
Towards a Navigation System for Autonomous Indoor Flying

Slawomir Grzonka Giorgio Grisetti Wolfram Burgard
{grzonka, grisetti, burgard}@informatik.uni-freiburg.de

Autonomous Systems Lab, Department of Computer Science
University of Freiburg, D-79110 Freiburg, Germany

Abstract— Recently there has been increasing research on the
development of autonomous flying vehicles. Whereas most of the
proposed approaches are suitable for outdoor operation, only
a few techniques have been designed for indoor environments.
In this paper we present a general system consisting of sensors
and algorithms which enables a small sized flying vehicle to
operate indoors. This is done by adapting techniques which
have been successfully applied on ground robots. We released
our system as open-source with the intention to provide the
community with a new framework for building applications
for indoor flying robots. We present a set of experiments to
validate our system on an open source quadrotor.

I. I NTRODUCTION

In recent years, the research community has shown an
increasing interest in autonomous aerial vehicles. Low-cost
and small-size flying platforms are becoming broadly avail-
able and some of these platforms are able to lift relatively
high payloads and provide an increasingly broad set of
basic functionalities. This enables even unexperienced pilots
to control these vehicles and allows them to be equipped
with autonomous navigation abilities. Whereas most of the
proposed approaches for autonomous flying [18], [8] focus
on systems for outdoor operation, vehicles that can au-
tonomously operate in indoor environments are envisioned to
be useful for a variety of applications including surveillance
and search and rescue. In such settings and compared to
ground vehicles, the main advantage of flying devices is their
increased mobility.

As for ground vehicles, the main task for an autonomous
flying robot consists in reaching a desired location in an
unsupervised manner, i.e. without human interference. In
the literature, this task is known asnavigation. To address
the general task of navigation one requires to tackle a
set of problems ranging from state estimation to trajectory
planning. Several effective systems for indoor and outdoor
navigation of ground vehicles are nowadays available [1],
[2]. However, we are not aware of a similar system for flying
robots.

Whereas the general principles of the navigation algo-
rithms, which have been successfully applied on ground
robots, could in principle be transferred to flying vehicles,
this transfer is not straightforward for several reasons. First,
due to their limited payload and size an indoor flying robot
cannot carry the variety of sensors which can be easily
mounted on a mobile robot. Second, the additional degrees
of freedom of the vehicle prevents the direct use of well
known and efficient 2D algorithms for navigation. Third the

Fig. 1. A quadrotor robot equipped with our navigation system during a
mission (top) and position of the vehicle estimated on-lineduring the flight
with our navigation system (bottom).

dynamics of a flying robot is substantially more complex than
that of ground-based vehicles which makes them harder to
control.

In this paper, we describe a navigation system for indoor
flying vehicles which are able to lift a payload of at least
300 grams and can supply an additional power of 7.5 watts.
Our system is a result of an integrated hardware/software
design which meets several of the challenging constraints
imposed by small size flying vehicles while preserving a
large degree of flexibility. We evaluated our system on an
open source micro quadrotor, namely the Mikrokopter [3].
Figure 1 shows the Mikrokopter equipped with our naviga-
tion system during a mission. Special care has been taken
to allow potential users to adapt the system to alternative
platforms. An open source implementation is available at
www.openquadrotor.org.

The remainder of this paper is organized as follows. In
Section II we give an overview of the related literature.
Subsequently, we discuss the requirements of a navigation
system for an indoor flying vehicle (Section III) and we
present our system in sections IV and V. We conclude with
a set of experiments which illustrate the functionalities cur-
rently implemented in our navigation system in Section VI.



II. RELATED WORK

In the last decade, flying platforms received an increas-
ing attention from the research community. Many authors
focused on the modeling and on the control of these vehi-
cles [14], [16], [17], [4], with a particular emphasis on small
helicopters.

Hoffmannet al. [13] present a model-based algorithm for
autonomous flying with their STARMAC-quadrotor. Their
system flies outdoors and utilizes GPS and IMU measure-
ments. Bouabdallahet al. [6], [7] developed a complete
model of their quadrotor platform and a set of different
control strategies. Recently [5] they discussed the require-
ments of a flying platform for indoor navigation. Ng and
colleagues [8] have developed algorithms for learning con-
trollers for autonomous helicopter navigation. Their approach
allows helicopters to perform impressive maneuvres in out-
door environments. Tournieret al. [19] used monocular vi-
sion to estimate and stabilize the current pose of a quadrotor.
Thrun et al. [18] used a remotely controlled helicopter to
learn large-scale outdoor 3D models.

There also has been some work that addressed the nav-
igation of flying vehicles in indoor environments and in
absence of GPS signal. Robertset al. [15] used ultrasound
sensors for controlling a flying vehicle in a structured testing
environment, while Heet al. [12] presented a system for
navigating a small-size quadrotor without GPS. The pose
of the vehicle is estimated by an unscented Kalman filter.
Whenever the robot has to reach a given location, a path
which ensures a good observation density is computed from
a predefined map. These highly dense observations minimize
the risk of localization failures.

In contrast to this approach, our system is suitable to be
used on less structured environments which can be effectively
represented by grid maps. We focus on adapting a set of
algorithms which have been validated on ground robots to
indoor flying platforms.

III. I NDOOR NAVIGATION OF AN AUTONOMOUSFLYING

VEHICLE

In this section, we first present the general problems in
robot navigation and discuss the additional issues introduced
by a flying platform. To autonomously reach a desired loca-
tion, a mobile robot should be able to determine a collision
free path connecting the starting and the goal locations. This
task is known aspath planning. To compute this path, a
map of the environment should be known, which often also
has to be acquired by the robot by processing the sensor
measurements obtained during an exploration mission. This
task is known assimultaneous localization and mapping
(SLAM). For most of the applications it is sufficient to
perform SLAM off-line on a recorded sequence of measure-
ments. Finally, to follow the path with a sufficient accuracy,
the robot needs to be aware of its position in the environment
at any point in time. This task is known aslocalization. A
further fundamental component of a navigation system is the
control module which aims to move the vehicle along the

trajectory, given the pose estimated by the localization given
the measurements of the on-board sensors.

Several authors proposed effective control strategies to
accurately steer ground vehicles with complex kinematics.
Most of these approaches rely on high frequency estimates
of the relative movements of the vehicle obtained by inte-
grating the wheel encoders. The localization module does
not need to run at high frequency due to the accuracy of
the odometry within short time intervals. Unfortunately an
odometry estimate is often not available on flying vehicles.
In principle, one could obtain a dead reckoning estimate
by integrating the inertial sensors. However, the limited
payload typically requires designers to use only lightweight
MEMS devices which are affected by a considerable drift.
For these reasons, one needs frequent localization updatesto
implement effective control strategies.

In outdoor scenarios one can estimate the pose of the ve-
hicle from the integration of GPS and inertial measurements.
Unfortunately, indoors GPS is not available. Furthermore,the
position accuracy obtained by a GPS would in general not
be sufficient for navigating indoors. In these contexts, the
robot is required to localize with the on-board sensors only.
To detect and avoid obstacles, these sensors should reliably
reveal the surrounding obstacles.

Due to the increased risk of damaging the flying platform
during testing, the developer should have the possibility of
intercepting at any point in time and take over the control of
the platform.

Finally, the more complex dynamics of a flying platform
poses substantially higher requirements on the accuracy of
state estimates than for typical ground-based vehicles. Asan
example, on a helicopter an error in the pitch estimate of
2◦ would cause an error in the estimate of the translational
thrust of approximatelytan(2◦) · 9.81 ≈ 0.34m

s2
. Thus, such

a relatively small error would force the helicopter to move
by 68 cm within two seconds. Whereas in outdoor scenarios
such a positioning error can often be neglected, it is not
acceptable indoors, as the free-space around the robot is
much more confined.

In sum, a navigation system for an indoor flying vehicle
should meet the following additional requirements: it should

• use sensors which can reliably detect obstacles in the
neighborhood of the robot,

• estimate the pose over time with high accuracy and at
high frequency,

• allow the user to take over control,
• provide a set of off-the-shelf basic behaviors, and
• use only lightweight on-board computers and sensors.

IV. H ARDWARE ARCHITECTURE

Figure 2 shows a Mikrokopter [3] open source quadrotor
equipped with sensors and computational devices. Our sys-
tem is similar to the one proposed by Heet al. [12] and
consists of the following components:

• a Linux-based Gumstix embedded PC with USB inter-
faces and a WiFi network card,



Fig. 2. The quadrotor platform used to evaluate the navigation system
includes a Mikrokopter (1), Hokuyo laser range finder (2), anXSens IMU
(3), a Gumstix computer (4), and a laser mirror (5).

• an Hokuyo-URG miniature laser sensor for localization
and obstacle avoidance,

• an XSens MTi-G MEMS inertial magnetic unit (IMU)
for estimating the attitude of the vehicle, and

• a mirror which is used to deflect some of the laser beams
along thez direction to measure the distance from the
ground.

The Gumstix communicates with the microcontroller on the
quad-rotor via an RS-232 interface and reads all the sensors.
Since the embedded PC runs Linux, we can develop our
algorithms off-board on standard PCs and execute them on-
board. We use the laser range finder for both measuring the
distances to the obstacles in the surrounding of the robot and
the distance from the ground. The IMU provides accurate
estimates of the roll and the pitch of the vehicle, which
are directly used for localization and mapping. All on-board
sensing and computation devices together weight about 300
grams and drain approximately 7.5 watts of power.

V. NAVIGATION SYSTEM

In this section, we present the functionalities currently
implemented in our navigation system. It is based on a
modular architecture in which the different components
communicate via the network using a publish-subscribe
mechanism. At the current state, all the device drivers and
some time-critical modules are executed on-board. The more
computing-intensive algorithms for localization and mapping
as well as the user interface are executed on a remote PC
that communicates over wireless network with the platform.

The roll φ and pitchθ measured by the IMU are typi-
cally accurate up to1◦, which is sufficient for localization
and mapping. In practice, we therefore calculate only four
of the six components of the vehicle pose vectorx =
(x y z φ θ ψ)T , namely the 3D position(x y z)T and
the yawψ.

The only sensor used for measuring the distances of
nearby objects is the laser range finder. Based on known
calibration parameters and on the attitude estimated by the
IMU, we project the endpoints of the laser in the global

frame. We address the problems of controlling and stabilizing
the platform along different partitions of the state space
separately. From the projected laser beams, we estimate the
x − y position and the yawψ of the vehicle in a 2D map.
To compensate for the lack of odometry measurements we
estimate the incremental movements by 2D scan matching.
Finally, we control the altitude of the vehicle and estimate
the height of the underlying surface by fusing the IMU
accelerometers and the distance from the ground as measured
by the laser.

In the remainder of this section, we first discuss the projec-
tion of the laser data and the estimation of the relative motion
between subsequent laser scans. Subsequently, we present
our localization, SLAM, and altitide estimation modules. We
conclude by discussing the user interaction and the control
algorithms.

A. Projection of the Laser Data

In this section, we explain how we project the laser
data in the global frame of the helicopter, given a set
of known calibration parameters. The laser range finder
measures a set of distancesbi along thex − y plane, in
its own reference frame. Each of these distances can be
represented by a homogeneous vectorbi in the 3D space
bi = (bi cosαi bi sinαi 0 1)T , where αi is the angle
of the individual beams. LetT laser

IMU be the homogeneous
transformation matrix from the IMU reference frame to the
laser frame, known from a calibration procedure and let
T IMU

world be the time dependent transformation from the world
to the IMU. Note thatT IMU

world is computed only from the
estimated pitch and roll. We can compute the position of a
laser endpointb′

i which isnot deflected by the mirror by the
following equation:

b
′

i = T IMU
world · T laser

IMU · bi (1)

Conversely, if a beam is deflected by the mirror, we obtain
the pointh′

i in the world frame by the following chain of
transformations:

h
′

i = T IMU
world · Tmirror

IMU · bi (2)

Here,Tmirror
IMU represents the transformation between the IMU

and thevirtual laser position which accounts for the effect
of the mirror.

B. Incremental Motion Estimation

Some tasks, like pose stabilization, do not require to know
the absolute location of the vehicle in the environment.
Conversely, they rely on an accurate local pose estimate. We
can estimate the relative movement of the robot between two
subsequent scans by means of a scan matching procedure.
Since the attitude is known from the IMU, this procedure
can be carried on in 2D. In our implementation, we use an
approach similar to [11]. This algorithm estimates the most
likely pose of the vehiclêxt given the previous posext−1,
the current projected laser measurementsb

′

t and the previous
oneb

′

t−1, as follows

x̂t = argmax
x:=(x,y,θ)

p(xt | xt−1,b
′

t−1,b
′

t), (3)



In our implementation we use a constant velocity model to
compute the initial guess for the search.

C. Localization

We estimate the 2D position of the robot in a given grid-
map by Monte-Carlo Localization [9]. The idea is to use a
particle filter to track the positon of the robot. Whenever
the robot travels over certain distance, we sample the next
generation of particles based from a proposal distribution
according to

x
[i]
t ∼ p(xt|x

[i]
t−1,vt,∆x) (4)

wherex[i]
t is the generated sample,x

[i]
t−1 is the previous sam-

ple, vt are the velocities computed by integrating the IMU
accelerations, and∆x is the relative movement estimated
by the scan matcher. Subsequently, we sample a new set of
particles proportional to likelihood

p(b′

t|x
[i]
t ,m) (5)

of the measurement. Hereb′

t is the current projected laser
beam,x[i]

t is the pose of the particle, andm is the known
map. Note that whenever we use a scan for computing the
odometry, the same scan is excluded from the evaluation of
the likelihood. This prevents us from reusing the same in-
formation, which ultimately would result in overly confident
estimates.

D. Simultaneous Localization and Mapping

Our mapping system addresses the SLAM problem by its
graph based formulation. A node of the graph represents a
3DoF pose of the vehicle and an edge between two nodes
models a spatial constraint between them. These spatial
constraints arise either from overlapping observations or
from odometry measurements. In our case the edges are
labeled with the relative motion between two nodes which
determine the best overlap between the scans acquired at the
locations of the nodes.

To compute the spatial configuration of the nodes which
best satisfy the constraints encoded in the edges of the graph,
we use an online variant of a stochastic gradient optimization
approach [10]. Performing this optimization on the fly allows
us to reduce the uncertainty in the pose estimate of the
robot whenever constraints between non-sequential nodes are
added.

The graph is constructed as follows: Whenever a newzt

observation is incorporated into the system, we create a new
node in the graph at the 2D positionxt = (x, y, ψ). We
then create a new edgeet−1,t between the current position
xt and the previous onext−1. This edge is labeled with
the transformation between the two posesxt ⊖ xt−1. We
determine the position of the current node with respect to
the previous one by scan matching.

Whereas this procedure significantly improves the estimate
of the trajectory, the error of the current robot pose tends
to increase due to the accumulation of small residual errors.
This effect becomes visible when the vehicle revisits already
known regions. To solve this problem, we need to re-localize

the robot in a region of the environment which has been
visited long before. To resolve these errors, (i.e., to close the
loop), we apply our scan matching technique on our current
posext and a former posexi, where i ≪ t. To detect a
potential loop closure, we identify all former poses which
are within the ellipsoid of the pose uncertainty obtained bya
Dijkstra projection of the node covariances starting from the
current robot position. If a match is found, we augment the
graph by adding a new edge betweenxi andxt labeled with
the relative transformation between the two poses computed
by matching their corresponding observations.

E. Altitude Estimation

Estimating the altitude of the vehicle in an indoor envi-
ronment means determining the global height w.r.t. a fixed
ground hg. Directly considering thez component of the
beamsh′

i deflected by the mirror would result in a correct
estimate only when the vehicle moves on a single floor
level. To relax this constraint, we simultaneously estimate
the altitude of the vehicle and the altitude of the underlying
surface with respect to an initial ground level. We assume
the altitude of the floor to be piecewise constant and we
utilize a Kalman filter for calculating the current altitudeof
the vehicle with respect to the current floor level. The state
s = (z, vz) used by the filter consists of the current height
z and the corresponding velocityvz along thez axis. The
prediction of the filter is given by the following linear system

ŝt = Ast−1 +Baz , (6)

with

A =

(

1 ∆t
0 1

)

, B =

(

0.5 · ∆t2

∆t

)

. (7)

Here, az denotes the acceleration inz-direction measured
by the IMU and∆t is the time elapsed between the current
and the last iteration. If the current measurement falls into
a confidence region of the prediction, we assume no change
in the floor level. Otherwise, the gap between the current
estimate and the measurement is assumed to be generated by
a new floor level. This floor level is constantly re-estimated
whenever the vehicle enters or leaves it.

The measurement update for the Kalman filter is given by:

st = ŝt +K · (ĥ− C · ŝt), (8)

with K being the Kalman gain,C describing the trans-
formation from the state to the measurement, andĥ =
1
Nh

∑

i

zi + hg. HereNh = |{h′

i}| denotes the number of

laser beams deflected by the mirror.

F. User Interaction

We control the flying vehicle by sending commands di-
rectly to the microcontroller which is in charge of the low
level control of the platform.

For safety reasons, the user can always control the vehicle
via a remote control (RC) and our system mixes the user and
the program commands. During our experiments, we allow
the programs to perturb the user commands by±20%. In



this way, if one of the control modules fail the user still has
the possibility of safely land the vehicle without loosing time
of pressing a button first.

G. Control

The altitude is controlled by a PID controller which
utilizes the current height estimatez and the velocityvz
respectively. The height controlCh can be summarized as

Ch = Kp · (z − z∗) +Ki · ez +Kd · vz , (9)

with Kp,Ki andKd being the constants for the P, I, and D
part respectively. Herez∗ denotes the desired height andez
denotes the integrated error.

The yaw is controlled by a proportional controller which
computes the yaw commandCψ as

Cψ = Kp · (ψ − ψ∗). (10)

Hereψ andψ∗ are the measured and desired yaw.

VI. EXPERIMENTS

In this section we present experiments for each of our
modules described above, namely localization, SLAM, alti-
tude and yaw control. During the experiments, altitude and
yaw control were executed on-board, while scan matching,
localization, SLAM, and altitude estimation were executed
off-board on a standard laptop computer.

A. Localization

Using 2D grid maps for localization enables our system
to operate with maps acquired by different kind of robots
and not necessarily built by the flying vehicle itself. In
this section we present an experiment in which we perform
global localization of the flying vehicle in a map acquired
with a ground-based robot. This robot was equipped with
a Sick Laser range scanner. The height of the scanner
was 80 cm. Throughout this experiment, the UAV kept a
height of 50 cm ± 10 cm and the particle filter algorithm
employed 5,000 particles. Given this number of particles,
our current implementation requires5ms on a Dual-Core
2 GHz laptop, while scan matching requires30ms on
average. Figure 3 shows three snapshots of the localization
process at three different points in time. The top image
depicts the initial situation, in which the particles were
separated uniformly over the free space. After approximately
1m of flight (middle image), the particles start to focus
around the true pose of the vehicle. After approximately
5m the quadrotor was globally localized (bottom image).
The blue circle highlights the current best estimate by
the filter. A full video of a localization run is available
on the Web underwww.slawomir.de/publications/
grzonka09icra/localization_alufr.avi.

B. Mapping

We also evaluated the mapping system by remotely steer-
ing the quadrotor along the corridor of our office environ-
ment. The result of our SLAM algorithm is depicted in
Figure 4. The only mismatch between the map obtained

Fig. 3. Global localization of our quadrotor in a map, previously acquired
by a ground-based platform. The blue circle highlights the current best
estimate of the particle filter. The green circle marks the true pose of the
vehicle. All potential robot poses are visualized as small black dots within
the free (white) space of the environment. Top: initial situation. Middle:
after about1 m of flight. Bottom: after approximately5 m of flight the
quadrotor is localized.

Fig. 4. Map of our office environment built with our approach and using
the quadrotor. There is a small mismatch in the very left partif we compare
this map with the one depicted in Figure 3. This mismatch originates from
glass walls all around the robot which caused an error in the pose estimate.
Still the map is sufficient to reliably localize the quadrotor.

by the quadrotor and the map generated from data gathered
with ground-based robot consists in the very left part, where
the pose estimation was inaccurate due to glass walls all
around the robot. Despite this error, the map is sufficient for
performing localization and we obtain similar results as with
the map learned by the ground-based vehicle.

C. Altitude estimation

In the following we present an experiment which validates
our multi-level altitude estimation approach. We manually
flew our vehicle in an environment with two different objects
(a chair with a height of46 cm and a table with a height of
77cm). During this flight the system flew four times over
each of the objects. When flying backwards over the objects
the vehicle passed them in the reverse order respectively.
Figure 5 shows the estimate of the altitude and the floor level
during one of the maneuvers. As can be seen from this figure,
our algorithm correctly detected the objects at corresponding



 0

 0.5

 1

 1.5

 2

 2.5

 0  5  10  15  20  25

z 
[m

]

time [s]

Height estimate
Floor level estimate
Raw measurement

Fig. 5. Estimation of the global height of the vehicle and theunderneath
floor level. Whenever the quadrotor moves over a new level, the innovation
is used to determine a level transition. The estimate of the height of each
level is refined whenever the robot re-enters that particular level.

-60

-40

-20

 0

 20

 40

 60

 80

 0  10  20  30  40  50  60  70  80

ya
w

 [d
eg

re
es

]

time [s]

Yaw

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  20  40  60  80  100  120  140

H
ei

gh
t [

m
]

time [s]

Height estimate

Fig. 6. Experiments for the autonomous stabilization of yaw(left) and
height (right). During the yaw stabilization experiment, the quadrotor was
required to rotate to0◦. From time to time, the user manually changed the
yaw . After the user released the remote control, the quadrotor autonomously
rotated back to the desired yaw angle. During the height experiment (right)
the quadrotor was required to maintain height of60 cm. The resulting error
in height was±10 cm.

levels. The estimated heights were45.5 cm ± 2.1 cm and
76.4 cm±2.4 cm. The vehicle first passes over the table and
then over the chair.

D. Altitude and Yaw Control

In this final experiment, we show the capabilities of
our yaw and altitude control modules. The yaw controller
receives as input the yaw estimate coming from the scan
matcher, while the altitude controller receives the feedback
from the off-board altitude estimator. For testing the yaw
controller we set a desired yaw of0◦ and once in a while,
we turned the helicopter via the remote control. When the
user released the rc, the vehicle always returned back to its
desired yaw with an error of±2◦. Figure 6 (left) plots the
outcome of a typical run for yaw stabilization.

In a subsequent experiment, we tested the altitude stabi-
lization. The designated altitude was60 cm. In the beginning
the vehicle was hovering over the ground. After enabling
the stabilization the vehicle started climbing to the desired
altitude. The desired height was kept by the vehicle up to an
error of±10 cm. The results are shown in Figure 6 (right).

VII. C ONCLUSIONS

In this paper, we proposed a navigation system for indoor
flying vehicles. Our current system includes major relevant
state estimation modules for localization, attitude and altitude
estimation, and SLAM. We furthermore implemented a yaw
and altitude control and an effective user interaction approach

which allows to reduce the risk of collisions. Our system
adapts a set of techniques which have been validated with
ground robots, and it can also operate with data acquired by
such platforms. We furthermore implemented some control
strategies for yaw and altitude stabilization which can be
further improved by incorporating a vehicle-specific model.
Our aim is to close the gap between systems for wheeled
robots and flying platforms. We want to provide a system
which allows the type of robot to be transparent to the user.
All modules described in this paper are made available as
open source underwww.openquadrotor.org.

VIII. A CKNOWLEDGMENTS

This work has been supported by the EC under contract
number FP6-IST-034120 Micro/Nano based Systems

REFERENCES

[1] Carmen, http://carmen.sourceforge.net/.
[2] The Player Project, http://playerstage.sourceforge.net/.
[3] Mikrokopter, http://www.mikrokopter.de/.
[4] E. Altug, J.P. Ostrowski, and R. Mahony. Control of a quadrotor

helicopter using visual feedback. InProc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2002.

[5] S. Bouabdallah, M. Becker, and R. Siegwart. Autonomous Minia-
ture Flying Robots: Coming Soon!IEEE Robotics and Automation
Magazine, 13(3), September 2007.

[6] S. Bouabdallah, P. Murrieri, and R. Siegwart. Towards Autonomous
Indoor Micro VTOL. Autonomous Robots, 18(2), March 2005.

[7] S. Bouabdallah and R. Siegwart. Full Control of a Quadrotor. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2007.

[8] A. Coates, P. Abbeel, and A.Y. Ng. Learning for Control from
Multiple Demonstrations.Proceedings of the International Conference
on Machine Learning (ICML), 2008.

[9] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlolocalization
for mobile robots. InProc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), Leuven, Belgium, 1998.

[10] G. Grisetti, D. Lodi Rizzini, C. Stachniss, E. Olson, and W. Bur-
gard. Online constraint network optimization for efficientmaximum
likelihood mapping. InProc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), Pasadena, CA, USA, 2008.

[11] D. Hähnel, D. Schulz, and W. Burgard. Map building withmo-
bile robots in populated environments. InProc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), Lausanne,
Switzerland, 2002.

[12] R. He, S. Prentice, and N. Roy. Planning in information space for
a quadrotor helicopter in a GPS-denied environment. InProc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2008.

[13] G. Hoffmann, DG Rajnarayan, SL Waslander, D. Dostal, JSJang,
and CJ Tomlin. The Stanford testbed of autonomous rotorcraft for
multi agent control (STARMAC).The 23rd Digital Avionics Systems
Conference (DASC)., 2, 2004.

[14] P. Pounds, R. Mahony, and P. Corke. Modelling and Control of a
Quad-Rotor Robot.Proceedings of the Australasian Conference on
Robotics and Automation (ACRA), 2006.

[15] J.F. Roberts, T. Stirling, J.C. Zufferey, and D. Floreano. Quadrotor
Using Minimal Sensing For Autonomous Indoor Flight.European
Micro Air Vehicle Conference and Flight Competition (EMAV), 2007.

[16] A. Tayebi and S. McGilvray. Attitude stabilization of afour-rotor
aerial robot.43rd IEEE Conference on Decision and Control (CDC),
2, 2004.

[17] A. Tayebi and S. McGilvray. Attitude stabilization of aVTOL
quadrotor aircraft. Control Systems Technology, IEEE Transactions
on, 14(3):562–571, 2006.

[18] S. Thrun, M. Diel, and D. Hahnel. Scan Alignment and 3-D Surface
Modeling with a Helicopter Platform.Field and Service Robotics
(STAR Springer Tracts in Advanced Robotics), 24:287–297, 2006.

[19] G.P. Tournier, M. Valenti, J.P. How, and E. Feron. Estimation and
Control of a Quadrotor Vehicle Using Monocular Vision and Moire
Patterns. AIAA Guidance, Navigation and Control Conference and
Exhibit, pages 21–24, 2006.


