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Activity-based Estimation of Human Trajectories
Slawomir Grzonka Andreas Karwath Frederic Dijoux Wolfram Burgard

Abstract—We present a novel approach to incrementally de-
termine the trajectory of a person in 3D based on its motions
and activities in real-time. In our algorithm, we estimate the
motions and activities of the user given the data obtained from a
motion capture suit equipped with several inertial measurement
units (IMUs). These activities include walking up and down
staircases as well as opening and closing doors. We interpret
the first two types of activities as motion constraints and door
handling events as landmark detections in a graph-based simul-
taneous localization and mapping (SLAM) framework. Since we
cannot distinguish between individual doors, we employ a multi-
hypothesis tracking approach on top of the SLAM procedure
to deal with the high data-association uncertainty. As a result,
we are able to accurately and robustly recover the trajectory
of the person. Additionally we present an algorithm to build
approximate geometrical and the topological maps based on the
estimated trajectory and detected activities. We evaluate our
approach in practical experiments carried out with different
subjects and in various environments.

Index Terms—Activity Recognition, SLAM, Motion Capture

I. I NTRODUCTION

T HE problem of localizing and tracking people has re-
cently received substantial attention in the robotics com-

munity as knowledge about the current position of its users can
help a robot to improve its services. Especially in emergency
situations, like after earthquakes or during fire fighting, the
knowledge about the location of people can greatly support
search and rescue missions. Consider, for example, firefighters
in a building enclosed by smoke and fire. If a map of the
environment can be constructed while the firefighters are
within the building, an operator or automated system can
re-route the people to the exit in case of an emergency.
Alternatively, one can use the map of the environment to more
intelligently coordinate the actions of the rescue workersto
more effectively search the environment for potential victims
and at the same time reduce the time the rescue workers are
exposed to potential threats and hazards.

In this paper, we present an approach to recover human
trajectories from data obtained with an XSens MVN data
suit [1] by treating activities as landmarks. We employ this
information in a graph-based SLAM approach to calculate
the most likely trajectory of the human. The MVN data suit
records full body postures of a subject, by using a set of
inertial measurement units (IMUs) and a biomechanical human
model. Figure 1(top) depicts typical data obtained from the
data suit when a person opens a door, whereas the bottom
left plot depicts the raw odometry estimated by the suit.
The outcome of our proposed approach is depicted in the
bottom right plot of Figure 1. To correct for odometry errors
our approach applies supervised classification for different
types of activities such as stair climbing and door handling.
It then utilizes the learned classifiers to detect doors and

Fig. 1. Top: Typical data obtained from the Xsens MVN data suit when a
subject opens a door. Our approach uses such motions to detectdoor handling
events that are then utilized as landmarks in a graph-based formulation of the
SLAM problem for recovering the full trajectory of the person. Bottom: The
raw odometry data provided by the data suit (left) and the corrected trajectory
after applying our approach (right).

stairs and applies a graph-based formulation of the SLAM
problem to recover the full 3D trajectory of the person. In this
formulation, the odometry estimated by the data suit and the
estimated heights of the stairs are regarded as links between
the landmarks which are constituted of the detected doors. To
deal with the high data association uncertainty in the landmark
detection, our algorithm applies a multi-hypothesis tracking
scheme. After calculating the path of the person, our algorithm
renders a map containing the individual stairs, the estimated
doors, and approximate locations of walls. The work presented
here extends our previous work [15] by detecting additional
activities and extending our approach from 2D towards 3D
trajectory reconstruction evaluated by a new set of large indoor
experiments carried out in different environments.

The remainder of this paper is structured as follows. After
discussing related work in the next section we present our
approaches for learning door handling events and detect-
ing stairs in Section III. Section IV introduces the multi-
hypothesis tracking algorithm for sensors providing only
positive feedback and especially the expressions needed to
calculate the probabilities of individual hypotheses. Subse-
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quently, Section V describes how we detect potential loop
closure candidates. This is followed by the description of our
overall system in Section VI. In Section VII we present our
experimental results based on real data recorded with subjects
walking inside of various buildings and covering multiple floor
levels. We furthermore present our results on approximate
mapping and compare the estimated maps with floor plans
of the same building.

II. RELATED WORK

The problem of tracking the correct data association [16]
as well as human indoor navigation and localization has
recently become an active research field [5], [17], [18],
[24]. A number of different sensors have been employed
as well as different kinds of localization techniques have
been used. One of the first approaches in this area has
been proposed by Lee and Mase [17], who employ wearable
accelerometers and other sensors, like a digital compass and
a velocity sensor, to recognize when humans perform specific
activities and change their locations in indoor environments.
They integrate the accelerometer data over time and estimate
the position of humans in a known environment based on
higher level descriptors such asstanding, 2 steps north, or
40 steps eastetc. The field of human indoor navigation and
localization is therefore closely related to activity recognition
using accelerometer data. Bao and Intille, [3] as well as
Ravi et al. [21] have presented approaches to predict certain
low level activities likewalking, standing, running, sit-ups,
and others using features from raw accelerometer data and a
variety of different learning algorithms. However, they donot
employ this information for indoor positioning. Schindleret
al. [24] utilize an accelerometer together with an infrared
proximity sensor mounted on a pair of headphones to detect
when a human is passing through a doorway. In this work,
the authors are able to construct topological maps, where
rooms are represented by single nodes and edges represent
the path in steps between doorways. For building these maps
and for detecting loop closures, the user has to indicate by
gesture which door was passed, i.e., giving each door a unique
identifier via the infrared proximity sensor. They furthermore
apply a Bayesian filtering scheme to localize the person within
the resulting map.

In recent years, low-cost inertial measurements units (IMU)
based on MEMS have become available and many researchers
use such sensors for pedestrian localization, either aloneor in
combination with other sensors. Foxlinet al. [11] incorporate
a zero velocity update allowing to estimate the users trajectory
using an extended Kalman filter. Borensteinet al. [4] use a
highly precise IMU also combined with zero velocity updates
and obtain an accurate dead reckoning odometry. Woodmanet
al. [27] as well as Wanget al. [26] include additional informa-
tion using WiFi. Both research groups employ a particle filter
to track possible trajectories and calculate the weights ofthe
particles based on the WiFi signal strength. Fischeret al. [10]
discuss the possibility of using ultrasound sensors to reduce the
error introduced by the MEMS sensors and present simulation
results. Felizet al. [8] utilize a neural network to estimate the

step size using a singe IMU and thus estimate the odometry.
Coley et al. [6] use wavelets to detect steps using gyroscopes
only. In the work of Tothet al. [25], a prototype for pedestrian
dead-reckoning and their general concept of sensor fusion is
discussed. The HeadSLAM approach by Cinaz and Kenn [5]
employs a laser scanner together with an IMU mounted on a
helmet. They use the IMU sensor to project the laser scans
into a horizontal plane in a global coordinate system and
employ a variant of GMapping [14] for mapping. In particular,
they incorporate a simplified motion model with two modes.
Whereas the first mode corresponds to the activity walking
and assumes constant velocity, the second mode represents
the situation that the person is standing still and assumes zero
speed. An overview over existing techniques can also be found
in [9].

III. F EATURE DETECTION

The MVN software filters the raw data of the IMU’s in the
data suit and estimates an odometry of the body segments
consisting of the (filtered) pose, velocity, and acceleration.
However, we need to keep track of other specific events or
features. Without this additional information we cannot detect
loop closures and thus cannot correct the raw odometry from
the data suit. A dead reckoning estimate of the trajectory,
however, leads to an inconsistent map due to the accumulation
of small errors over time as shown in Figure 1(bottom left).

In this work presented here, we restrict ourselves to struc-
tured environments such as office buildings. To allow us to
correct the odometry within such buildings, we propose to
use information about human activities as landmarks. We
extract two different types of activities:opening or closing of
a door andwalking up or going down a stair. We use motion
templates [15] to detect door opening or closing events and a
neural network to detect steps. In the next sections, we will
briefly describe both approaches.

A. Motion Templates

To learn the typical motion used for handling a door we
use motion templates (MT) as proposed by M̈uller et al. [19].
The key idea of this work is to use simple Boolean features
like right hand is above headand to create more expressive
features (motion templates) by combining the simple ones.
Givenf of those features and a motion sequence of lengthK

this leads to a matrix of sizef ×K. Note that each entry of
this matrix is either 1 or 0 indicating this feature being active
or not at the specific time and that the sequence lengthK can
in general be different for each motion sequence. Consider for
example the two featuresfl, fr with fl indicating the left foot
being in front of the body andfr being 1 if and only if the
right foot is in front of the body. Given this set of features,
a typical walking template for two different sequences of the
same length could look like Figure 2(a) and (b). The learned
template given these two examples is depicted in Figure 2(c).
Here, black and white correspond to 0 and 1 respectively. The
gray-shaded boxes account for the fact0.5 meaningdon’t care.
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Fig. 2. A synthetic example: Given two examples (a) and (b) of the same
motion walking. The featuresfl, fr are 1 (white) iff the left/right foot is in
front of the body and 0 otherwise. The resulting merged template is depicted in
(c). Here, gray areas indicate the value0.5, meaningdon’t care. Intuitively,
the matrix can be interpreted through the following sections: feet parallel,
right foot in front, feet parallel, left foot in front, feet parallel.

The algorithm for learning a motion template for a single
activity A can be briefly summarized as follows:

1) calculate the motion templates for all examples ofA
2) take one of the motion templates, called the reference

template, and align all remaining to this one using
dynamic time warping [20]. This procedure ensures that
all other templates have now the same length as the
reference template.

3) compute a new template as the average of all.
4) repeat the previous two steps for each motion template

being once the reference template
5) replace the training data by the outcome of the computed

templates
6) repeat the whole process until no major difference

between the templates exists.

Note that the averaging of the templates include more com-
plicated steps, but we refer to the original work of Müller et
al. [19] for more details about learning a motion template.

Given the learned template for each activity (which we
call a class template) and a new motion sequence, we can
calculate a similarity between both. To do so, we compute a
motion template of the actual sequence and align it to each
class template using dynamic time warping. This allow us to
compute a distance for each pair of templates. If this distance
is below a thresholdτ ∈ [0, 1] the actual motion sequence is
said to belong to the same motion class as the class template.
Intuitively, this value reflects the percentage of featureswhich
do not match the learned template.

Since we are only interested in the motion used for handling
(i.e., opening or closing) a door with either the left or the
right hand we use features based on the pose and velocity
of the hands only. More precisely, we use a set of features
describing whether the hand is at the level of the door handle,
whether it is raising, hold still or lowered, and finally whether
the hand is moving towards the body or away from it. We
learned the template for the activityhandling a door, which
consists of the four subclassesopen left, close left, open right,
close right, using 10 examples from a training data set for each
subclass. Based on a second validation data set, we selected
the thresholdτ = 0.25 for detecting the motion. Using this
threshold, we did not encounter anyfalse positiveson the
validation data set. Within this process, we used data recorded
by three subjects. The motion of two subjects was used for
training, whereas the motion of the third one was used for
validation. Although the features used for detecting a door

are not very sophisticated, we can reliably detect the pointin
time when the door handle was touched within1.5 seconds
of the true event (we evaluated this using manually labeled
ground truth). Therefore, we can use the pose of the hand as
an approximation of the location of the door.

B. Stair detection

To be able to reconstruct 3D trajectories within buildings,
it is inevitable to detect vertical movements of the user. Due
to the high uncertainty in the height estimate of IMUs, the
manufacturer’s software assumes an environment consisting
of a single floor. When walking up or down a staircase,
the software “snaps” the human to the ground. Therefore,
one needs additional means for determining changes in the
z coordinate. In this paper, we achieve this by identifying
stair stepping motions carried out whenever the user walks
up or down staircases. In principle, we could have employed
the same motion template approach as for the door handling
events. However, in practical experiments we found that during
typical stair-climbing people need approximately0.5 seconds
for each stair so that the motion templates described above,
which detect doors with an accuracy of1.5 seconds, were not
accurate enough to exactly determine the point in time when
the foot is placed onto a stair. However, increasing the time
resolution of the MT accordingly leads to a high computational
complexity due to the dynamic time warping. We therefore
developed an efficient and temporally substantially more ac-
curate classifier for detecting the individual stairs basedon
neural networks.

The goal of the following approach is to detectstair
events, consisting of two subclasses namelystair up andstair
down. To achieve this, our method employs a sliding window
consisting of5 frames that correspond to40.7 milliseconds.
Within this window, we extract features from the suit’s data.
In more detail, we use the relative position of the feet and the
toes as well as the minimum and maximum acceleration. We
trained the neural network using manually labeled trainingdata
employing SNNS [28] and RProp [23] as learning functions.
The training data was recorded by a person walking up and
down two different staircases twice and contains a total of 56
stair events, covering slightly more than two minutes. Once
our predictor has detected a stair event, we estimate the height
of each stair, by calculating the difference between the two
feet along thez-axis given the pose estimates obtained from
the data suit. Using this approach, we are able to detect step
events with an error up to 1.5 frames (≈ 12ms) with respect
to a manually measured ground truth.

Up to now, we are able to detect when the user climbed up
or down a staircase and employing the motion templates, we
are able to detect when the user toucheda door. However, we
do not possess any information of which door was handled. We
therefore have to take care about possible data associations,
which we deal with by employing a multi-hypothesis-tracker
as described in the next section.

IV. M ULTI HYPOTHESISTRACKING

In this section we review the Multi Hypothesis Tracker
(MHT) as described by Reid [22] for sensors providing only
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positive feedback. If the user handles a door, we gain informa-
tion about this door only and not about any other door in the
users neighborhood, which is different from tracking multiple
targets with a laser scanner for example. In the original paper
by Reid, sensors providing only this kind of positive feedback
are called type 2 sensors. There, any measurement can be
either detected (assigned to an existing track), marked as a
false alarm, or be a new track. Since in our particular case the
tracks are static doors, we will call them doors in the remainder
of this section, rather than tracks. As described in SectionIII-A
we select a threshold for detection in such a way, that we do
not have to model false positives. Therefore, a measurement
can only be interpreted asdetected(when matched to an
existing door) or as anew door. In the remainder of this
section we derive the probabilities of individual measurement
assignments.
Let Ωk

j be thej−th hypothesis at timek andΩk−1
p(j) the parent

hypothesis from whichΩk
j was derived. Let furtherΨj(k)

denote an assignment, that based on the parent hypothesis
Ωk−1

p(j) and the current measurementzk gives rise toΩk
j .

The assignment setΨj(k) associates the current measurement
either to an existing door or a new door. Given the probability
of an assignment and the probability of the parent hypothesis
Ωk−1

p(k), we can calculate the probability of each child that has
been created throughΨj(k). This calculation is carried out
recursively [22]:

p(Ωk
j |zk) = p(Ψj(k),Ω

k−1
p(j) |zk)

Bayes+
=

Markov
η p(zk|Ψj(k),Ω

k−1
p(j))p(Ψj(k)|Ω

k−1
p(j)) ·

p(Ωk−1
p(j)), (1)

with p(Ωk−1
p(j)) being the recursive term, i.e., the probability of

its parent. Here, the factorη is a normalizer. The leftmost term
on the right-hand side after the normalizer is the measurement
likelihood. We assume that a measurementzk associated with
a doorj has a Gaussian pdf centered around the measurement
predictionẑjk with innovation covariance matrixSj

k, N (zk) :=
N (zk ; ẑ

j
k,S

j
k). Here, the innovation covariance matrix is the

uncertainty of the door with respect to the current trajectory
and is described in Section V. We further assume the pdf of
a measurement belonging to a new door to be uniform in the
observation volumeV with probabilityV −1. Hence, we have

p(zk|Ψj(k),Ω
k−1
p(j)) = N (zk)

δV δ−1 , (2)

with δ being 1 if and only if the measurement has been
associated with an existing door and 0 otherwise. The central
term on the right-hand side of Equation (1) is the probability
of an assignment set,p(Ψj(k)|Ω

k−1
p(j)), which is composed of

the following two terms: the probability of detectionpdetk
j

and
the probability of a new door. In our case the probability of
a detection is equal to choosing one of the current candidate
doors, i.e., all doors within an uncertainty ellipsoid. Therefore,

pdetk
j

:= NC(x1:k,Ω
k−1
p(j))

−1, with (3)

NC(x1:k,Ω
k−1
p(j)) being the number of door candidates, assum-

ing the trajectoryx1:k within the worldΩk−1
p(j) . Assuming the

number of new doors following a Poisson distribution with
expected number of doorsλnew in the observation VolumeV
we obtain

p(Ψj(k)|Ω
k−1
p(j)) = pδ

detk
j

· µ(1− δ;λnewV ) (4)

whereµ(n;λV ) :=
(λV )n exp(−λV )

n!
is the Poisson distri-

bution forn events given the average rate of events isλ in the
volumeV . Therefore, Equation (1) can be reformulated as

p(Ωk
j |zk) = p(Ψj(k),Ω

k−1
p(j) |zk)

Bayes+
=

Markov
η p(zk|Ψj(k),Ω

k−1
p(j))p(Ψj(k)|Ω

k−1
p(j)) ·

p(Ωk−1
p(j))

= ηN (zk)
δV δ−1pδ

detk
j

(λnewV )1−δ ·

exp(−λnewV )(1− δ)!−1p(Ωk−1
p(j)). (5)

Observing that(1− δ)! is always 1 (sinceδ is ∈ {0, 1}) and
noting thatexp(−λnewV ) can be taken into the normalizerη,
we can finally rewrite Equation (5) as

p(Ωk
j |zk) = η

(

N (zk) pdetk
j

)δ

· λ1−δ
new · p(Ωk−1

p(j)). (6)

Up to now, we can detect doors and stair steps and calculate
the probability of a data association. In the next section we
address the remaining questions during our SLAM procedure,
namely the detection of possible door candidates (i.e., loop
closures), the calculation of the innovation covariance, and
the algorithms which are utilized to correct the trajectory.

V. SIMULTANEOUS LOCALIZATION AND MAPPING

We address the simultaneous localization and mapping
problem by its graph based formulation. A node in the graph
represents either a pose of the human (center of the hip) or a
location of a door (pose of the hand which was handling the
door) whereas an edge between two nodes models a spatial
constraint between them. These spatial constraints arise either
from incremental odometry, potentially adjusted according
to the stair heights estimated from stair climbing events,
or by closing a loop which corresponds to establish a data
association between two doors. Thus, the edges are labeled
with the relative motion between two nodes. To compute
the spatial configuration of the nodes best satisfying the
constraints encoded in the edges of the graph, we utilize a
variant of stochastic gradient descent optimization [12],[13].
Since the door handling activities give us no information
about roll and pitch, we restrict our optimization problem to
(x, y, z, θ), with θ being the yaw. This allow us to adapt the
fast 2D ((x, y, θ)) version of the tree-based network optimizer
(Toro [2]) towards(x, y, z, θ) optimization and still maintain
its computational properties. By repeatedly performing this
optimization whenever a new door has been detected and a
new data association has been established we can incremen-
tally reduce the uncertainty in the current pose estimate while
processing the data.

Since we are only able to detect the fact that there is
a door, we have to track different possibilities of data as-
sociation, namely whether the current detected door is one
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Fig. 3. A snapshot from one of our experiments. (a) The human re-enters the building through door A0. Based on the MHT decision new doorandmatch
with A0 different hypothesis are generated (b) and (c). The probabilities of the hypothesis are depicted in (d).

of the already mapped doors or whether the door has not
been perceived before. As already mentioned above, we utilize
multi-hypothesis tracking for keeping track of all possible
outcomes. To detect a potential loop closure (i.e., recognize
a previously seen door), we identify all formerly detected
doors within the uncertainty ellipsoid of the current pose by
a Dijkstra projection of the node covariances starting from
the current position. The innovation covariance is directly
used for calculating the likelihood of the door as described
in Equation (6). All doors being within the 99% confidence
region of the current pose are considered as potential loop
closure candidates, and together with the possibility of the
current detected door being anew door, lead ton+1 different
outcomes, given the number of loop closure candidates isn.

For each of these association possibilities we create a sepa-
rate graph, encode the selected constraint and optimize it.The
multi-hypothesis tree therefore grows exponentially in time
and pruning of this tree is mandatory to keep computational
costs reasonable. In our case, we utilizeN-scan-backpruning
as proposed by Cox and Hingorani [7], which works as
follows: it considers an ancestor hypothesis at timek−N and
looks ahead in time to all its children at the current timek

(the leaf nodes). The probabilities of the children are summed
up and propagated to the parent node at timek − N . Given
the probabilities of the possible outcomes at timek −N , the
branch with the highest probability at timek is maintained
whereas all others are discarded. Since in our case, a step in
the MHT only arises when a door has been detected, this is
identical to localizeN steps ahead in time (at door level). In
our implementation, we do not count a data association (step
in time) if the only child of each hypothesis is the association
with a new dooror if the trajectory between two subsequent
handling events was smaller than 1 m, reflecting the immediate
closing of the same door after passing it. Thus we ensure that
at least one combination ofN data associations in time reflect
an N step localization among different and already mapped
doors.

An example of the N-scan-back MHT algorithm is visu-
alized in Figure 3. This example is a snapshot from one of
our experiments which is described in detail in our previous
work [15]. At the specific timet, the human walked around
the building leaving at the top exit and entered the building
through the main entry labeled A0 in 3(a). Starting from the
posez, where the current door was detected, the uncertainty

of the pose was back-propagated utilizing Dijkstra expansion.
Since we used the same uncertainty forx andy, the resulting
ellipsoid is a circle. Note that due to the back-propagationof
the uncertainty the current pose is in the uncertainty region
of the door A0. For better visibility, only the doors being
considered as candidates are shown with their uncertainty
regions. Therefore, only two data associations are possible in
this case, namely matching the current door with A0, which
in this case is the correct association, or marking it as a new
door. Calculating the posterior probability of each association
leads top = 0.597 for the casenew doorand p = 0.403 for
the correct association. Note that in this situation, a maximum
likelihood approach selects the wrong association. However,
as the human enters the building and opens another door,
given the previous association, different possible outcomes are
possible. Figure 3(b) depicts the situation for the case that the
previous decision wasnew doorand Figure 3(c) shows the
situation for the decisionmatch with A0. Given this sequence
of doors, the full posterior of the branchmatch with A0at time
t sums up to0.6317 while the probability for the branch for
new doorsum up to0.3683 (see Figure 3(d)). Here, a N-scan-
back of 2 would be sufficient to keep track of the correct data
association, since the MHT can decide to keepmatch with A0
at time t and discard the other branch.

The output of this approach can be used to generate an
approximate geometrical as well as a topological map of the
environment. In short, we build a modified Voronoi diagram
based on the trajectory segments belonging to the same room.
By assuming that doors separate rooms, we cut the trajectory
based on the locations of individual doors. Thus, even when
a door was not always detected or the user moved through an
open door, the trajectory is segmented into different rooms,
given the specific door was detected at least once. Given the
orientation of the door, we merge subsequent segments which
are both connected to the same door and on the same side (i.e.,
we cluster the segments according to which room they belong
to). In order to seek for walls, we incrementally enlarge each
cluster’s trajectory until it touches a trajectory belonging to
another room or up to a distanced, which was set to 1.5 m
in all experiments. Since we segmented the trajectory with
respect to different rooms, we also obtain a topological map
of the environment at the same time. Typical outcomes of this
process are shown in Section VII-B.
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VI. OVERALL SYSTEM

Our approach is summarized by the pseudo-code in Algo-
rithm 1. Given the odometry up to the current point in timet,
x1:t, the N-scan-back sizen and the current multi-hypothesis
tree Ω1:k = {Ω1, . . . ,Ωk}, with Ωj = {Ωj

j1
, . . . ,Ωj

jn
}, the

algorithm works as follows. Note thatk is the current depth of
the hypothesis tree and is increased only if there is ambiguity
in the data association of a door. First, we add a node (current
pose of the hip) and an edge into each graph of the current
hypothesis at the current depthk and detect the current activ-
ities in line 1-3. This is performed by using motion templates
for detecting door handling events and neural networks for
detecting step activities as described in Section III. If an
activity is detected and this activity is a stair step, we augment
the odometry information of the current added nodes with
our height estimate (lines 4-8). If a currently detected activity
is a door handling event, we calculate for each hypothesis
Ωk

j at depthk potential loop closure candidatesCk
j using

a Dijkstra expansion starting from the corresponding current
pose. If for all hypothesis no potential loop closure candidate
exists, each of the current hypothesis can only include anew
door as described by lines 17-20. Note that in this case it
is obsolete to adjust the hypothesis probabilities since all
probabilities are multiplied by the same factorλnew which
would be normalized out later on. In the case that at least one
hypothesis at depthk has one potential loop closure candidate
we create a new set of children for all hypothesis (lines 22-23).
A new dooris added to one child of each hypothesis whereas
the graphs of the remaining children are augmented with the
loop closure edges and the probabilities of the individual
hypothesis are calculated according to Equation 6 (lines 24-
31). Subsequently, we normalize the probabilities and perform
the N-scan-back pruning as described in the previous section.
Finally, we optimize the remaining hypotheses at depthk+1
and calculate the approximate map of the environment as
specified by lines 32-36.

VII. E XPERIMENTS

The following sections show the results obtained with our
currently implemented system. First, we will present our
results on 3D and 2D trajectory reconstruction based on human
motion and activity and evaluate the error of our estimated
door locations wrt. a manually measured ground truth. We
calculate the error by first estimating the best transformation
between the estimated map and the ground truth throughout all
floors. This transformation is then used to calculate the error
(mean and standard deviation) between the estimated door lo-
cations and the ground truth map. In Section VII-B, we finally
present our results on approximate mapping. Videos of the ex-
periments can be found on the Web (http://ais.informatik.uni-
freiburg.de/projects/mvn) showing the incremental update of
the final best hypothesis. Our current system, though not
optimized, is able to perform an incremental update at a rate
of 10Hz on an Intel i7 1.7 GHz laptop.

A. 3D Trajectory Estimation

We evaluated the approach described above on different data
sets in which the user walked through buildings containing

Algorithm 1 Human Indoor Mapping
Require: measurements up to current timet: x1:t

Require: N-scan-back size:n
Require: hypothesis tree:Ω1:k

1: addNodeToEachHypothesis(xt)
2: addEdgeToEachHypothesis(xt−1,xt)
3: A = detectCurrentActivities(x1:t)
4: if stepActivity∈ A then
5: xt = estimateHeight(xt)
6: updateLastAddedNodeInEachHypothesis(xt)
7: updateLastAddedEdgeInEachHypothesis(xt−1,xt)
8: end if
9: if doorActivity ∈ A then

10: da = doorActivity // for better readability
11: kn = |Ωk| // number of hypothesis at depthk
12: v = 0 // number of all loop closure candidates
13: for j = 1, . . . , kn do
14: Ck

j = calculateLoopClosureCandidates(Ωk
j )

15: v = v + |Ck
j |

16: end for
// no candidates→ new doorfor all hypothesis

17: if v == 0 then
18: addDoorNodeToEachHypothesis(da.hand(xt))
19: addEdgeToEachHypothesis(xt−1, da.hand(xt))
20: else
21: for j = 1, . . . , kn do
22: vj = |Ck

j | // current number of candidates
23: {Ωk+1

1 , . . . ,Ωk+1
vj+1} = createChildren(Ωk

j , vj + 1)
// new door

24: Ωk+1
vj+1.addDoorNode(da.hand(xt))

25: Ωk+1
vj+1.addEdge(xt−1, da.hand(xt))

26: calculateProbability(Ωk+1
vj+1)

// loop closures
27: for i = 1, . . . , vj do
28: Ωk+1

i .addLoopClosureEdges(Ck
j (i))

29: calculateProbability(Ωk+1
i )

30: end for
31: end for
32: k = k + 1
33: normalizeProbabilities(Ωk+1)
34: nScanBackPruning(Ωk+1−n:k+1, n)
35: optimizeEachHypothesis(Ωk+1, numIterations)
36: calculateApproximateMapForEachHypothesis(Ωk+1)
37: end if
38: end if

several floor levels. All experiments were performed using
an N-scan-back of 3 andλnew = 0.03, which approximately
is the number of doors relative to the area covered by the
building. In general,λnew depends on the type of building. For
example, in a hotelλnew should be significantly higher than
in a warehouse. However, we found that small changes to this
parameter do not lead to substantially different results. Thus,
the remaining free parameter is the covariance matrix for the
Dijkstra expansion. Recall that we have no information about
the current magnetic field. The covariance matrix, therefore,
also reflects the magnetic disturbances present in the building,
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Fig. 4. Outcome of the first experiment: (a) the raw trajectory estimated by the data suit. The estimation of the ground level and the first floor are shown
in (b) and (c), and aligned to a floor plan in (d) and (e) respectively. The raw odometry combined with the raw detection of stairs and doors is shown in (f).
A 3d plot of the building estimated by our approach is shown in (g).

since high magnetic field errors result in a high pose error
estimation from the data suit. Note, that all plots of single
levels of the buildings given in this section also contain all
points up to the middle of the next and the previous floor
respectively. Furthermore, all distances are given in meters.
Please also note that the raw data (without the step detection)
contains no information along thez-axis wrt. different floors,
i.e., only a single floor level is present.

The first experiment contains a trajectory of approximately
2.2 km including 222 door handling actions and is depicted
in Figure 4. The building has three floor levels, namely the
basement, an intermediate floor level containing the main
entrance, and the first floor. Since the intermediate level
contains only the main entrance door, we omitted to plot
this floor separately for better readability. We used a variance
of 0.03m per meter inx as well as iny and a variance
of 0.1m per meter along thez axis. Our approach reliably
detected 215 out of the 222 door handling events with one
false alarm. The average error of the estimated door locations
is 0.31m±0.17m wrt. a manually measured ground truth. We
detected 106 out of 116 stairs, missing 7 stairs down and 3 stair
up and had one false alarm. The difference in the calculated
stair size between up and down is approximately 3.5 cm. The
raw odometry is depicted in Figure 4(a). Although no floor
level information is present in the raw data, the raw odometry
trajectory is already quite accurate. This results from thefact

that the building contains less metal structure compared to
modern buildings so that we obtained only small magnetic
disturbances. As can be seen in the next experiments, larger
disturbances typically lead to a high pose error. The raw
odometry including our step and door detection is plotted in
Figure 4(f). The maximum-likelihood map estimated by our
approach is depicted in Figure 4(g). For better comparison,
we also segmented the trajectory for different floor levels and
compare them to floor plans generated by the architect of the
same building as shown in Figure 4(b-e).

The data for the second experiment was recorded in a typical
university building containing several floors and including
small seminar rooms as well as big lecture halls and a small
library. The trajectory is approximately 2.85 km long covering
three floor levels. This experiment is challenging due to two
reasons. First, the metal disturbances rising from the metal
structure of the building itself and from walking closely to
chairs and tables lead to a high pose error as can be seen
in the raw data depicted in Figure 5(a). Second, the first
and the second floor are nearly identical on one side of
the building which results in many potential loop closure
candidates. Compared to the first experiment, this building
contains in total five different staircases. Two staircasesare
present in each of the two lecture halls (see Figure 5(f) left
part) connecting the first and the second floor, whereas the
main staircase connects all three floors. In this experiment,
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Fig. 5. The second experiment was performed in a university building. The raw data is depicted in (a), whereas the differentfloor levels plotted on top of
the floor-plans of the building are shown in (b)-(d). The raw trajectory including the uncorrected stairs and doors is depicted in (e). The maximum likelihood
estimate of the whole building using our approach is shown in (f).

we used a variance of0.1m per meter in all directions,
i.e., x, y, and z. The raw odometry trajectory including the
steps detected by our algorithm is plotted in Figure 5(e).
The maximum-likelihood result of our approach compared
to the floor plans of this building are shown in Figure 5(b)-
(d). Finally, the maximum likelihood estimation of the whole
building is depicted in Figure 5(f). In this experiment we
detected 175 out of 178 door handling events with an average
error of1m±0.41m. We also had one false alarm at the third
floor level which originates from moving a chair away in the
library which was blocking the user’s path. Regarding the stair
detection we missed 62 out of 473 stairs (42 stairs up and 20
stairs down). The average difference between the calculated
stair heights is 1.3 cm.

The third experiment was recorded in a university building
consisting of five floors and containing a substantial amountof
metal structures. Here, the magnetic disturbances did not even
allow for a proper initial calibration of the data suit. Thishad a
severe influence on the estimated raw odometry trajectory. We
intentionally included this experiment to show the robustness
of the current approach even in the context of substantial
disturbances. Although our assumption about a Gaussian error
on all degrees of freedom is highly violated (for example, one
staircase is rotated by 45 degrees in the raw odometry data) we
still were able to approximately recover the true trajectory but
with one misaligned door (see Figure 6(b)). This door, which
is marked by an arrow in the figure, is wrongly labeled as a
new door. As in the previous experiment, we used a innovation
of 0.1m per meter along all axis. The total distance traveled

in this building is approximately 1.46 km and contains 135
door handling events from which our approach detected 126. It
furthermore resulted in one false alarm in the lower left corner
of the first floor. The least mean square error of our estimated
door locations is0.67m±0.40m. Regarding the step detection,
we were able to detect 271 out of 280 stairs, missing 7 stairs up
and 2 stairs down. The calculated stair size for the classstair
down was in average 4cm higher than for the classstair up.
The raw trajectory is depicted in Figure 6(a) and (g) together
with the raw steps and doors detected by our algorithm.
The resulting map estimated by our approach is depicted in
Figure 6 (h). The individual floors plotted on top of the floor
plan are shown in Figure 6(b)-(f). Note that the estimate of
the first floor is slightly suboptimal due to the severe error in
the raw data. Since some of the doors were locked, we were
not able to enter all rooms. The corresponding doors appear
to be not connected to the trajectory in Figure 6(c)-(f). This
effect originates from the fact, that the user was not able to
pass through the corresponding doorways, i.e., door positions
are obtained by the hand pose handling the door whereas the
trajectory is given by the position of the user’s hip.

We also performed several experiments covering a single
floor level using the motion of different subjects (see our
previous work [15] for more details). The trajectory of the
fourth experiment is about 1.6 km long. Our approach reliably
detected 125 out of 133 door handling events. The corrected
trajectory including the approximate location of walls is shown
in Figure 7(a). This experiment also contains several loops
around the building but we show only the inner part for better
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Fig. 6. The third experiment was performed in a building containing a lot of metal structure. This introduced severe errors in the trajectory provided by
the data suit, especially when walking up and down the staircase between the first and the second floor. Note the two instances of the staircase are rotated
by approximately 45 and -40 degrees in the left part of image (g). The raw trajectory is depicted in (a) and (g) together with the outcome of our step and
door detection algorithms. The maximum likelihood map of the whole building is shown in (h), whereas the individual floors compared to its floor plans are
shown in (b) through (f). Note that the high pose errors lead to a wrong data association in the ground level (a), where the left door marked with the arrow
was wrongly labeled as anew door.

readability. Note that this experiment was recorded in the same
building as the first one and that we used the same parameters.
The error of the estimated door locations is0.5m±0.24m.

The fifth experiment covers a trajectory of approximately
1.3 km and our approach reliably detected all 63 door han-
dling events with an error of0.61m±0.17m. The corrected
trajectory is shown in Figure 7(d). Here, we used the same
parameters as in the second experiment since it was performed
in the same building.

The last experiment was recorded in a typical office environ-
ment. For this experiment we asked people from a company to

record data while walking in their building. The raw odometry
estimate is shown in Figure 7(g) and the corrected trajectory
is shown in (h). The trajectory is approximately 0.4 km long.
In this experiment, we detected 24 out of 27 door handling
events and used the same parameters as in the previous one.
However, since this experiment was recorded by a different
team, we do not have ground truth data of the locations of the
doors but only a floor plan of the building.

The outcome of all experiments together with the parame-
ters used is also summarized in Table I.
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Fig. 7. Typical outcomes of our approximate mapping algorithm and the corresponding floor plan of the same building. There is ahigh correlation between
the map generated by our approach and the corresponding floor plan. Our approximate mapping approach segments the trajectoryinto different rooms and
calculates approximate location of walls. Due to the segmentation we also obtain a topological map which we colored in orderto highlight the segmented
rooms. The first images (a)-(c) show the result of the fourth experiment. The approximate map is shown in (a) and the colored according to detected rooms
in (b). The corresponding floor plan is shown in (c) and colored respectively. The results for the fifth experiment are shownin (d)-(f). The bottom row shows
the result for the last experiment, including the raw odometrytrajectory (g) and the outcome using our approach (h)-(j). Note that the inner walls in (b) are
present since all experiments were performed with a maximum distance ofd = 1.5m, i.e., the distance of a wall to the nearest trajectory is at most 1.5 m.

Experiment Trajectory No. of Door detection Step detection Parameters Error of estimated
No. length floors Recall rate False Positives Recall rate False Positives λnew N σ2

x,y σ2
z door locations

1 2.2 km 2 0.968 1 0.914 1 0.03 3 0.03 0.1 0.31m±0.17m
2 2.85 km 3 0.983 1 0.869 0 0.03 3 0.1 0.1 1m±0.41m
3 1.46 km 5 0.933 1 0.968 0 0.03 3 0.1 0.1 0.67m±0.40m
4 1.6 km 1 0.94 0 n/a 0 0.03 3 0.03 0.1 0.5m±0.24m
5 1.3 km 1 1 0 n/a 0 0.03 3 0.1 0.1 0.61m±0.17m
6 0.4 km 1 0.889 0 n/a 0 0.03 3 0.1 0.1 n/a

TABLE I
SUMMARY OF ALL EXPERIMENTS. THE RECALL RATE IS CALCULATED AS THE RATIO OF TRUE POSITIVES VERSUS THE ACTUAL NUMBER OF EVENTS.

N IS SHORT FORN-SCAN-BACK , σ2
x,y IS SHORT FORσ2

x, σ
2
y , AND N /A IS SHORT FOR NOT AVAILABLE.

B. Approximate Mapping

In this section we show our results of approximate mapping
for floors of different buildings. Figure 7(a)-(j) show typi-
cal outcomes of our approach and the buildings floor plans
respectively. Note that our mapping technique segments the
trajectory into different rooms. We therefore can calculate
both, a geometrical and a topological map. The topological
map colored wrt. different rooms (using 3 colors in total)
is shown in Figure 7(b),(e), and (i). The corresponding floor
plan have been colored respectively and are shown in Fig-
ure 7(c),(d), and (j). As can be seen, there exists a high
correlation between the estimated and the real floor plans.
Errors mainly arise from rotational errors as can be seen in
the bottom left part of Figure 7(d). These rotational errors,
however, can be corrected by including an additional loop
around the building from the outside. The walls within the
map of Figure 7(d) are present since all experiments were

performed using a maximum distance ofd = 1.5m as
described in Section V. Figures 7(g)-(j) depict the outcome
of an experiment in a typical company environment including
the raw odometry trajectory (g). Figure 8 shows the outcome
of our segmentation approach for the second experiment. Here,
we omit to plot the walls since the perspective view of the 3D
structure in combination with the outer walls would render
the figure completely black. However, the trajectory represents
also the topological structure of the building as can be seen
by comparing with the corresponding floor plans of the same
floor. As can be seen from these experiments, our approach is
robust and can be applied in different environments.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we presented a novel approach to accurately
estimate the 3D trajectories of humans based on data gathered
with a motion capture suit. Our approach extracts two different
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Fig. 8. Outcome of our approximate mapping algorithm and the correspond-
ing floor plans of the same building for the second experiment. Please note,
that we omit the plotting of walls, as the perspective view of the 3D structure
in combination with outer walls would lead to a black figure. The three floor
plans on the right hand side are colored wrt. the segmented trajectory and
reflect the individual floors of the building (see also Figure5).

activities from the motion data, namely door handling and stair
climbing events. We consider the trajectory of the person and
the height estimates of our step detection algorithm as motion
constraints. The door handling events detected using specific
motion templates are used as landmarks within a graph-based
SLAM approach. To cope with the high data association
uncertainty, we employ a multi-hypothesis tracking approach.
Additionally, our method can create approximate geometrical
as well as topological maps of the environment based on
the estimated trajectory and activities. Our system has been
implemented and successfully tested on real data recorded with
different subjects in several buildings of a university campus
as well as in a typical office environment. The experimental
results demonstrate that our approach is able to robustly keep
track of the true data association and accurately estimatesthe
trajectory taken by the person. Furthermore, the resultingmaps
accurately resemble the corresponding environments. In future
work we aim to make our algorithm more robust, especially
with respect to magnetic disturbances.
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