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Abstract—Popular problems in robotics and computer vi-
sion like simultaneous localization and mapping (SLAM) or
structure from motion (SfM) require to solve a least-squares
problem that can be effectively represented by factor graphs.
The chance to find the global minimum of such problems
depends on both the initial guess and the non-linearity of
the sensor models. In this paper we propose an approach
to determine an approximation of the original problem that
has a larger convergence basin. To this end, we employ a
divide-and-conquer approach that exploits the structure of the
factor graph. Our approach has been validated on real-world
and simulated experiments and is able to succeed in finding
the global minimum in situations where other state-of-the-art
methods fail.

I. INTRODUCTION

Several problems in autonomous robotics and computer

vision, like simultaneous localization and mapping (SLAM)

or structure from motion (SfM), require the solution of a

least-squares problem that exhibits a strong locality, which

results in the sparse structure of the corresponding factor

graph. Variables in these problems are correlated when they

are temporally or spatially close. The temporal locality is

the consequence of the sequential data acquisition, while the

spatial locality derives from the limited range of the sensors.

A common way to solve these least-squares prob-

lems is exploiting iterative methods like Gauss-Newton or

Levenberg-Marquardt, which progressively refine an initial

guess until convergence. If this guess is out of the conver-

gence basin of the algorithms, the iterative optimization may

not converge to the global minimum. The convergence basin,

in turn depends on the shape of the sensor models used to

construct the factors of the least-squares problem. The more

irregular/non-linear these error functions are, the tighter the

convergence basin is.

In this paper, we discuss an approach to determine a good

initial guess for least-squares problems arising from SLAM

or SfM. The key idea of our approach is to partition the

input factor graph into small locally connected sub-graphs

that represent sub-problems. These sub-problems can be

solved robustly and efficiently, but their solutions cannot be

combined together in a straightforward manner. To this end,

from each partial solution we construct a simple factor graph

that constrains the relative positions of the variables in the

solution. These sub-graphs represent an convex approxima-

tion of the original ones which exhibit a larger convergence

basin. The factors in these graphs incorporate the information

contained in the sub-graph from which they were generated,
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Fig. 1. A robot equipped with a stereo camera is simulated in a Manhattan
world. The trajectory is drawn in blue whereas the features are depicted in
orange. Left: The initial guess is computed by composing the odometry
of the robot. Middle: Running a standard iterative Levenberg-Marquardt
algorithm yields a sub-optimal estimate. Right: Our approach converges to
the global minimum.

thus we refer to them as condensed measurements. To find

the global layout of the partial solutions in the space, we find

the minimum of the union of all translated sub-graphs. As

this translated problem is more convex, we have increased

the chance of finding the correct minimum, which represents

the initial guess. Our method can be seen as a generalization

of other divide-and-conquer methods like HOG-Man [1] or

T-SAM [2]. Compared to HOG-Man our approach allows

to deal with factor graphs whose variables are not only

robot poses, but arbitrary elements like landmarks and system

parameters. T-SAM is orthogonal to our approach since it

mostly focuses on the solution of the linear sub-problem and

does not address the non-linear aspects in the general case.

We tested our approach on a wide set of real-world and

simulated experiments acquired with different 2D and 3D

sensors. Furthermore, we performed a statistical comparative

analysis. Our approach succeeded in solving problems where

other state-of-the-art methods failed. Our system is built

as an extension to g2o [3], an open source generic factor

graph optimization package. Thus, it can be straightforwardly

applied to all the instances of problems handled by g2o with

minimal effort.

Figure 1 shows a motivating example of our approach

where we simulated a robot with a stereo camera driving in a

Manhattan maze. A standard iterative Levenberg-Marquardt

algorithm converges to a local minimum. However, our

approach estimates the correct solution.

II. RELATED WORK

In the past, graph optimization problems have been studied

intensively in the area of robotics and computer vision.

One seminal work is that of Lu and Milios [4] where the



relative motion between two scans was measured by scan-

matching and the resulting graph was optimized by iterative

linearization. At that time optimization of the graph was

regarded as too time-consuming for real-time performance.

Due to recent advancements in the development of direct

linear solvers (e.g., [5]), graph-based SLAM has re-gained

popularity, and a large variety of different approaches to

optimize pose graphs have been proposed. For example,

Howard et al. [6] apply relaxation to build a map. Duckett

et al. [7] propose the usage of Gauss-Seidel relaxation to

minimize the error in the network of constraints. Frese et

al. [8] introduced multi-level relaxation (MLR), a variant

of Gauss-Seidel relaxation that applies the relaxation at

different levels of resolution. Olson et al. [9] suggested a gra-

dient descent approach to optimize pose-graphs (i.e., graphs

whose variables only consist robot poses). Later, Grisetti et

al. [10] extended this approach by applying a tree-based

parameterization that increases the convergence speed. Both

approaches are robust to the initial guess and rather easy to

implement. However, their application is restricted to graphs

whose nodes represent only isometries and do not support

different types of variables. Furthermore, they assume that

the covariance is roughly spherical and thus have difficulties

in optimizing pose-graphs, where some constraints have

covariances with null spaces or substantial differences in

the eigenvalues. Assuming diagonal covariances Carlone et

al. [11] recently demonstrated how to obtain a linear ap-

proximation independent of the initial guess. However, their

method is limited to 2D pose-graphs.

In presence of Gaussian sensor noise, inferencing in a

factor graph corresponds to solving a nonlinear least-squares

problem. Typically this is done by forming a linear system

around the current state, solving, and iterating. One promis-

ing technique for solving the linear system is preconditioned

conjugate gradient (PCG), which was used by Konolige [12]

as well as Montemerlo and Thrun [13] as an efficient solver

for large sparse pose constraint systems.

More recently, Dellaert and colleagues suggested a system

called
√
SAM [14] implemented using sparse direct linear

solvers [5]. Kaess et al. [15] introduced a variant of this

called iSAM that is able to update the linear matrix associ-

ated with the nonlinear least-squares problem. Konolige et

al. [16] showed how to construct the linear matrix efficiently

by exploiting the typical sparse structure of the linear system.

However, the latter approach is restricted to 2D pose-graphs.

In computer vision, Sparse Bundle Adjustment [17] is a

nonlinear least-squares method that takes advantage of the

sparsity of the Jacobian pattern between points and camera

poses. Recently, there have been several systems [18], [19]

that advance similar concepts of sparse linear solvers and

efficient factorizations of the system of linear equations

(∼100M sparse matrix elements). Additionally, several ap-

proaches to Visual SLAM [20], [21] employ a similar con-

cept like our approach. Those systems generate a pose-graph

representation out of the camera measurements obtained at

key frame locations. They are, however, restricted to generate

pair-wise camera constraints for the pose-graph layer.

Hierarchical extensions to these approaches have been pro-

posed by Ni et al. [2] (TSAM) and Grisetti et al. [1] (HOG-

Man) that employ a divide-and-conquer strategy to partition

the original large problem into smaller ones and then utilize

these partial solutions to construct a global sparse problem.

The solution of the global problem is the arrangement of the

partial solutions (local maps) in the space. In particular [2]

utilizes nested dissection and an efficient parameterization to

efficiently solve large off-core problems involving arbitrary

types of variables. Conversely, [1] encapsulates the relations

between sub-problems in nonlinear constraints connecting

them, but it is restricted to operate on pose-graphs. The

approach presented in this paper is orthogonal to TSAM and

extends it by expressing the solution of the sub-problems

by using more general measurement functions that condense

most of the relevant information in the local solution. These

error functions are user defined, so they can be chosen to be

as smooth as possible, regardless of the factors in the input

problem. The smoothness of the condensed measurements,

makes our approach more robust to wrong initial guesses.

Our method also extends HOG-Man, since it operates on

arbitrary factor graphs and is not restricted to pose-graphs.

III. LEAST SQUARES OPTIMIZATION OF FACTOR

GRAPHS ON A MANIFOLD

Minimizing a factor graph consists in solving the follow-

ing equation:

F (x) =
∑

k∈C

ek(xk, zk)
T
Ωkek(xk, zk)

︸ ︷︷ ︸

Fk

(1)

x
∗ = argmin

x

F (x). (2)

Here

• x = (x1, . . . ,xn) is the state vector where each xi

represents one generic state variable. For instance, in

SLAM these variables can model robot positions or the

pose of landmarks.

• Fk: is a factor that models a measurement depending on

a subset xk = (xk1
, . . . ,xkq

) ⊂ (x1, . . . ,xn) of the

state variables.

• zk is a measurement that depends on the state variables in

xk. Given a configuration of xk, a prediction ẑk = hk(xk)
of the measurement can be computed by a sensor model

hk(xk). The uncertainty of the measurement is modeled

by its information matrix Ω
z
k.

• ek(xk, zk) is an error function that computes the distance

vector between the prediction ẑk and a real measurement

zk. This error is 0 when the prediction obtained by

mapping the states xk to the measurements is equal to the

real measurement: zk = hk(xk). A straightforward error

function is the vector difference: e(xk, zk) = hk(xk)−zk,

but other choices are possible.

• Ωk is the information matrix that models the uncertainty

of the error. It depends on the measurement function and

on the measurement uncertainty represented by Ω
z
k. If the

error function is the vector difference between prediction

and measurement, Ωk = Ω
z
k.
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Fig. 2. Here we illustrate a portion of a SLAM problem with unknown
parameters represented as a factor graph. The round nodes represent state
variables, while the square nodes represent the factors. x0:n denotes the
robot poses, and xK denotes the unknown calibration parameters of a sensor
on the robot. The factors are depicted as black squares and arise either from
odometry measurements zu

0:n or from environment measurements zlij which

relate pairs of robot locations xi and xj and calibration parameters xK .

To simplify the notation, in the rest of this paper we will

encode the measurement in the indexes of the error functions:

ek(xk, zk)
def.
= ek(xk)

def.
= ek(x). (3)

A problem in this form can be effectively represented by a

factor graph. A factor graph is a bipartite graph where each

node represents either a variable node xi or a factor node

Fk between a subset xk of state variables involved in the

kth constraint. A factor is connected by edges to all nodes

in the subset xk. Figure 2 shows an example of a mapping

between a factor graph and an objective function.

If a good initial guess x̆ of the parameters is known, a

numerical solution of Eq. 2 can be obtained by the Gauss-

Newton (GN) or Levenberg-Marquardt (LM) algorithms. In

the remainder, we will refer to these approaches as direct

methods. In this section we review two common tricks

that make least-squares minimization more robust when the

measurements zk or the state variables xk span over non-

Euclidean manifold spaces.

As proposed in [22], we can define the following two

operators:

• ⊞ : x1 × x2 → x, that applies the perturbation x2 to x1.

• ⊟ : x1 × x2 → x, that computes the perturbation x that

transforms x1 to x2.

Since the increments computed by iterative methods are

usually rather small, their minimal representation is far from

the singularities. Accordingly, when operating with non-

Euclidean measurement spaces, it is convenient to use the ⊟

operator instead of the regular minus to compute the error.

More in detail, let ẑk = h(xk) be a measurement function,

the error function

ek(xk) = ẑk ⊟ zk (4)

usually has a smoother behavior than the vector difference

ẑk − zk. In Eq. 4 the difference is first computed in the

original non-Euclidean domain, and then it is converted to

a vector form. This difference is supposed to be small, thus

its minimal form is far from singularities. Conversely, the

vector difference first computes the minimal representation

of values potentially far from the origin (and thus close to

the singularities), and then computes the difference. This can

result in high values of the error norm that come from little

displacements in the orientation.

Similarly, we can use the ⊞ operator to write down the

equation of the error under a small perturbation of the state

variables around a linearization point x̆ as:

ek(x̆k ⊞∆xk) = ek(x̆⊞∆x) (5)

≃ ek + Jk∆x. (6)

Here the Jacobian is Jk = ∂ek(x̆⊞∆x)
∂∆x

∣
∣
∣
∆x=0

. The advantage

of using the ⊞ operator instead of the more common + is

that ⊞ takes care of handling the singularities and the error

function in ∆x has a smoother profile. Clearly, in case the

measurements or the state variables are Euclidean, the ⊞ and

the ⊟ become a regular vector addition and subtraction.

Substituting Eq. 6 in Eq. 1 we obtain a quadratic form

that approximates the error given the perturbations of the

variables:

F (x̆⊞∆x) = c + 2b∆x+∆x
T
H∆x (7)

Here c =
∑

k e
T
kΩkek is a constant term, b =

∑

k J
T
kΩkek

is the coefficient vector and H =
∑

k J
T
kΩkJk, is the

information matrix of the system.

The quadratic form in Eq. 7 can be minimized in ∆x by

solving the linear system

(H+ λI)∆x
∗ = −b. (8)

Here λ is a damping factor used to render the system

positive definite and to control the convergence. H is sparse

by construction, having non-zeros only between variables

appearing in a factor. This allows us to solve Eq. 8 with

efficient approaches like sparse Cholesky factorization or

Preconditioned Conjugate Gradients (PCG). The linearized

solution is then obtained by applying the perturbation to the

initial guess via ⊞

x
∗ = x̆⊞∆x

∗. (9)

Direct methods iterate the linearization in Eq. 7, the solution

in Eq. 8, and the update step in Eq. 9, updating the damping

factor and executing backup steps to achieve monotonic

convergence.

IV. CONSIDERATIONS ABOUT SLAM-LIKE PROBLEMS

In a large class of problems, e.g., SLAM or SfM, the

variables in the factor graph represent spatial entities that are

either poses of the moving sensor (laser range finders, cam-

eras, etc) or positions of the observed entities (landmarks,

scans, local maps and so on). The factors correspond to the

measurements that depend on either single agent positions

(like GPS, magnetic field, or attitude), temporally subsequent

agent positions (like odometry, velocity, or acceleration), or

they arise by the observation of a map element from a certain

position of the observer. Usually, each measurement involves

a set of variables that are spatially close. This results in a

local connectivity of the graph: since variables are related to

spatial entities and only variables that are within a certain

range between each other are connected.

In the presence of devices having a highly nonlinear

model, like a bearing only sensor or a monocular camera,



and in absence of a good initial guess, direct methods can

fail. Observing the same scene with more informative sensors

that are, for instance, capable of detecting also the range of

a landmark or the depth of a point increases the chances of

success for direct methods. Thus, direct approaches applied

to SLAM-like problems are sensitive to the sensor model:

the used sensor model has a great impact on the profile of

the error function, and thus on the chances of finding the

global minimum. Clearly, the sensor model is a characteristic

of the problem and cannot be arbitrarily changed. However,

once we have a consistent local solution for a portion of

the problem, we can formulate another problem having a

similar solution that uses less non-linear sensor models. It

is in general convenient to use in this stage sensor models

that have the smoothest possible error profile and that allow

to observe the highest possible number of dimensions of the

involved state variables.

For short trajectories the open loop estimate obtained

by using incremental approaches (wheel odometry, visual

odometry, integration of the accelerometers) is sufficient

to obtain a good solution despite using less informative

measures (like bearing only data). Thus, direct approaches

work well on small size problems.

V. ROBUST OPTIMIZATION OF FACTOR GRAPHS USING

CONDENSED MEASUREMENTS

In this section, we illustrate our approach based on

the three SLAM features highlighted above. We provide

a graphical explanation through Figure 3 that shows how

our approach works on a simple landmark-based SLAM

problem. In this case, we restricted ourselves to a factor

graph involving only binary factors and in the figure we

highlight only the nodes that represent variables. The binary

factors are represented by the edges, while triangles denote

robot poses and circles landmark locations.

Our approach partitions the original problem into small

chunks based on the trajectory of the vehicle. This is illus-

trated by the dotted-dashed line in Fig 3a. Each of these

chunks form a small factor graph describing a portion of the

problem. Because of the local connectivity, each factor will

capture a small contiguous portion of the environment that

can be seen as a local map. These local maps interact with

each other through variables belonging to more than a single

local map. These shared variables are illustrated in red.

Since these sub-graphs are small, we can obtain a reason-

able solution for each of these problems by using a direct

method. In absence of global measurements, these local maps

are free to float in the space. Thus, to determine a unique

solution, we need to “fix” some variables. In the remainder

of this section, we will refer to these variables as the origin

(gauge) of the local maps and are illustrated in dark blue in

Fig. 3c. Having a solution for a local map means that we

know a Gaussian approximation of each variable within the

local map, relative to its origin. This is true regardless the

sensors that have been used to determine this solution. As an

example we can obtain the x− y location of landmarks in a

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. The overview of our optimization procedure on a simple landmark-
based SLAM problem. Here we illustrate the factor graph by highlighting
only the variables. The factors denote binary measurements and are encoded
in the edges. (a),(b) We partition the problem into sub-graphs. The shared
variables are in red, and dotted lines show the corresponding variables in
different partitions. (c) We solve these problems independently with respect
to their origins (dark blue), and we determine the marginal covariances of
the shared variables. (d) We compute condensed factors connecting each
shared variable to its origin. (e) We solve the complete problem on the
condensed factors to determine the layout of the local maps (f).

SLAM problem even if our robot is equipped with bearing-

only sensors, because multiple observations are fused by

the SLAM algorithm to obtain the solution. This step is

described in detail in Section V-A.

Once we have a solution for the local maps, we seek for a

global alignment that satisfies all the equality constraints in-

duced by the shared variables. These constraints are depicted

with dotted lines in figures 3b, 3c, and 3d. Approaching

this problem by initializing the original factor graph with

the local solutions can fail, because these local solutions

will be destroyed during the global optimization. We then

reduce the problem of determining a global initial guess to

finding a global alignment of the local maps and of the shared

variables, while attempting to preserve the structures of the

local maps computed before.

To this end, we replace the factor graph of each local map

with another and simpler one whose solution approximates

the original local solution. In constructing this factor graph,

we utilize smooth sensor models that can fully qualify each

variable within the local map with respect to its origin. We

construct the reduced problem by considering the variables

in the origin along with all the shared variables of a local

map. We then add a factor between each shared variable



and the origin, as illustrated in Figure 3d. This factor is

computed from a measurement function that depends on

the type of the variable: we should obviously describe

differently measurements of a robot pose and measurements

of a landmark. The mean and the information matrix of

the measurement are computed by projecting the marginal

covariance of a state variable in the measurement space via

the unscented transform [23]. This step is discussed in detail

in Section V-B.

This procedure converts the factor graph of a local map,

which can have an arbitrary topology into a star topology.

The center of the star is the origin of the local map and

the other nodes are the shared variables. The non-shared

variables are not considered in this stage, since they do

not directly concur to determine a global alignment. The

shared variables are connected to the origin by factors that

are generated based on the solution of the local map. We call

these factors condensed factors, since they summarize the

relationship between a variable and the origin of the local

map by considering all the measurements when optimizing

the local map.

Once we “condensed” the local maps, we assemble an

approximation of the original global factor graph by combin-

ing all the newly computed factor graphs into a new sparser

factor graph, whose solution is a global configuration of the

origins and of the shared variables. This is illustrated in

Figure 3e. Furthermore, since the sensor models are smoother

than the original ones, the new problem will have a larger

convergence basin and direct approaches are likely to work.

Having found an approximated solution for the origins of the

local maps and of the shared variables, we can determine a

good initial guess by arranging the local maps computed

at the beginning of the procedure accordingly, as shown in

Figure 3f. At this point, an optimization which considers the

original factors can further refine the approximated solution.

A. Constructing and Solving the Local Maps

The procedure outlined above requires to first partition the

input into small sub-graphs that lead to local maps. Since

the local maps need to be merged in a later step, we should

prevent the information stored in the original problem from

being used multiple times. The relations between variables

are modeled by the factors of the graph. Hence, it is sufficient

to partition the factors of the input problem into different

local maps. Conversely, the variables can be replicated; a

variable that appears in more than one local map becomes

a shared variable, that is a vertex separator of the original

factor graph.

Additionally, we want these local maps to admit unique

solutions, which means that the resulting linear system of

Eq. 8 should be fully determined, once we fix the vertex in

the origin. In general this is a challenging problem, however,

since we assume that we have odometry, we can construct

a solvable sub-graph by selecting a contiguous segment of

the robot trajectory (around five meters in our experiments).

Subsequently, we consider all landmarks that have been seen

from within the trajectory portion. Depending on the type of

sensors, the landmarks can be fully observable or not. For

instance, to determine the position of a landmark observed

with a bearing only sensor we need two observations from

two different robot positions. If we are able to measure also

the range, a single observation is sufficient. Based on the

odometry guess we attempt to determine the position of all

observed landmarks. The landmarks whose position cannot

be determined from within the local map are discarded

together with their measurements. In this way, we obtain

a set of factors that lead to a fully specified problem. Note

that certain landmarks can be discarded from all local maps,

since their position cannot be determined in any of them.

This results in ignoring some of the information when ap-

proximating the initial guess. However, this information will

be recovered in the final refinement stage of the algorithm

where we employ a direct method on the original factors

starting from the initial guess computed by our approach.

Once we have partitioned the graph into sub-problems, we

solve each of them independently by using the direct methods

described in Section III. We can then compute the marginal

covariances of the separators by applying an algorithm based

on dynamic programming described by Kaess et al. [24]

from the corresponding blocks of H−1. To solve the local

maps and to compute the marginal covariances, we use

the open-source g2o package [3]. Note that, due to our

manifold formulation, we obtain the marginal covariances

of the increments ∆xi and not of the state variables xi.

B. Computing Condensed Factors

In this section, we describe how to compute a new set

of factors that relate the separators {xi} and the origin xg ,

given the marginal covariances {Σi} previously computed.

We define a family of measurement functions

h
typeOf(xi)(xg,xi)

def.
= h(xg,xi) (10)

that depend on the type of the separators. In our SLAM
examples we have two types of variables: the landmark poses
that are represented as vectors in ℜ2 or ℜ3 and the robot
poses that belong to either SE2 or SE3. The origin of the
local maps is always selected to be a robot pose. The “virtual
sensors” in our case are:

hi(xg,xi) =

{

toVec(X−1

g ·Xi) if(typeOf(xi) == pose)

X
−1

g · xi if(typeOf(xi) == landmark)

Here, X∗ denotes the homogeneous matrix of the transfor-

mation x∗. Intuitively, the measurement between two poses is

the relative movement between one and the other. The mea-

surement between a landmark and a pose is the projection of

the landmark in the frame of the observing pose. However,

the above choices are not unique and in the general case, the

user can select any measurement function that is invertible

in xi. We selected these measurement functions to compute

our condensed factors because the experiments demonstrated

that they behave better than other models.

Once we know which particular measurement function to

select for each separator, we need to determine the factors

connecting the origin and the separators:

Fi = ei(xg,xi)
T
Ωiei(xg,xi). (11)



To this end, we recall Eq. 4 that relates measurement function

and error vector through the ⊟ operator: ei(xg,xi) =
h(xg,xi) ⊟ zi. The error function depends on the (known)

measurement function hi(·) and on the unknown measure-

ment zi. Since the error should be 0 at the current solution

of the local map, the measurement vector at the equilibrium

is:

zi = h(x∗
g,x

∗
i ), (12)

where x
∗
g and x

∗
i are the actual values of the origin and of

a separator after solving the sub-problem.

To qualify the factors in Eq. 11 we still have to compute

the information matrix Ωi. Since the origin node is fixed, its

covariance matrix is zero. Thus, only the marginal covariance

of xi contributes in determining Ωi. The procedure outlined

in the previous section gives us the covariance matrices of

the increments ∆xi. Hence, we need to remap them through

the error function. To this end, we rewrite the error function,

highlighting the contribution of the increments:

ei(xg,xi ⊞∆xi) = h(xg,xi ⊞∆xi)⊟ zi. (13)

We then remap the marginal covariance of ∆xi by using

the unscented transform [23]. We extract a set of sigma

points {σk
∆xi

} from the marginal covariance Σ∆xi
of the

increments ∆xi and we remap them through Eq. 13 as

follows:

σk = ei(x
∗
g,x

∗
i ⊞ σk

∆xi
). (14)

We then compute Ωi by inverting the covariance matrix

reconstructed from the projected sigma points.

The procedure outlined above allows us to determine the

new factors used to describe a local map in a compact manner

at a higher level of abstraction. The new factors are computed

after considering the solution of a full portion of the problem

and model the relationships between the origin of a local map

and the separators.

VI. EXPERIMENTS

We validated our approach on real-world data and per-

formed extensive statistical tests on simulated data. On all

datasets we compare our approach with the Levenberg-

Marquardt (LM) implementation in the g2o package. All

results have been validated by both visual inspection and

comparing the errors of the final solution. Real-world ex-

periments provide evidence on the real applicability of the

results. While the ground truth of simulated datasets allow

us to characterize the behavior of the approaches in a more

detailed way.

A. Real World Experiments

The first experiment that we describe is done on the

popular Victoria-Park dataset. It was acquired with a car

equipped with a laser range finder and odometer. Point

landmarks are the trees in the park and are observed through

laser scans. A feature extraction algorithm reports the x− y

location of the detected trees, in the laser frame. We will

refer to this sensor model as the “Cartesian” dataset. From

this dataset, we constructed a bearing only dataset, where we

Trajectory
Landmarks(a)

Trajectory
Landmarks(b)

Trajectory
Landmarks(c)

Trajectory
Landmarks(d)

Trajectory
Landmarks(e) Trajectory

Landmarks(f)

Fig. 4. The Victoria-Park dataset: the landmarks are shown as little dots,
and blue curves are the robot trajectories. The initial guess is shown in
(a). By using a Cartesian sensor model the direct approaches fail in batch
optimization, F = 30607; (b). the direct approaches succeed when run
incrementally, F = 389; (c). Our approach succeeds; (d). The bearing only
dataset cannot be optimized with direct approaches neither incrementally
(e) nor in the batch mode; (f) The correct map is obtained by our method.

replaced the cartesian observations of a landmark with the

corresponding bearing measurement. As shown in Figure 4a,

the noise in the odometry is relatively high.

Processing the whole Cartesian dataset with direct ap-

proaches does not give the correct solution (Fig. 4b), which

can however be obtained by running the direct approaches

incrementally, after inserting every 50 sequential odometry

measurements (Fig. 4c). However, our approach always finds

the correct solution (Fig. 4d). The solution is the same as the

one computed by the direct approaches run incrementally.

The bearing-only dataset cannot be solved by direct ap-

proaches when run either in batch mode or incrementally

(Fig. 4e), due to the high nonlinearities in the sensor model.

Conversely, our approach succeeds (Fig. 4f).

In the second experiment, we describe the results of

processing a 3D dataset acquired at the Freiburg University

campus with a mobile robot equipped with a Bumblebee

stereo camera. From each frame, we extracted visual features

along with disparity and constructed one large bundle ad-

justment problem enriched with odometry information. The

results of the experiments are illustrated in Figure 5. For this

dataset, we considered two initial guesses: one obtained by

optimizing the pose graph constructed by densely matching

pair-wise observations (thus pretty accurate), and one based

only on the wheel odometry. We processed this dataset

with direct methods both batch and incrementally. Direct

approaches always succeeded in finding the optimal solution

when initialized with the good guess, while they failed in all

cases starting from the bad guess. Our approach succeeded



Fig. 6. Two simulated datasets, in which points represent point features,
while blue lines indicate the trajectory of the robot. Left: the top view of a
2D dataset. Right: the perspective view of a 3D dataset.

in creating the local maps and determining a good initial

alignment.

B. Simulated Experiments

We generated a set of synthetic 2D and 3D datasets by

simulating a robot moving in a grid world and sensing

point landmarks in its neighborhood. In all cases, we created

a synthetic world by placing a set of landmarks in the

environment and letting the robot move for increasingly long

trajectories along a simulated Manhattan world. The same

synthetic world was used to create different datasets: one

for each sensor setup. Thus, in these experiments we tested:

different trajectory lengths and different sensor modalities.

Figure 6 shows the ground truth of two synthetic datasets

used in our experiments.

In 2D we used point landmarks and simulated both a

Cartesian sensor, similar to the one used in the Victoria

Park experiment and a bearing-only sensor. In 3D we used

an ideal Cartesian sensor capable of measuring the position

of a landmark in the reference frame of the observer (this

can model a 3D laser), a depth sensor, which measures the

“depth” of points in the image plane (this can model RGBD

cameras like the Kinect) and finally we used a disparity

sensor suitable to model stereo cameras.

Table I shows the characteristic of the different dataset

in terms of number of poses, landmarks and factors in

the graph and sensors used to perceive the landmarks. For

each dataset we report the value of the error F (·) at the

minimum found by the algorithms for the different datasets.

Fid is the theoretical minimum value obtained by running

LM using the ground truth as initial guess. Finit represents

the error of the initial guess derived from the odometry.

FLM is the error of the solution obtained by running 100

iterations of the LM algorithm in the g2o package and

Fcond using our approach to determine the initial guess and

then running 10 iterations of standard LM. We marked in

bold the cases of wrong convergence. The reader might

observe that in some cases our approach did not reach

the absolute minimum, but this is due to the fact that we

limited the LM iterations to 10. We verified that running 100

iterations of LM results in reaching the theoretical minimum

in our simulated experiments. Additionally, we observed a

substantial speedup in using the condensed measurements.

For a large problem of 5001 poses computing the solution

with LM takes approximately 18 minutes against 9 minutes

of running the condensed approach plus 10 iterations of

LM. In total the generation of the condensed factors and the

solution of the sparse problem took less than 4 minutes on a

Core 2 Duo 2.6 Ghz using one single core. The column “#

cond” reports the number of condensed factors in the global

sparse problem, while the column Fsparse reports the initial

and final error of the optimization of this sparse problem.

The significant reduction of the error is possible because the

constructed problem is more convex than the input one. For

problems having a very small size, no condensed factors are

generated. This is the case of the 2D dataset with 11 pose

variables, where the solution is computed with standard LM.

As it can be seen from the table, the larger the problem

becomes, the harder is for LM to converge, while our method

always finds the correct minimum. Also the non-linearity of

the sensor has a great effect on the convergence. In 2D, when

we use a bearing only sensor and the number of constraints,

increases LM fails. In 3D using a Cartesian sensor leads to

the correct solution for standard approaches, while the same

approach fails when using a depth or a disparity model, the

former being better than the latter. Our method succeeds in

all cases.

VII. CONCLUSIONS

We presented a novel approach for optimizing factor

graphs obtained from SLAM or SfM problems. The algo-

rithm is robust to noisy initial guesses and highly nonlinear

sensor models. The key idea is to construct an approximation

of the original problem having a larger convergence basin by

computing condensed measurements from partial solutions,

to determine a good initial guess. Our approach can solve

problems that cannot be handled by other state-of-the-art

methods. In the future, we plan to exploit the divide-and-

conquer strategy of our method to take advantage of modern

parallel CPU and GPU architectures.
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