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Abstract— We present a novel approach to build approximate
maps of structured environments utilizing human motion and
activity. Our approach uses data recorded with a data suit
which is equipped with several IMUs to detect movements of a
person and door opening and closing events. In our approach
we interpret the movements as motion constraints and door
handling events as landmark detections in a graph-based SLAM
framework. As we cannot distinguish between individual doors,
we employ a multi-hypothesis approach on top of the SLAM
system to deal with the high data-association uncertainty. As a
result, our approach is able to accurately and robustly recover
the trajectory of the person. We additionally take advantage of
the fact that people traverse free space and that doors separate
rooms to recover the geometric structure of the environment
after the graph optimization. We evaluate our approach in
several experiments carried out with different users and in
environments of different types.

I. I NTRODUCTION

The problem of localizing and tracking people has recently
received substantial attention in the robotics community as
knowledge about the current position of a person and his or
her activity allows a mobile robot to improve its services
to its users. For example, the robot can better anticipate
future actions of the person. Additionally, knowledge about
the environment and the location of people can greatly
support search and rescue missions in emergency situations.
Consider, for example, firefighters in a building enclosed
by smoke and fire. If a map of the environment can be
constructed while the firefighters are within the building, an
operator or automated system can re-route the people to the
exit in case of an emergency. Alternatively, one could use
the map of the environment to more intelligently coordinate
the actions of the rescue workers to more effectively search
the environment for potential victims and at the same time
reduce the time the rescue workers are exposed to potential
threats.

In this paper, we consider the problem of simultaneously
estimating the trajectory of a person walking through an
indoor environment and the map of the environment. Our
approach utilizes the movements of a person as well as
door handling activities to reconstruct the trajectory of the
person as well as the map of the environment. The estimation
is carried out based on data recorded with an Xsens data
suit, which is equipped with 17 inertial measurement units
(IMUs), worn by a human. This data suit records full body
postures of the person and in this way allows for a prediction
of the motion as well as for the identification of unique and
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Fig. 1. Human activities like opening a door (top left and right) are used
to detect loop closures. Given this information, the pure odometry (a) can
be corrected (b) leading to a consistent trajectory. Based on this corrected
odometry and the knowledge about the location of individual doors, an
approximate map of the environment can be calculated (c). Here,light
blue/gray squares indicate the location of individual doors. A laser based
map of the same environment is shown in (d) for comparison.

location-based activities such as door handling events. The
two top images of Figure 1 depict a person wearing the Xsens
data suit (left) and the posture estimated by the software
delivered with it (right).

We present an approach that is able to learn the motions
carried out by a human during handling a door with either
the left or the right hand. This learned motion is then used
to detect door handling events and at the same time to
estimate the location of doors while the human is walking
through the environment. We then apply a graph-based
SLAM approach that uses the odometry estimated by the
IMUs and the landmarks corresponding to the door handling
events to estimate the true path of the person. To deal with the
corresponding data association uncertainty in the landmark
determination, we apply a multi-hypothesis scheme. After
calculating the path of the person, we utilize the pose of the
estimated doors to calculate an approximate two-dimensional
map of the environment.

The paper is structured as follows. After discussing related
work we briefly describe the algorithms used for learning
and detecting the motion for handling a door. Section IV re-



views the multi-hypothesis tracker for sensors providing only
positive feedback, especially the expressions to calculate the
hypothesis probabilities. Section V describes how we detect
potential loop closure candidates and our overall system. In
Section VI we present our experimental results based on real
data recorded by different people walking inside and outside
of various buildings.

II. RELATED WORK

The problem of human indoor navigation and localization
has recently become an active research field [6], [12],
[7], [2]. A number of different sensors are employed as
well as different kind of localization techniques were used.
One of the first works in this area is the one by Lee
and Mase [6], where wearable accelerometers and other
sensors, like a digital compass and a velocity sensor, were
employed to recognize when humans perform specific ac-
tivities and switch between indoor locations. They integrate
the accelerometer data over time to localize humans within
a known environment, using higher level descriptors like
standing - 2 steps north - 40 steps east -etc. The field
of indoor navigation and localization is therefore closely
related to activity recognition using accelerometer data.[1],
[10] present approaches to predict certain low level activities
like walking , standing, running, sit-ups, and othersusing
purely extracted features from raw accelerometer data and
a variety of different learning algorithms. However, they do
not employ this information for indoor positioning. In [12],
the authors utilize an accelerometer together with an infrared
proximity sensor mounted on a pair of headphones to detect
when a human is passing through a doorway. In this work, the
authors are able to construct topological maps, where rooms
are represented by single nodes and edges represent the path
in steps between doorways. For building these maps and for
detecting loop closures, the human user has to indicate by
gesture which door was passed, i.e. giving each door a unique
identifier via the infrared proximity sensor. Within this map,
the approach also allows for localization based on Bayesian
filtering. HeadSLAM by Cinaz and Kenn [2] employs a laser
scanner together with an IMU mounted on a helmet. They
use the IMU sensor to be able to project the laser scans into
a horizontal plane in a global coordinate system and employ
a modified GMapping [5] implementation, by incorporating
a simple motion model with either a fixed speed assumption
for walking or no speed while standing.

III. M OTION TEMPLATES

Since beside the current pose of the body segments no
further information is available, we need to track those
motions in order to detect activities likeopening/closing a
door. Without this additional information we can not detect
loop closures and we can only generate an approximate map
based on the current odometry. This, however, would lead
to an inconsistent map due to small errors accumulating
over time, as shown in Figure 1(a). We therefore propose
to detect the motion used for handling a door based on
motion templates (MT) as proposed by M̈uller et al. [8].

Fig. 2. A synthetic example: Given two examples (a) and (b) of the same
motion walking. The featuresfl, fr are 1 (white) iff the left/right foot is
in front of the body and 0 otherwise. The resulting merged template is
depicted in (c). Here, gray areas indicate the value0.5, meaningdon’t care.
Intuitively, the matrix can be interpreted through the following sections:feet
parallel, right foot in front, feet parallel, left foot in front, feet parallel..

The key idea of the work by M̈uller et al. is to use simple
boolean features likeright hand is above headand create
more expressive features (motion templates) by conjunction
of the simple ones. Givenf of those features and a motion
sequence of lengthK this leads to a matrix of sizef ×K.
Note that each entry of this matrix is either 1 or 0 indicating
this feature being active or not at the specific time and
that the sequence lengthK can in general be different
for each motion sequence. Consider for example the two
featuresfl, fr with fl indicating the left foot being in front
of the body andfr active if the right foot is in front
of the body. Given this set of features, a typical walking
template for two different sequences of the same length
could look like Figure 2(a) and (b). The learned template
given these two examples is depicted in Figure 2(c). Here,
black and white correspond to 0 and 1 respectively. The gray-
shaded boxes account for the fact0.5 meaningdon’t care.
More formally, let C denote a motion class consisting of
s templates MT1 . . .MTs indicating the same motion. Each
template MTj is described by a matrix of sizef ×Kj and
a weight vectorαj with αj(k) being the weight of thek-th
column. Initially, we set all weights to1 indicating each time
step to be equally important. The learning of a class reference
template CT is done performing the following steps. First,
we select a template MTi from the classC and use it as a
referenceR. We then compute an optimal alignment of this
reference template to all other templates from the same class
utilizing Dynamic Time Warping (DTW) [9]. We alter the
current motion template MTj (which was aligned toR) in the
following way. Givenn columns of the reference template
R, namely R(k), . . . , R(k + n − 1), are matched to one
column of the current template MTj(l), this column MTj(l)
is duplicatedn times having the new weightα(l)/n. In case
one columnR(k) is matched tom columns of MTj , namely
MTj(l), . . . ,MTj(l+m−1), thesem columns are averaged
(multiplied by their weights) to one with the new weight
being the sum of these columns’ weights. This process is
calledwarping. Now, that each MTj has the same length as
the referenceR, we calculate in the second step a weighted
average template from all templates based on the columns
and their associated weights. Consequently, this step is called
averaging. In the third step, calledunwarping we stretch
and contract the resulting template so that all but eventually
the last column have a weight of1. In this case, given the
weight of a columnα(k) < 1, we merge this column with



subsequent ones until the weight is1. In case the weight
of a columnα(k) > 1, we duplicate this column into two
columns, one with weight1 and the second with weight
α(k)− 1. The process is then repeated for the next column.

We repeat the whole procedure of warping, averaging,
and unwarping for all templates MTi where every template
once is the reference templateR. After this step, we replace
all templates by the outcome of the procedure when this
template was the referenceR. Since the selection of the
referenceR induces a bias on the learned template, we
iterate the whole procedure until no major change between
the different templates exists. The outcome of this algorithm
is the class template CT. Note that due to the stepswarping,
averagingandunwarpingthe values of the resulting matrix
are now∈ [0, 1] instead of∈ {0, 1}. The final step therefore
consists of changing each entry of CT into either 0, 1 or0.5,
with 0.5 indicating the flagdon’t care. We achieve this by
selecting a thresholdγ and changing each entry to0, given
its current value< γ. The value is altered to1 if it was
> (1 − γ) and set to0.5 otherwise. In all our experiments
we setγ to 0.1. An example of such a template is depicted
in Figure 2(c).

Now, given the learned class template CT and a new
motion sequence, we can calculate a similarity between
both. Therefore, we align the motion template of the actual
sequence to CT via DTW. We obtain a score between both
templates by dividing the amount of mismatches by the
number of used cells (i.e., the cells being either 0 or 1).
Given this score is below a thresholdτ , the actual motion
sequence is said to belong to the motion class CT.

Since we are only interested in the motion used for
handling a door with either the left or the right hand we use
features based on the pose and velocity of the hands only.
Intuitively, we use a set of features describing whether the
hand is at the level of the door handle, whether it is raising,
hold still or lowered, and finally whether the hand is moving
towards the body or away from it. We learned the template
for the activity handling a door, which consists of the four
subclassesopen left, close left, open right, close right, using
10 examples from a training data set for each subclass. Based
on a second validation data set, we selected the threshold
τ = 0.25 for detecting the motion. Using this threshold, we
did not encounterfalse positiveson the validation data set.
Although the features used for detecting a door are quite
simple, we can reliably detect the timestamp when the door
handle was touched within1.5 seconds of the true timestamp
(i.e., manually labeled ground truth). Therefore, we can now
use the pose of the hand as an approximation of the location
of the door. Given this algorithm we are able to detect when
we toucheda door, but not which one. We therefore have to
take care about possible data associations, which is described
in the next section.

IV. M ULTI HYPOTHESISTRACKING

In this section we review the Multi Hypothesis Tracker
(MHT) as described by Reid [11] for sensors providing only
positive feedback. In the original paper by Reid, this type of

sensor is called a ”type 2” sensor. There, any measurement
can be either detected (assigned to an existing track), marked
as a false alarm or as a new track. Since in our particular
case the tracks are static doors, we will call them doors
in the remainder of this section, rather than tracks. As
described in Section III we select a threshold for detection
in such a way, that we do not have to model false positives.
Therefore, a measurement can only be interpreted asdetected
(when matched to an existing door) or as anew door. In
order to derive the probabilities of individual measurement
assignments we briefly reconsider the formulation of the
Multi Hypothesis Tracker for type 2 sensors.
Let Ωk

j be thej−th hypothesis at timek andΩk−1
p(j) the parent

hypothesis from whichΩk
j was derived. Let furtherΨj(k)

denote an assignment, that based on the parent hypothesis
Ωk−1

p(j) and the current measurementzk gives rise toΩk
j . The

assignment setΨj(k) associates the current measurement
either to an existing door or a new door. Given the probability
of an assignment and the probability of the parent hypothesis
Ωk−1

p(k), we can calculate the probability of each child that
has been created throughΨj(k). This calculation is done
recursively [11]:

p(Ωk
j |zk) = p(Ψj(k),Ω

k−1
p(j) |zk)

Bayes+
=

Markov
η p(zk|Ψj(k),Ω

k−1
p(j))p(Ψj(k)|Ω

k−1
p(j)) ·

p(Ωk−1
p(j)). (1)

The rightmost term on the right-hand side is the recursive
term, i.e., the probability of its parent. Factorη is a nor-
malizer. The leftmost term on the right-hand side after the
normalizerη is the measurement likelihood. We assume that
a measurementzk associated with a doorj has a Gaussian
pdf centered around the measurement predictionẑjk with
innovation covariance matrixSj

k, N (zk) := N (zk ; ẑ
j
k,S

j
k).

Here, the innovation covariance matrix is the uncertainty
of the door w.r.t. the current trajectory and is described in
Section V. We further assume the pdf of a measurement
belonging to a new door to be uniform in the observation
volumeV with probability V −1. Hence, we have

p(zk|Ψj(k),Ω
k−1
p(j)) = N (zk)

δV δ−1 , (2)

with δ being 1 if and only if the measurement has been
associated with an existing door, 0 otherwise. The central
term on the right-hand side of Equation (1) is the probability
of an assignment set,p(Ψj(k)|Ω

k−1
p(j)), which is composed of

the following two terms: the probability of detectionpdetk
j

and the probability of a new door. In our case the probability
of detection is equal to choosing one of the current candidate
doors, i.e., all doors within an uncertainty ellipsoid. There-
fore, pdetk

j
:= NC(x1:k,Ω

k−1
p(j))

−1, with NC(x1:k,Ω
k−1
p(j))

being the number of door candidates, assuming the trajectory
x1:k within the worldΩk−1

p(j) . Assuming the number of new
doors following a Poisson distribution with expected number
of doorsλnewV in the observation VolumeV we obtain

p(Ψj(k)|Ω
k−1
p(j)) = pδ

detk
j

· µ(1− δ;λnewV ) (3)



Fig. 3. A snapshot from our experiment which is described in detail in Section V. (a) The human re-enters the building through door A0. Based on the
MHT decisionnew doorandmatch with A0different hypothesis are generated (b) and (c). The probabilities of the hypothesis are depicted in (d).

whereµ(n;λV ) :=
(λV )n exp(λV )

n!
is the Poisson distri-

bution for n events given the average rate of events isλV .
Therefore, Equation (1) can be reformulated into

p(Ωk
j |zk) = p(Ψj(k),Ω

k−1
p(j) |zk)

Bayes+
=

Markov
η p(zk|Ψj(k),Ω

k−1
p(j))p(Ψj(k)|Ω

k−1
p(j)) ·

p(Ωk−1
p(j))

= ηN (zk)
δV δ−1pδ

detk
j

(λnewV )1−δ ·

exp(λnewV )(1− δ)!−1p(Ωk−1
p(j)). (4)

Observing that(1− δ)! is always 1 (sinceδ is ∈ {0, 1}) and
noting thatexp(λnewV ) can be taken into the normalizerη,
we can finally rewrite Equation (4) into

p(Ωk
j |zk) = η

(

N (zk) pdetk
j

)δ

· λ1−δ
new

· p(Ωk−1
p(j)). (5)

Up to now, we can reliably detect doors and calculate the
probability of a data association. In the next section we
address the remaining questions during our simultaneous
localization and mapping procedure, namely the detection of
possible door candidates (i.e., loop closures), the calculation
of the innovation covariance and the algorithms which were
utilized in order to correct the trajectory.

V. SIMULTANEOUS LOCALIZATION AND MAPPING

We address the simultaneous localization and mapping
problem by its graph based formulation. A node in the
graph represents a 3DoF pose of the human pose (i.e., the
center of the hip) or the 3DoF pose of a door and an
edge between two nodes models a spatial constraint between
them. These spatial constraints arise either from incremental
odometry or by detecting a previously observed door (i.e.,
by opening/closing it). In our case, the edges are labeled
with the relative motion between two nodes. To compute
the spatial configuration of the nodes which best satisfy the
constraints encoded in the edges of the graph, we utilize
stochastic gradient descent optimization [4]. Performingthis
optimization whenever a door has been detected allows us
to reduce the uncertainty in the current pose estimate.

Since we are only able to detect the fact that there
is a door, we have to track different possibilities of data
association, namely whether the current detected door is one
of the already mapped doors, or whether the door has not

been perceived before. We therefore utilize multi hypothesis
tracking as described in the previous section for all possible
outcomes. To detect a potential loop closure (i.e., recognize
a previously seen door), we identify all former doors which
are within the uncertainty ellipsoid of the current pose by
a Dijkstra projection of the node covariances starting from
the current position. The innovation covariance is directly
used for calculating the likelihood of the door as described
in Equation (5). All doors being within the 99.9% confidence
region of the current pose are considered as potential loop
closure candidates, and together with the possibility of
the current detected door being anew door, give raise to
n+ 1 different outcomes, given the number of loop closure
candidates isn. For each of these association possibilities
we create a separate graph, encode the selected constraint
and optimize it. The multi hypothesis tree therefore grows
exponentially in time and pruning of this tree is mandatory
in order to keep computational costs reasonable. In our case,
we utilize N-scan-backpruning as proposed by Cox and
Hingorani [3], which works as follows: The N-scan-back
algorithm considers an ancestor hypothesis at timek − N
and looks ahead in time to all its children at the current
time k (the leaf nodes). The probabilities of the children
are summed up and propagated to the parent node at time
k − N . Given the probabilities of the possible outcomes at
time k −N , the branch with the highest probability at time
k is maintained whereas all others are discarded. Since in
our case, a step in the MHT only arises when a door has
been detected, this is identical to localizeN steps ahead
in time (at door level). An example of this approach is
visualized in Figure 3. This example shows a snapshot of
one experiment which is described in detail in Section VI.
At the specific timet, the human walked around the builing
leaving at the top exit and entered the building through the
main entry labeled A0 in 3(a). Starting from the posez,
where the current door was detected, the uncertainty of the
pose was back-propagated utilizing Dijkstra expansion. Since
we used the same uncertainty forx and y, the resulting
ellipsoid is a circle. Note that due to the back-propagationof
the uncertainty the current pose is in the uncertainty region
of the door A0. For better visibility, only the doors being
considered as candidates are shown with their uncertainty
regions. Therefore, only two data associations are possible
in this case, namely matching the current door with A0,



Fig. 4. The first experiment contains a trajectory of about 1.6km. The raw odometry is depicted in (a), whereas the most likely trajectory based on
the detected doors is visualized in (b). Based on the corrected trajectory and the knowledge about doors, a topological map of the environment can be
generated. A skeleton of the environment is generated afterwards by enlarging the free space around the trajectory up to amaximum (c). A close-up view
of the internal part is also shown in (d). A laser map of the same enviornment is depcited in (e). A close up view of the trajectory is also shown in Figure 1.

which in this case is the correct association, or marking it
as a new door. Calculating the posterior probability of each
association leads top = 0.597 for the casenew doorand
p = 0.403 for the correct association. A maximum likelihood
approach therefore selects the wrong association. However,
as the human enters the building and opens another door,
given the previous association, different possible outcomes
are possible. Figure 3(b) depicts the situation for the case
that the previous decision wasnew door and Figure 3(c)
shows the situation for the decisionmatch with A0. Given
this sequence of doors, the full posterior of the branchmatch
with A0at timet sums up to0.6317 while the probability for
the branch fornew doorsum up to0.3683 (see Figure 3(d)).
Here, a N-scan-back of 2 would be sufficient to keep track
of the correct data association, since the MHT would decide
to keepmatch with A0at timet and discard the other branch.

The output of this approach can be used to generate an
approximate map of the environment. Assuming that doors
separate rooms, we can cut the trajectory based on the
locations of individual doors. Each segment now contains
all points belonging to one room only. Given the orientation
of a door we can merge subsequent segments which are both
connected to the same door and on the same side. In order to
seek for walls, we can furthermore enlarge the trajectory until
it touches a trajectory belonging to another room or up to a
thresholdd, which was set to2.5m in all our experiments.
An outcome of this process is shown in Figure 4(c).

VI. EXPERIMENTS

We evaluated the approach described above on differ-
ent data sets utilizing the motion of two humans in-
cluding walking inside and outside of various build-
ings. Videos of each experiments can be found on
the web (http://ais.informatik.uni-freiburg.de/projects/mvn).
They show the incremental update of the final best hy-
pothesis. Our current system, though not optimized, is able
to perform an incremental update at a rate of 10Hz on
a state-of-the-art desktop computer. The first experiment
contains a trajectory of approximately 1.6 km including 133
door actions and is depicted in Figure 4. Given the learned
motion templates, we were able to detect 125 out of the

133 doors. The pure odometry is shown in Figure 4(a). In
this experiment, the raw odometry is already good, since
we intentionally omitted walking around tables and chairs
which would result in high pose errors due to magnetic
disturbances. Therefore, a variance of 0.03 m per meter and a
N-scan-back of 7 were sufficient to correct the odometry. We
have chosenλnew = 0.04 since this value is approximately
obtained by dividing the number of doors by the area covered
through the doors. Note, that althoughλnew is dependant on
the building the human is operating in, small changes will
not alter the final outcome. However, if operating in a hotel,
λnew should be siginifcantly higher than if operating in a
warehouse. Based on the detection and tracking of individual
doors, the map was corrected as depicted in Figure 4(b).
Note that we show the maximum likelihood map of the multi
hypothesis tracking only. Given the free space traversed by
the human and the knowledge that doors separate rooms, we
can enlarge the current trajectory up to a thresholdd = 2.5m
to seek for walls, i.e., build a Voronoi diagram, based on all
poses within a room (see Figure 4(c)). The resulting map of
the inner part is depicted in Figure 4(d). For comparison we
enlarged the indoor part of this experiment and compared it
to a laser map, which is shown in Figure 4(e) and Figure 1.

The second experiment contains a trajectory of approxi-
mately 1.3 km and was obtained by walking inside a uni-
versity building containing several seminar rooms. Here, we
intentionally walked closely around rows of tables and chairs.
The magnetic disturbances led to a high pose error, as can
be seen in the raw odometry (see Figure 5(a)). We therefore
used a high variance of 0.2m per meter to make sure that the
variance is not over-confident. Although the initial odometry
differs up to 30m for the same place, we were able to correct
it as shown in Figure 5(b). The map obtained by our approach
is visualized in Figure 5(c) and a floor plan of the same
building is depicted in (d). In this experiment we detected
all 63 doors up to an accuracy of 0.5 seconds wrt. a manually
labeled ground truth.

The third experiment contains a trajectory of a person
who is about 20cm taller than the person whose motions
were used for training the templates. The parameters used
to correct this trajectory were the same as for the second



Fig. 5. The second experiment containing a trajectory of about 1.3 km: the raw trajectory is depicted in (a). We intentionally walked closely around tables
and chairs resulting in a high pose error due to magnetic disturbances. The corrected trajectory using our approach is depicted in (b). The approximate
map of the environment and a floor plan of the building are shown in (c) and (d) respectively.

Fig. 6. The third experiment containing the motion from a different person. The raw odometry and the corrected trajectory based on our approach are
depicted in (a) and (b) respectively. The calculated approximate map is shown in (c) and a floor plan of the same building is depicted in (d).

experiment. The outcome of this experiment is shown in
Figure 6. Here, 24 out of 27 doors were detected.

VII. C ONCLUSIONS

In this paper, we presented a novel approach for approx-
imate mapping of indoor environments using sensed human
motion. Our approach considers the trajectory of the person
as motion constraints and door handling events detected
using specific motion templates as landmarks within a graph-
based SLAM approach. To cope with the high data asso-
ciation uncertainty, we employ a multi-hypothesis tracking
approach. Our approach has been implemented and tested on
real data acquired by people walking inside and outside of
various buildings. The experimental results demonstrate that
our approach is able to robustly keep track of the true data
association and accurately estimate the trajectory taken by
the person. Additionally, we can create approximate maps of
the environment which accurately resemble the true layouts.
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