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Summary. Simultaneous Localization and Mapping (SLAM) is one of the classical prob-
lems in mobile robotics. The task is to build a map of the environment using on-board
sensors while at the same time localizing the robot relativeto this map. Rao-Blackwellized
particle filters have emerged as a powerful technique for solving the SLAM problem in a
wide variety of environments. It is a well-known fact for sampling-based approaches that the
choice of the proposal distribution greatly influences the robustness and efficiency achiev-
able by the algorithm. In this paper, we present a significantly improved proposal distribu-
tion for grid-based SLAM, which utilizes whole sequences ofsensor measurements rather
than only the most recent one. We have implemented our systemon a real robot and evalu-
ated its performance on standard data sets as well as in hard outdoor settings with few and
ambiguous features. Our approach improves the localization accuracy and the map quality.
At the same time, it substantially reduces the risk of mapping failures.

1 Introduction

The ability to construct models of natural and human-build environments
is widely regarded as a precondition for autonomous servicerobots. Such
models are required for basic tasks such as localization andmotion plan-
ning. The combination of a Rao-Blackwellized particle filter (RBPF) with
occupancy grid maps represents an effective and flexible solution to the
SLAM problem as it only makes mild assumptions about the structure of the
environment. Theoretically, given infinitely many particles, RBPFs always
converge to the correct map. In practice however, only a finite number of
particles can be used. This number inherently limits the uncertainty which
can be represented by the filter and in this way can lead to divergence. Con-
sider, for example, the environment depicted in the upper picture of Fig-
ure 1. This environment consists of two box-like landmarks,which cannot
be perceived at the same time due to a limited sensor range. The geometric
shape of these boxes needs to be represented accurately in the map as other-
wise the estimate about the orientation of the robot relative to the landmark
quickly gets lost. When the robot drives around a box severaltimes the
standard RBPF mapping approach typically turns the squaredshape into a
circle, since slight pose errors are introduced by the limited number of par-
ticles and by the suboptimal proposal distribution used. Asa consequence,
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Fig. 1. A mobile robot with a limited sensor range navigates throughthe low structured
environment depicted in the upper image, which consists of two cardboard boxes placed on
flat, open terrain. The robot starts atBox 1, moves toBox 2, and revolves around it several
times before returning to its origin. Standard mapping approaches cannot deal with the large
amount of pose uncertainty build up when circling around thesecond box, which results in a
seriously diverged map (lower right). In comparison, our approach usingk-step look-ahead
proposals retains the squared shape of the boxes and yields an accurate map (lower left).
Note, that due to the limited laser range the hedge was visible only at Box 1.

the particle filter loses track of the heading of the robot andyields seriously
wrong maps like the one depicted in the lower right diagram ofFigure 1.

In this paper, we present the so-called look-ahead mapping approach
which uses improved proposals for the robot pose to increasethe accuracy
of the particles after the proposal step. This is achieved byperforming inde-
pendent,k-step localization runs for the individual particles to better align
them to their local maps. In this way, the filter can deal with higher lev-
els of noise and operate in less structured environments. Experiments with
real robots demonstrate that our approach can handle situations in which
state-of-the-art RBPF-based approaches, like the one using a motion model
based on the odometry error [10] or laser scan-matching error [5] or the
one using dynamically adapted proposal distributions based on local laser
scan-matching [4] fail.
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2 Related Work

Originally, Murphyet al. [1, 10] have introduced Rao-Blackwellized par-
ticle filters as an effective means to solve the SLAM problem.In a RBPF,
each particle represents a possible robot trajectory and a map. The frame-
work has been subsequently extended by Montemerloet al. [8, 9] for
SLAM with discrete sets of landmarks. To efficiently learn accurate grid
maps, Eliazar and Parr [3] described an efficient map representation. Addi-
tionally, Hähnelet al.[5] proposed an improved motion model that substan-
tially reduces the number of particles required. Recently,Howard presented
an extension towards multi-robot systems [6] in which he describes how
to effectively merge the information obtained by differentrobots. Further-
more, Grisettiet al. [4] proposed an extension of the approach by Hähnelet
al. [5]. Instead of using a fixed proposal distribution, their algorithm com-
putes an improved proposal distribution on a per-particle basis, in a way
similar to FastSLAM-2, as presented by Montemerloet al. [7] for the case
of landmark-based mapping.

All of the above mentioned approaches perform mapping and localiza-
tion as the data is available, that is, the pose and the map uncertainty result
from the very same set of observations processed. In the workpresented
here, we usek “future” measurements to build up a look-ahead proposal
distribution for the robot pose. In this way, the uncertainty in the robot pose
is reduced and consequently, less map uncertainty has to be represented by
the filter.

3 Mapping with Rao-Blackwellized Particle Filters

The key idea of the Rao-Blackwellized particle filter for SLAM is to rea-
son about possible robot trajectories and the corresponding maps using
a sample-based representation [5]. Formally, the task is toestimate the
joint posteriorp(x1:t,m | z1:t,u1:t) of the mapm and the trajectory
x1:t = x1, . . . ,xt of the robot, given observationsz1:t = z1, . . . , zt and
odometry measurementsu1:t = u1, . . . ,ut. In the particle filter frame-
work, the posterior after each time step is represented by a set of weighted
trajectoriesx[j]

1:t and the corresponding mapsm
[j]
t generated from these tra-

jectories. Using the factorization

p(x1:t,mt | z1:t,u1:t) = p(mt | x1:t, z1:t) · p(x1:t | z1:t,u1:t) , (1)

we can derive a recursive filter that in each iteration updates the trajectory
samplesxi

1:t and then analytically builds the corresponding mapm
i
t. Each

filter iteration consists of the following steps:

1. Sampling: The next generation of particles{x[j]
t } is obtained from the

generation{x[j]
t−1} by sampling from a proposal distributionπ. Often,

a probabilistic odometry-based motion model is used forπ.
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2. Importance Weighting: Importance weightsw[j]
t are assigned to the in-

dividual particles according to

w
[j]
t =

p(x
[j]
1:t | z1:t,u1:t)

π(x
[j]
1:t | z1:t,u1:t)

∝
p(zt | m

[j]
t−1,x

[j]
t )p(x

[j]
t | x

[j]
t−1,ut)

π(xt | x
[j]
1:t−1, z1:t,u1:t)

·w
[j]
t−1 .

(2)
The weights account for the fact that the proposal distribution π is in
general not equal to the target distribution of successor states [2].

3. Resampling: Particles are drawn with replacement proportional to their
importance weight.

4. Map Estimation: For each particle, the corresponding map estimate
p(m[j] | x

[j]
1:t, z1:t) is computed based on the trajectoryx

[j]
1:t of that sam-

ple and the history of observationsz1:t.

The robustness and efficiency of this procedure strongly depends on the
proposal distributionπ that is used to sample the new state hypotheses in
the selection step. If the proposal distribution differs too much from the true
posterior, there is a high risk of filter divergence. In the following section,
we introduce a concrete proposal distributionπ that utilizes a set of “future”
sensor measurements to yield better pose estimates. The resulting weight
update equation is straightforward to implement, while thenew approach is
more robust in standard and hard, poorly-structured environments.

4 Look-ahead Proposals

The standard RBPF mapping approach fails in situations, in which the par-
ticle distribution significantly differs from the true posterior. This can hap-
pen when the proposal distributionπ provides a bad approximation to the
true one, or when the environment does not provide enough structure to al-
low proper particle weighting. The latter situation is illustrated in the lower
right diagram of Figure 1. Due to the limited structure of theenvironment,
the robot is unable to localize itself properly and looses the fine structure
of Box 2. Before returning to its starting location, the robot is clearly de-
localized, such that Box 1 appears twice in the resulting map. Such a diver-
gence can either be avoided by using an extremely large number of particles
or by directing the given number of particles to more accurate locations.
We follow the latter strategy by computing the pose prediction in each it-
eration based on thek next sensory inputs instead of just one. Thesek
measurements are used to better localize each particle within its own map.
Concretely, for each mapping particle at timet − 1, we drawl localization
particles and localize themk steps ahead within their map. The resulting
pose posterior at timet+ k is then used to sample the successor pose of the
mapping particle at timet. This process is visualized in Figure 2.
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Fig. 2. The algorithm for look-ahead pose sampling usingk steps: For each mapping particle
at timet − 1 (first diagram), drawl localizing particles (second). Move them according to
ut+i and weight them according tozt+i until t + k (third diagram). Propagate back the
weights of the particles to the initial situation at timet (forth) and draw the successor state
according to this distribution (right diagram). The chartsabove the diagrams visualize the
current weights of the individual localization particles at the highlighted timeindex.

By using the additional sensory input, a more informed and thus more
accurate proposal for the robot pose can be computed. Formally, the idea
is to compute a better estimate for the posext, using the previous position
xt−1, the commands (odometry)ut:t+k, and the measurementszt:t+k up to
time-indext + k. As stated in Equation (1), the Rao-Blackwellized particle
filter is an approach for sequentially estimating the distribution

p(mt|x1:t, z1:t) p(x1:t|z1:t,u1:t) . (3)

Here,p(x1:t|z1:t,u1:t) is approximated using a particle filter, whose sam-
ples we will call SLAM particles. In the standard approach, the SLAM
particles are drawn from a proposal distribution based on the motion
modelp(xt|xt−1,ut). In our approach, we use the more informed proposal
p(xt|xt−1,ut, zt:t+k,ut+1:t+k,mt−1). Such a proposal results from per-
forming an independentk-step localization for each SLAM particle. The
localization algorithm is initialized with the map and the robot pose of the
corresponding SLAM particle at timet − 1. Our proposal can be rewritten
more compactly, omittingmt−1, asp(xt|xt−1,ut:t+k, zt:t+k), which we
can rewrite as

p(xt|xt−1,ut:t+k, zt:t+k) =

∫

p(xt:t+k|xt−1,ut:t+k, zt:t+k) dxt+1:t+k.(4)

Given the posesxt . . .xt+k and the mapmt−1 the obsersavtionszt . . . zt+k

are independant. Therefore, we can rewrite the term inside the integral as

p(xt:t+k|xt−1,ut:t+k, zt:t+k) = η

t+k
∏

j=t

p(zj |xj) ·
t+k
∏

j=t

p(xj |xj−1,uj). (5)
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Hereη = p(zt:t+k|xt−1ut:t+k)
−1 is the Bayes normalizer. A particle ap-

proximation of Equation 5 (the localizer particles) can be obtained by sam-
pling a sequence of poses according to the sequence of motioncommands.
Each samplei has a weightv(i)

t:t+k proportional to the likelihood of the chain
of observations starting att − 1.

x
(i)
t:t+k

∼
t+k
∏

j=t

p(x
(i)
j |x

(i)
j−1,uj) v

(i)
t:t+k

=
t+k
∏

j=t

p(z
(i)
j |x

(i)
j ). (6)

A sampled approximation of the integral in Eq. 4

p(xt|xt−1,ut:t+k, zt:t+k) ∼
〈

x
(i)
t , v

(i)
t

〉

(7)

is recovered from the samples in Eq. 6. This is done by truncating each
trajectoryx(i)

t:t+k at timet and by back-propagating the weights of the tra-
jectory, according to Fig. 2. Due to resampling operations,the evolution of
these trajectories can be described as a tree [3], thus the samplex

(i)
t receives

a weightv(i)
t which is the sum of the weights of its successors.

The setS =
{〈

x
(i)
t , v

(i)
t

〉}

is a sampled approximation of our pro-

posal distribution. We can draw from this setN new SLAM particles
{

x
(j)
t

}

for time t, according to the importance weights. The true poste-

rior p(x
(j)
t |x

(j)
t−1, zt,ut) (the SLAM particles) is recovered from this set by

assigning to each newly drawn samplex
(j)
t a weightw[j]

t according to the
importance sampling principle (see Eq. 2):

w
[j]
t ∝ w

[j]
t−1

p(x
(j)
t |x

(j)
t−1, zt,ut)

p(x
(j)
t |x

(j)
t−1,ut:t+k, zt:t+k)

(8)

∝ w
[j]
t−1

p(zt|x
(j)
t )p(x

(j)
t |x

(j)
t−1,ut)

p(x
(j)
t |x

(j)
t−1,ut:t+k, zt:t+k)

(9)

∝ w
[j]
t−1

p(zt|x
(j)
t )

v
(j)
t

(10)

The last step follows directly from Equation 7 and the fact that the trajec-
toriesx

(i)
t:t+k

had been drawn including the motionut betweent − 1 andt.
Note that for updating the weight of a SLAM particle, we just need the
weight of the drawn successor state at timet (first iteration of the nested
localization run) and the corresponding weight at timet + k(= vt). Both
values are readily available from the localization run. Equation (10) as-
sures, that no information (odometry, measurements) is integrated more
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than once. Thus, the presented approach does not change the estimated pos-
terior distribution, but only the way it is represented by the limited particle
set of the filter.

5 Experiments

In this section, we present a set of experiments demonstrating that our map-
ping approach can be applied in both indoor and outdoor scenarios. Further-
more, we compared our approach using localization proposals (termedLP
in this section) to a state-of-the-art technique [4], whichuses a dynamically
adapted proposal based on scan matching (SMP) and to a standard RBPF
using odometry-based proposals (OP). The results show that our approach
is more robust in poorly structured situations, while also providing high
quality maps in more structured environments.

Measuring Map Quality

To assess the quality of the resulting maps we evaluate a measure denoted
asrevisiting accuracy(RA), which reflects the error in the robot pose es-
timate at revisited places relative to previous visits. This measure captures
the internal consistency of a map. It therefore better reflects the practical
usefulness of the map than for example the absolute mean squared error of
the corrected trajectory relative to an assumed true one. The latter measure
is overly sensitive to distortions on a global level, which does in general not
lead to practical problems, and it requires a ground truth trajectory.

For calculating therevisiting accuracy, we add color markers to the
ground at places that are to be traversed several times during the exper-
iment. We then recorded the timestamps at which the robot passed over
these checkpoints. Letp be a checkpoint visited at timest1 and t2. The
revisiting accuracy for this location is defined as

ǫ
p
t1,t2

=
∑

j

w[j]
√

(1 − λ)((x
[j]
t1

− x
[j]
t2

)2 + (y
[j]
t1

− y
[j]
t2

)2) + λ(θ
[j]
t1

− θ
[j]
t2

)2 .

Here,x, y, andθ are the components of the pose vector andλ ∈ [0, 1]
is a weighing factor for the rotational component. Intuitively, the revisit-
ing accuracy for a given checkpoint is the (weighted) distance between the
estimated positions within every map, weighted by the corresponding map-
probability.

Mapping an Office Environment

We tested our approach in the highly structured office environment depicted
in Figure 3. Given this dataset, we compared our approach (LP) to SMP
andOP in terms of the revisiting accuracy measure defined above. Figure 3
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Fig. 3. Maps obtained from the indoor environment usingOP (left) andLP (right).

Fig. 4. Mapping a low-structured environment (upper left): Maps obtained byOP (upper
middle) and our approach (upper right). Traveled paths of the robot usingOP (lower left),
SMP(lower middle) and ourLP approach (lower right). All approaches used 50 mapping
particles. Our approach used additionally 100 localization particles per map and a look-
ahead ofk = 5.

depicts the maps obtained usingOP (left diagram) and our approach (right
diagram) for20 mapping particles. In our approach, we used 50 localization
particles per map particle and a look-ahead ofk = 3. The map generated
using theSMPis similar to ours. The localization accuracy is between 5 cm
and 10 cm forOPand less than 5 cm for both, our approach (LP) andSMP.
Overall, a localization error of less than 10 cm is considerably small with
the given grid resolution of 5 cm per cell.

Mapping a Low-Structured Outdoor Environment

We compared our approach to those proposed by Hähnelet al. [5] and
Grisettiet al. [4] in the outdoor environment depicted in the upper left pic-
ture of Figure 4. The robot started at the checkpoint “X”, moved around
the cardboard box 15 times. Thereby it returned to the checkpoint every 5th
run. The laser range was limited to 4 meters, so that the box was the only
visible map element. Figure 4 depicts the mapping results oftheOPand our



Look-ahead Proposals for Robust Grid-based SLAM 9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6  7  8  9

er
ro

r 
(w

ei
gh

te
d 

di
st

an
ce

)

look-ahead steps

OP (k=0)
SMP (k=1)
LP (k=2..9)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  3  4  5  6  7  8  9  10

su
cc

es
sr

at
e

look-ahead steps

OP
SMP

LP (50M,100L)
LP (20M,100L)

Fig. 5. Mean and standard deviation for the approaches (left) and the ratio of runs with an
error less than 0.2 (right). Note that theOP-RBPF and theSMP-RBPF approach never had
an revisiting accuracy error below 0.2. Thus the success rates of both approaches is0.

LP approach (second and third upper diagram) using 50 SLAM particles.
For generating the map, we used a look-ahead ofk = 5 and 100 localiza-
tion particles per SLAM particle. The three lower diagrams in Figure 4 de-
pict typical paths estimated by the three mapping approaches. The distance
between the checkpoint “X” and the box is around 4 m. As can be seen
from these results,OP fails to map this environment and yields a highly
inconsistent map. Although, when usingSMP, the map quality is higher
and the box has retained its squared shape, the resulting mapis still incon-
sistent. Our approach, in contrast, is able to deal with thishard situation
and generates accurate maps. To quantitatively evaluate the performance of
the approaches, we analyzed the mapping results for different numbers of
particles. Each approach was executed 30 times for each setting. We mea-
suredǫX

tfirst,tlast
, with tfirst and tlast being the timestamps, when the robot

moved over the checkpoint “X” for the first and the last time respectively.
Figure 5 (left) gives the results of this experiment. For reasons of better
readability we depicted the results obtained by 50 mapping particles only.
Furthermore, Figure 5 (right) depicts the success rate of the runs, defined
as the ratio of runs where the revisiting errorǫ was less than0.2.

It can be seen from these experiments, that in situations with hardly
identifiable features, the performance obtained using our proposal is higher
than the one obtained by the other grid based RBPF mappers [4,5]. Al-
though the RBPF based onSMPoutperforms the standard RBPF, it achieves
significantly less accurate maps than the technique proposed in this paper.
Our approach is able to “look through gaps” of low structure until enough
structure is provided for proper localization. In this way,it can handle such
a hard environment even with less mapping particles (see figure 5 (right),
curve obtained with 20 mapping particles and 100 localization particles for
each map).
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6 Conclusions

In this paper, we presented an extension to the Rao-Blackwellized parti-
cle filter for simultaneous localization and mapping (SLAM), which sig-
nificantly improves the mapping quality and leads to accurate maps even
in environments which are poorly structured. Our approach uses a novel
proposal distribution that looksk steps “ahead in time” to yield a more
informed pose estimate for the mapping decision. We provided a mathe-
matical derivation of the approach and showed, that the weight update for
our improved proposal takes a simple form and thus is easy to integrate
into a standard RBPF framework. Our method has been implemented and
tested on real robot data sets. We furthermore compared our technique to
two state of the art mapping techniques. Experimental results suggest that
our approach yields better maps, especially in environments with sparse
features that facilitate accurate localization of particles.
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