃T
ijΩijÃij H̃[jj] += B̃T

ijΩijB̃ij

// compute the coefficient vector
b̃[i] += ÃT

ijΩijeij b̃[j] += B̃T
ijΩijeij

end for
// keep the first node fixed
H[11] += I

// solve the linear system using sparse Cholesky factor-
ization
∆x̃← solve(H̃∆x̃ = −b̃)
// update the parameters
for all x̆i ∈ x̆ do
x̆i ← x̆i ⊞∆x̃i

end for
end while
x∗ ← x̆

// the maximum is found, now compute the Hessian in the
original space
H∗ ← 0

for all 〈eij ,Ωij〉 ∈ C do
H[ii] += AT

ijΩijAij H[ij] += AT
ijΩijBij

H[ji] += BT
ijΩijAij H[jj] += BT

ijΩijBij

end for
return 〈x∗,H∗〉

Fig. 9. Intel Research Lab. Left: Unoptimized pose graph overlayed on
top of the resulting map. Right: The optimized pose graph and the resulting
consistent map.

corresponding to the movements of the platform between
consecutive time frames, and 2D laser range data.

The graph is constructed in the following way:

• Whenever the robot moves more than 0.5 meters or
rotates more than 0.5 radians, the algorithm adds a new
vertex to the graph and labels it with the current laser
observation.

• This laser scan is matched with the previously acquired
one to improve the odometry estimate and the corre-
sponding edge is added to the graph. We use a variant of
the scan-matcher described by Olson [26].

• When the robot reenters a known area after traveling for a
long time in a previously unknown region, the algorithm
seeks for matches of the current scan with the past
measurements (loop closing). If a matching between the
current observation and the observation of another node
succeeds, the algorithm adds a new edge to the graph.
The edge is labeled with the relative transformation that
makes the two scans to overlap best. Matching the current
measurement with all previous scans would be extremely
inefficient and error prone, since it does not consider
the known prior about the robot location. Instead, the
algorithm selects the candidate nodes in the past as the
ones whose3σ marginal covariances contains the current
robot pose. These covariances can be obtained as the
diagonal blocks of the inverse of a reduced HessianHred.
Hred is obtained fromH by removing rows and the
columns of the newly inserted robot pose.Hred is the
information matrix of all the trajectory when assuming
fixed the current position.

• The algorithm performs the optimization whenever a loop
closure is detected.

At the end of the run, the graph consists of1, 802 nodes
and 3, 546 edges. Even for this relatively large problem the
optimization can be carried on in 100 ms on a standard laptop
(Intel Core2@2.4 GHz). Since the robot travels at a velocityof
around 1 m/s the graph optimization could be executed after
adding every node instead of after detecting a loop closure.
Figure 9 shows the effect of the optimization process on the
trajectory, while Figure 10 illustrates the uncertainty ellipses.
The robot is located in the region where the ellipse become
small. Note that the poses inSE(2) do not need to be over
parameterized, so in this case there is no advantage in utilizing
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Fig. 10. Pose uncertainty estimate for a real-world data set.

manifolds.

B. 3D Laser Based Mapping

Extending to 3D the SLAM algorithm presented in the
previous section is rather straightforward. One has only to
replace the 2D scan matching and loop closure detection
with their 3D counterparts that operate on 3D point clouds
instead than on single laser scans. In our implementation we
utilize the popular ICP algorithm [1] and for determining the
loop closures we use the algorithm by Stederet al. [29].
Additionally, each node of the graph and each constraint lives
in SE(3). Typical outputs of this algorithm are illustrated in
Figures 2(a) and (b).

The minimum number of parameters required to represent
an element ofSE(3) is 6, a possible choice consists in a 3D
translation vector plus the three Euler angles. Utilizing this
parametrization leads to Algorithm 1. However, this minimal
representation is subject to singularities that can be avoided
by utilizing an over-parametrized state space. Alternatively,
one can describe the relative perturbations of the optimization
problem∆x̃ in a minimal representation while leaving the
poses in the original over-parametrized space. This leads to
Algorithm 2. In this section we compare these two variants
of the optimization algorithm on a pose-graph obtained by a
simulated robot. Note that the sparsity pattern of the Hessian
is the same in both cases. Furthermore, the time to compute
the linear system is negligible compared to the time to solveit.
Accordingly, the choice of the parametrization mainly affects
the convergence speed, not the time required to perform one
iteration. To highlight this effect we show the evolution ofthe
error per iteration during one optimization run by using the
two algorithms.

We use a simulated 3D dataset of a robot traveling on
the surface of a sphere. The measurements were affected
by a significant error, and initializing the system by using
the odometry information resulted in the graph illustratedin
the left part of Figure 11. Starting from this initial guess
we executed the Gauss-Newton Algorithm with and without
the manifold linearization, i.e., here by using Euler angles.

Fig. 11. Pose-graph obtained by simulating a robot moving on a sphere.
Left: Initial configuration. Right: After optimizing the pose graph the sphere
has accurately been recovered by Algorithm 2.
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Fig. 12. Evolution of the errorF(x) for Gauss-Newton optimization with
Euler angles and with manifold linearization to the 3D spheredataset.

Figure 12 shows the evolution of the error during the iterations
of the two approaches. First both approaches are able to
decrease the error. However, not appropriately considering
the singularities leads to a divergence of Algorithm 1 while
Algorithm 2 converges to the right solution.

VI. CONCLUSIONS

In this paper we presented a tutorial on graph-based SLAM.
Our aim was to provide the reader with sufficient details and
insights to allow for an easy implementation of the proposed
methods. The algorithms presented in this paper can be used
as a building blocks of more sophisticated methods, however
optimized implementations of these algorithms can deal with
surprisingly large problems.
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[24] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D SLAM
with approximate data association. InProc. of the Int. Conference on
Advanced Robotics (ICAR), pages 242–249, 2005.

[25] E. Olson. Robust and Efficient Robotic Mapping. PhD thesis, MIT,
Cambridge, MA, USA, June 2008.

[26] E. Olson. Real-time correlative scan matching. InProc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2009.

[27] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose
graphs with poor initial estimates. InProc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), pages 2262–2269, 2006.

[28] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial
realtionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous
Robot Vehicles, pages 167–193. Springer Verlag, 1990.

[29] B. Steder, G. Grisetti, and W. Burgard. Robust place recognition for 3D
range data based on point features. InProc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2010.

[30] C.J. Taylor and D.J. Kriegman. Minimization on the Lie group SO(3)
and related manifolds. Technical Report 9405, Yale University, 1994.

[31] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H.Durrant-
Whyte. Simultaneous localization and mapping with sparse extended
information filters.Int. Journal of Robotics Research, 23(7/8):693–716,
2004.

[32] S. Thrun and M. Montemerlo. The graph SLAM algorithm with
applications to large-scale mapping of urban structures.Int. Journal
of Robotics Research, 25(5-6):403, 2006.

[33] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for
outdoor terrain mapping and loop closing. InProc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

APPENDIX

In the following we will provide the definitions and the
derivations for the Jacobians to implement the suggested
algorithm. Due to space limitations we do not expand the
Jacobians in the 3D case. However, these Jacobians can either
be computed numerically or by using a computer algebra
system.

Error Functions and Jacobians for the 2D case

The basic entities in the 2D case are defined as

x⊤
i = (t⊤i , θi) (28)

z⊤ij = (t⊤ij , θij) (29)

whereti and tij are 2D vectors andθi and θij are rotation
angles which are normalized to[−π, π). The error function is

eij(x) =

(
R⊤

ij(R
⊤
i (tj − ti)− tij)

θj − θi − θij

)

, (30)

whereRi andRij are the2 × 2 rotation matrices ofθi and
θij with the following structure

Ri =

(
cos(θi) − sin(θi)
sin(θi) cos(θi)

)

. (31)

The Jacobians of the error function are

Aij =
∂eij(x)

∂xi

=

(

−R⊤
ijR

⊤
i R⊤

ij
∂R⊤

i

∂θi
(tj − ti)

0⊤ −1

)

(32)

Bij =
∂eij(x)

∂xj

=

(
R⊤

ijR
⊤
i 0

0⊤ 1

)

. (33)

The⊞ operator is defined as

x⊞∆x̃ = x+∆x̃ (34)

The angles are normalized to[−π, π) after applying the
increments. The Jacobians of the manifold in the 2D case
evaluate to the identity matrix:

Mi =
xi ⊞∆x̃i

∂∆x̃i

∣
∣
∣
∣
∆x̃=0

= I3 (35)

Mj =
xj ⊞∆x̃j

∂∆x̃j

∣
∣
∣
∣
∆x̃=0

= I3 (36)

.

Error Functions for the 3D case

The basic entities in the 3D case are defined as

x⊤
i = (t⊤i ,q

⊤
i ) (37)

z⊤ij = (t⊤ij ,q
⊤
ij), (38)

whereq denotes the unit quaternionq⊤ = (qx, qy, qz, qw)
⊤,

i.e., ‖q‖ = 1. The error function is

eij(x) =
(
z−1
ij ⊕ (x−1

i ⊕ xj)
)

[1:6]
, (39)
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where⊕ is the motion composition operator

xi ⊕ xj =

(
qi(tj)
qi · qj

)

(40)

and the operator(·)[1:6] selects the first 6 elements of its vector
argument.
The Jacobians of the error function are:

Aij =
∂eij(x)

∂xi

(41)

Bij =
∂eij(x)

∂xj

. (42)

The ⊞ operator maps∆x̃
⊤
i = (∆t̃

⊤

i ,∆q̃
⊤
i ) to the original

space

xi ⊞∆x̃i = xi ⊕





∆t̃i
∆q̃i√

1− ‖∆q̃i‖
2



 , (43)

where ∆t̃i denotes the translation and∆q̃⊤ =
(∆qx,∆qy,∆qz)

⊤ is the vector part of the unit quaternion
representing the 3D rotation and thus‖∆q̃i‖ ≤ 1. The
Jacobians of the manifold in the 3D case are given by

Mi =
xi ⊞∆x̃i

∂∆x̃i

∣
∣
∣
∣
∆x̃=0

(44)

Mj =
xj ⊞∆x̃j

∂∆x̃j

∣
∣
∣
∣
∆x̃=0

. (45)


