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A Fully Autonomous Indoor Quadrotor
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Abstract—Recently there has been an increased interest in the
development of autonomous flying vehicles. Whereas most of the
proposed approaches are suitable for outdoor operation, only
a few techniques have been designed for indoor environments,
where the systems cannot rely on GPS and therefore have to
use their exteroceptive sensors for navigation. In this paper
we present a general navigation system which enables a small-
sized quadrotor system to autonomously operate in indoor
environments. To achieve this, we systematically extend and
adapt techniques which have been successfully applied on ground
robots. We describe all algorithms and present a broad set of
experiments illustrating that they enable a quadrotor robot to
reliably and autonomously navigate in indoor environments.

Index Terms—UAV, Quadrotor, SLAM, Navigation

I N recent years, the robotics community has shown an
increasing interest in autonomous aerial vehicles, espe-

cially quadrotors. Low-cost and small-size flying platforms
are becoming broadly available and some of these platforms
are able to lift relatively high payloads and provide an in-
creasingly broad set of basic functionalities. This directly
raises the question of how to equip them with autonomous
navigation abilities. Whereas most of the proposed approaches
for autonomous flying [14], [32] focus on systems for outdoor
operation, vehicles that can autonomously operate in indoor
environments are envisioned to be useful for a variety of
applications including surveillance and search and rescue[10].
In such settings and compared to ground vehicles, the main
advantage of flying devices is their increased mobility.

As for ground vehicles, the main task for an autonomous
flying robot consists in reaching a desired location in an
unsupervised manner, i.e., without human interaction. In the
literature, this task is known asnavigation or guidance. To
address the general task of navigation one is required to tackle
a set of problems ranging from state estimation to trajectory
planning. Several effective systems for indoor and outdoor
navigation of ground vehicles are nowadays available [1], [2].

Whereas the general principles of the navigation algorithms,
which have been successfully applied on ground robots, could
in principle be transferred to flying vehicles, this transfer is
not straightforward for several reasons. Ground robots are
inherently stable, in the sense that by issuing a zero velocity
command results in the robot to smoothly decelerate until it
stops. The same does not apply for flying robots that need
to be actively stabilized even when they are already in the
desired location. Furthermore, due to the fast dynamics of a
flying vehicle compared to a ground one all the quantities
necessary to stabilize the vehicle should be computed within
a short time and with an adequate level of accuracy. Thus,
porting navigation systems for ground robots to aerial vehicles
requires to fulfill more stringent constraints on both accuracy
and efficiency.

In this work, we present the enabling technology for

Fig. 1. Autonomous flight of our quadrotor in a cluttered officeroom. The
free space around the robot is seriously confined, imposing high demands on
pose stability, localization, and control. The image in the (bottom left) shows
the office room from a similar view point as the snapshot.

autonomous quadrotor navigation in indoor environments
and describe a navigation system including key functionali-
ties namely localization, planning, surface estimation, map-
learning, and control. Whereas a flying vehicle moves in
3D, indoors there is usually enough structure to describe
the environment with 2D representations. Instead of using
a full 3D representation we rely on a 2D one for the walls
augmented with the elevation of the floor. The advantage of
this choice compared to the full 3D representation is that
we can operate in a large class of indoor environments by
using efficient variants of 2D algorithms that work on dense
grid maps instead of space and time consuming 3D methods.
Having these functionalities adapted for the 3D case would be
either too slow or not accurate enough given the limited time
constraints to make the system stable. This paper extends our
previous work [17] by introducing improved algorithms for
simultaneously estimating the altitude of the vehicle and the
elevation of the underlying surface. We furthermore provide
quantitative results of our SLAM approach and discuss the
effect of different modes of the incremental scan-matchingon
the pose stability of the robot. We also describe our algorithms
for path planning, obstacle avoidance and provide additional
details and experiments.

Our system is a result of an integrated hardware/software
design which meets several of the challenging constraints
imposed by small size flying vehicles while preserving a large
degree of flexibility. It further can be operated at different
levels of autonomy. It can be used to assist a pilot by prevent-
ing collisions with obstacles and keeping the position of the
vehicle when no commands are given. It can construct a map
on-line while flying in an unknown environment, or it can be
instructed to autonomously reach given locations in a known
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map. We evaluated our system on an open source quadrotor,
the so-called the Mikrokopter [3]. Figure 1 visualizes our
quadrotor system and its internal state while autonomously
flying within an highly cluttered office room.

I. RELATED WORK

In the last decade, flying platforms received an increasing
attention from the research community. Many authors focused
on the modeling and on the control of these vehicles [8],
[11], [25], [29], with a particular emphasis on small or micro
helicopters [10]. Hoffmannet al. [19] presented a model-
based algorithm for autonomous flying with their STARMAC-
quadrotor. Their system flies outdoors and utilizes GPS and
IMU measurements. Ng and colleagues [14] have developed
algorithms for learning controllers for autonomous helicopter
navigation. Their approach allows helicopters to perform
impressive maneuvers in outdoor environments. Schereret
al. [28] describe algorithms for flying fast among obstacles
at low altitude using a laser scanner. Tempeltonet al. [30]
demonstrate how to use vision for outdoor terrain mapping and
autonomous landing. Tournieret al. [33] and Bourquardezet
al. [12] used vision to estimate and stabilize the current pose
of a quadrotor. Thrunet al. [32] used a remotely controlled
helicopter to learn large-scale outdoor 3D models. There also
has been some work that addressed the navigation of flying
vehicles in indoor environments and in absence of the GPS
signal. Several authors used vision to control or assist the
control of an indoor quadrotor [7], [20], [21]. Robertset
al. [26] used ultrasound sensors for controlling a flying vehicle
in a structured testing environment, while Heet al. [18]
presented a system for navigating a small-size quadrotor
without GPS. Here, the pose of the vehicle is estimated by
an unscented Kalman filter. Whenever the robot has to reach
a given location, a path which ensures a good observation
density is computed from a predefined map. These highly
dense observations minimize the risk of localization failures.
In parallel to our work, Achtelikaet al. [6] developed an indoor
autonomous quadrotor equipped with a laser range scanner and
cameras enabling autonomous hovering in a constraint indoor
environment. Recently, Celiket al. [13] presented their system
for indoor simlutaneous localization and mapping (SLAM)
using a monocular camera and ultrasound. Our work is orthog-
onal to a recent work of Bachrachet al, [9] where the authors
present a system for performing autonomous exploration and
map acquisition in indoor environments. They extend the 2D
robot navigation toolkit CARMEN [27] by adding a Rao-
Blackwellized particle filter for SLAM and an algorithm for
frontier-based autonomous exploration. However, they do not
provide localization, map optimization, obstacle avoidance or
mutli-level SLAM. Furthermore, we utilize a more robust
graph-based SLAM algorithm in our system allowing for map
optimization and present our algorithm for estimating the
altitude of the surface underlying the robot. This enables a
quadrotor equipped with our system to fly over surfaces whose
height is piecewise constant.

Fig. 2. The quadrotor platform used to evaluate the navigation system is
based on a Mikrokopter and includes a Hokuyo laser range finder (1), an
XSens IMU (2), a Gumstix computer (3), and a laser mirror (4).

II. I NDOOR NAVIGATION OF AN AUTONOMOUSFLYING

QUADROTOR

To autonomously reach a desired location, a mobile robot
has to be able to determine a collision-free path connecting
the starting and the goal locations. This task is known as
path planning and requires a map of the environment to be
known. Usually, this map has to be acquired by the robot itself
by processing the sensor measurements obtained during an
exploration mission. This task of generating the map is known
assimultaneous localization and mapping (SLAM). For most
of the applications it is sufficient to perform SLAM off-line
on a recorded sequence of measurements. To follow the path
with a sufficient accuracy, the robot needs to be aware of its
position in the environment at any point in time. This task is
known aslocalization. A further fundamental component of a
navigation system is thecontrol module which aims to move
the vehicle along the trajectory, given the pose estimated by
the localization.

Due to the increased risk of damaging the flying platform
during testing, the user should have the possibility of tak-
ing over the control of the platform at any point in time.
Finally, the more complex dynamics of a flying platform
poses substantially higher requirements on the accuracy ofthe
state estimation process than for typical ground-based vehicles.
Although in outdoors scenarios, positioning errors up to 1 m
might be acceptable, they are not indoors, as the free-space
around the robot is substantially more confined.

III. H ARDWARE ARCHITECTURE

Figure 2 shows a Mikrokopter [3] open source quadro-
tor equipped with sensors and computational devices. The
Mikrokopter comes with a low level controller for roll, pitch,
and yaw. Our quadrotor is similar to the one proposed by
He et al. [18] and consists of the following components: an
Hokuyo-URG miniature laser sensor for SLAM and obstacle
avoidance (1), an XSens MTi-G MEMS inertial measurement
unit (IMU) for estimating the attitude of the vehicle (2), a
Linux-based Gumstix embedded PC with USB interfaces and
a WiFi network card which communicates with the micro-
controller on the quadrotor via an RS-232 interface (3), anda
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mirror which is used to deflect some of the laser beams along
the z direction to measure the distance to the ground (4).

IV. NAVIGATION SYSTEM

Our navigation system is based on a modular architecture in
which different modules communicate via the network using a
publish-subscribe mechanism. In our current system all device
drivers are executed on-board while the more computationally
intensive algorithms run on a remote PC communicating over
wireless with the platform.

Since roll (φ) and pitch (θ) measured by the IMU are in
general accurate up to1◦, we can directly use this information
within our navigation system. This allows us to reduce the
localization problem from 6DOF namely(x, y, z, φ, θ, ψ) to
4DOF, consisting of the 3D position(x, y, z) and the yaw
angleψ. The only sensor used to estimate these 4DOF and
detecting obstacles is the laser range scanner.

Based on known initial calibration parameters and on the
current attitude(φ, θ) estimated by the IMU, we project the
endpoints of the laser into the global coordinate frame. Given
the projected laser beams, we estimate the(x, y, z, ψ) of
the vehicle in a 2D map containing multiple levels per cell.
To compensate for the lack of odometry measurements we
estimate the incremental movements in(x, y, ψ) by 2D laser
scan-matching. Finally, we control the altitude of the vehicle
and simultaneously estimate the elevation of the underlying
surface by fusing the IMU accelerometers and the distance
from the ground measured by the laser. Accordingly, we track
and map multiple levels within an environment, which enables
our robot to correctly maintain its height even when flying over
obstacles like tables or chairs.

A. Incremental Motion Estimation

The laser range scanner measures at timet a set of distances
rt along thex-y plane in its own reference frame. We therefore
first calculate a projection of the measured distancesbt for
the beams not deflected by the mirror using the roll and
pitch estimate from the IMU. Consequently, we calculate
the pointsht for all beams deflected by the mirror using a
chain of transformations from the IMU to thevirtual laser
position which accounts for the effect of the mirror. Some
tasks, like pose stabilization, rely on an accurate local pose
estimate of the vehicle in its surroundings. To this end, we
can estimate the relative movement of the robot between two
subsequent scans by using a scan-matching algorithm. Since
the attitude is known from the IMU, this procedure can be
carried out in 2D, assuming structured indoor environments.
A scan-matching algorithm estimates the most likely pose of
the vehiclex̂t at time t given the previousk posesxt−k:t−1

and the corresponding laser measurementsbt−k:t, as follows

x̂t = argmax
x:=(x,y,ψ)

p(xt | xt−k:t−1,bt−k:t). (1)

To solve Equation (1), we use a variant of the multi-resolution
correlative scan matcher proposed by Olson [24]. The idea
behind a correlative scan-matcher is to discretize the search
spacext = (xt, yt, ψt) and to perform an exhaustive search

in these discretized parameters around a given initial guess.
To efficiently evaluate the likelihoodp(xt | xt−k:t−1,bt−k:t)
of a given solutionxt, we use likelihood fields [31] obtained
by the most likely map generated from the last observations
bt−k:t−1.

The complexity of a correlative scan-matcher depends lin-
early on the resolution at which the parameters are discretized
and on the search range. A naive implementation of this
algorithm is not adequate for our application that demands
both high accuracy and efficient computation. To overcome
this problem, we employ a multi-resolution approach. The idea
is to perform the search at different resolutions, from coarse
to fine. The solutions found at a coarse level are then used to
restrict the search at a higher resolution.

In our implementation we use a constant velocity model to
compute the initial guess for the search and we perform the
correlative scan matching at three different resolutions (i.e.,
4 cm×4 cm×0.4◦, 2 cm×2 cm×0.2◦, and1 cm×1 cm×0.1◦).
We set the search arear depending on the maximum speed
vmax of the vehicle and on the frequencyf of the scanner as
r = vmax/f .

We control the position of the vehicle based on the velocities
estimated by the scan-matcher. Accordingly, the performances
of the scan-matcher play a major role in the stability of the
robot. In particular, we want to have a fast, accurate but still
smooth (i.e., less oscillations) estimate. To get an intuition
about the desired accuracy, consider an error in the position
estimate of±2cm. Assuming a sensor frequency of10Hz this
error leads to a variation of20 cm

s in the velocity estimate
between two laser scans. This in turn can generate wrong
commands by the controller reducing stability.

In our hierarchical scan-matcher, the high-resolution esti-
mate is affected by frequent oscillations due to the limited
resolution of the likelihood field. Although these oscillations
could in general be filtered out by a low-pass filter, this typeof
filtering would introduce a phase shift in the pose and velocity
estimate (the estimated pose is past in time). To obtain both, an
accurate position estimate and a smooth signal, we compute
the final solution as the weighted mean of the estimates of
all scan-matchers in the hierarchy. The weights of the sum
lie on a Gaussian centered at the finest resolution estimate.
In several experiments we found that the weighted average
of the estimates is better for control as each single estimate
as shown in Table I. The table contains experimental results
comparing the effect on the pose stability using the estimate
of the individual scan-matchers versus our weighted mean
approach. All runs reflect experiments where the goal of the
quadrotor was to hover at the same spot at0.5m height for
as long as the battery holds. To quantitatively evaluate our
approach, we compare the mean and standard deviation in
both, position and absolute velocity. As can be seen, using
a weighted average of the different resolutions has a positive
affect on the control loop. This originates from the fact that
the weighted averaging has a smoothing effect on the pose
estimate but does not include any phase shift into the system.
Since we use a simplistic model of our quadrotor (constant
velocity model), using the output of the weighted mean (with
the prediction used as the initial guess for the search) is
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approach→ 4 cm 2 cm 1 cm weighted mean unit
mean(x) 0.107 0.105 0.149 0.066 [m]
mean(y) -0.045 0.060 -0.04 -0.05 [m]
std(x) 0.145 0.148 0.165 0.123 [m]
std(y) 0.081 0.088 0.087 0.076 [m]
mean(|vx|) 0.146 0.095 0.084 0.075 [m/s]
mean(|vy |) 0.159 0.106 0.09 0.072 [m/s]
std(|vx|) 0.118 0.071 0.065 0.058 [m/s]
std(|vy |) 0.117 0.083 0.072 0.057 [m/s]

TABLE I
EFFECT OF MATCHING ALGORITHM ON POSE STABILITY OF THE ROBOT.

equal to run a Kalman filter having a large uncertainty on
the prediction. Whereas including a more sophisticated model
for the prediction would lead to better estimates, using this
simplistic strategy was sufficient for our purposes.

B. Localization and SLAM

If a map of the environment is known a priori, pure
localization (in contrast to SLAM) is sufficient for estimating
the remaining 4DOF of the quadrotor. We estimate the 2D
position(x, y, ψ) of the robot in a given grid-map by Monte-
Carlo Localization [15]. The idea is to use a particle filter
to track the position of the robot. Here, we sample the next
generation of particles according given the relative movement
estimated by the scan matcher and evaluate the current particle
using likelihood fields [31].

Our system can acquire models of unknown environments
during autonomous or manual flights by simultaneous localize
and map the environment. The goal of a SLAM algorithm is
to estimate both the vehicle position and the map of the envi-
ronment by processing a sequence of measurements acquired
while moving in the environment. Even when a map is known
a-priori, a local map is needed until the robot is localized
if the robot is running autonomously. In our system we use a
popular graph-based SLAM algorithm. The idea of these types
of algorithms is to construct a graph from the measurements
of the vehicle. Each node in the graph represents a position
of the vehicle in the environment and a measurement taken
at that position. Measurements are connected by pairwise
constraints encoding the spatial relations between nearbyrobot
poses. These relations are determined by matching pairs of
measurements acquired at nearby locations. Whenever the
robot reenters a known region after traveling for long time in
an unknown area, the errors accumulated along the trajectory
become evident. These errors are modeled by constraints
connecting parts of the environment that have been observed
during distant time intervals and are known in the SLAM
community asloop closures. To recover a consistent map we
use a stochastic gradient descent optimization algorithm that
finds the position of the nodes which maximizes the likelihood
of the edges. The optimization approach is discussed in
detail in [16], and an open source version is available on
OpenSLAM [4].

Again, we restrict our estimation problem to 4DOF, since
the attitude provided by the IMU is sufficiently accurate forour
mapping purposes. Furthermore, we assume that the vehicle
flies over a piecewise constant surface and that the indoor
environment is characterized by vertical structures, likewalls,
doors, and so on. Although trash bins, office tools on a table

or the table itself are violating this assumption using a 2D map
is still sufficient for accurate mapping and localization. This
arises from the fact that clutter in general is only visible in a
small portion of the current measurement, whereas mapping
f.e. the desk improves localization since there is a clear
difference inx-y between a desk and a nearby wall. Thus
we restrict our approach to estimate a 2D map and a 2D
robot trajectory spanning over 3DOF,(x, y, ψ), i.e., we map
all objects if they had an infinite extend. The estimate of the
trajectory is the projection of the 6DOF robot motion on the
ground plane, along thez axis. We estimate the altitude of
the platform once the 2D position and the attitude are known,
based on the procedure described in the next section.

C. Altitude Estimation

Estimating the altitude of the vehicle in an indoor envi-
ronment means determining the global height wrt. a fixed
reference frame. Since the vehicle can move over non-flat
ground, we cannot directly use the the beamsh deflected
by the mirror. Our approach therefore concurrently estimates
the altitude of the vehicle and the elevation of the ground
under the robot. In our estimation process, we assume that the
(x, y, ψ) position of the robot in the environment is known
from the SLAM module described above. We furthermore
assume that the elevation of the surface under the robot is
piecewise constant. We call each of these connected surface
regions having constant altitude a “level”. The extent of each
level is represented as a set of cells in a 2D grid sharing the
same altitude.

Since our system lacks global altitude sensors like barome-
ters or GPS to determine the altitude of the vehicle, we track
the altitude of the vehicle over the ground and map different
elevations by using a two-staged system of Kalman filters.
Algorithm 1 describes our approach in an abstract manner.

In the first stage, a Kalman filter is used to track the
altitude z and the vertical velocityvz of the vehicle by
combining inertial measurements, altitude measurements and
already mapped levels under the robot. In the second stage, a
set of Kalman filters is used to estimate the elevation of the
levels currently measured by the robot. To prevent drifts inthe
elevation estimate, we update the altitude of a level only when
the robot measures the level for the first time or whenever the
robot reenters it (i.e., enters or leaves that particular level).

In detail, the first Kalman filter estimates the height state
z = (z, vz) and the corresponding uncertaintyΣz. First, we
predict the current altitude and velocity (ẑt) given the previous
estimate,zt−1,Σzt−1

, and the acceleration measured by the
IMU (see line 4 of Algorithm 1).

The beams deflected by the mirror can measure more than
one level simultaneously. For instance, when flying over a table
it can happen that one fraction of the beams is fully reflected
by the table, some beams are partially reflected by the table
and partially by the floor, whereas the remaining beams are
fully reflected by the floor. We therefore search in the local
vicinity of the current multilevel-map for all levels which
could have generated one of the measured altitudesh ∈ ht

(assuming the robot’s altitude iŝzt). This step is indicated in
line 5.
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If we found at least one correspondence, we use them to
calculate a virtual measurement to the ground (see line 7).
We use the matched levels from the current map and the
corresponding beams to calculate a single measurement. In
other words, we calculate the measurement we would obtain
if no obstacles were present underneath the robot and use this
information for the measurement update of the Kalman filter
as shown in line 8.

However, when the robot explores the environment, it can
happen that none of the current beamsh ∈ ht falls into a
confidence region of a level in the current map, i.e.,E = ∅.
In this case, we cannot create a virtual measurement and thus
are unable to perform a measurement update of the filter. The
prediction, therefore, is then the best estimate of the robot’s
altitude as described in line 10.

Given the estimated altitude of the robot, we can now update
the current multilevel map. Recall that the beams deflected by
the mirror can measure more than one level simultaneously.
We therefore cluster them into neighboring sets. Each of
these sets is assumed to originate from a single level and
it is parameterized by the mean and the covariance matrix
calculated by the beams in the set. The outcome of this process
is the setL consisting of the estimated levels as indicted in
line 13.

We assume measurements not falling into a confidence
region of existing levels in the local neighborhood to be
generated by a new floor level. These new floor levels can
be directly included into the map, as shown in line 14 in
algorithm 1. For all measurements, falling into the confidence
region of a level in the map, there exist two possibilities. Either
this level has been already seen in the previous time-step, i.e.,
the robot is flying over the table and thus it has seen the
corresponding level before, or it is currently entering or leaving
this particular level. In the latter case, we can use the current
altitude estimate in order to update the altitude of the level in
the map (line 15). The elevation of each level is tracked by
an individual Kalman filter.

Since we explicitly store objects in 2D with an extend inx-y
rather than individual levels per cell, we seek for those levels
present in the neighborhood of the map, that are explained by
one of the measurements currently obtained. If such a level is
found and not present at the current location, we extend this
level to the current cell, as shown in line 16.

Note that the robot observes only a limited portion of
the underlying surface. Thus it may also happen that the
robot “joins” the surfaces of different levels to form a new
one. Figure 3 illustrates this situation. Initially two levels
corresponding to a chair (Level 1) and a table (Level 2) are
identified (a). The robot then left the table behind, makes a
turn, and flies over a different area of the same table. Since
Level 2 is not mapped in the neighborhood of the current pose,
our system creates a new level (for the same table), noted as
Level 3 in (b). Finally, the quadrotor continues to the originally
covered area of the table which introduces an intersection of
the current Level 3 and the previously generated Level 2. As
a consequence, it joins Levels 2 and 3 (see (c) and (d)).

When two levels,L′

j andL′

k, having altitudeshj and hk
and covariancesσ2

j andσ2
k are merged, the Gaussian estimate

〈

h, σ2
〉

of the joint level has the following values:
〈

h =
σ2
khj + σ2

jhk

σ2
j + σ2

k

, σ2 =
σ2
jσ

2
k

σ2
j + σ2

k

〉

. (2)

This step is indicated in line 17 of Algorithm 1.

Algorithm 1 Multilevel-SLAM
Input: beams deflected by mirror at timet: ht
Input: previous multilevel map:M̂
Input: elapsed time:∆t
Input: current pose:xt = (xt, yt) // output of SLAM module
Input: previous height statezt−1 = (zt−1, vzt−1

)
Input: previous height state uncertaintyΣzt−1

Input: z-acceleration and uncertainty:az, σz // from IMU
Output: current height state:zt,Σzt
Output: current multilevel map:M

1: function Multilevel-SLAM
2: // ———— 1st stage: update height estimate ————
3: // KF is short for Kalman Filter
4: (ẑt, Σ̂zt) = KF(zt−1,Σzt−1

).predictionStep(∆t, az, σz)
5: E = M̂.at(xt ±∆x).getExistingLevelsMatching(ht, ẑt)
6: if E 6= ∅ then
7: (m̃, σ̃m) = createVirtualHeightMeasurement(ht,E)
8: (zt,Σzt) = KF(ẑt, Σ̂zt ).measurementUpdate(m̃, σ̃m)
9: else

10: (zt,Σzt) = (ẑt, Σ̂zt)
11: end if
12: // —————— 2nd stage: update map ——————
13: L = estimateLevels(ht, zt)
14: M = M̂.addNewLevels(L,xt)
15: M = M.updateExistingLevels(L,xt)
16: M = M.extendExistingLevels(L,xt)
17: M = M.searchForLoopClosures(xt)
18: returnzt,Σzt ,M
19: end function

To summarize, we store a level as a set of 2D grid cells
representing the area covered by the corresponding object.
First, we estimate the current height of the robot given the
known levels in the multi-level map. In a second step we
update the map, given the estimated altitude of the robot.
Here, a level is constantly re-estimated whenever the vehicle
enters or leaves this specific level, and the data association
is resolved by the known(x, y, ψ) position of the vehicle.
Finally, measurements not explained by any level present in
the map are assumed to be generated by new levels which are
then included in the map.

D. High-Level Control for Pose and Altitude

The high level control algorithm is used to keep the vehicle
in the current position. The output of the control algorithm
are variations in the roll, pitch, yaw, and thrust, denoted
respectively asuφ, uθ, uψ anduz. The input are the position
and the velocity estimates coming from incremental scan-
matching. A variation of the roll translates in a motion along
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Fig. 3. Example of level joining during the estimation of the altitude of the vehicle and of the elevation of the underlying surfaces. Each level is represented
as a set of contiguous cells in the 2D grid that share the same elevation. The robot starts exploring an office environment. Initially it recognizes two levels
(Level 1, and Level 2), corresponding to a chair and a table (a). Subsequently it flies away from the table, turns back and flies over a different region of the
same table (a). This results in the creation of the new Level 3.Then the robot keeps on hovering over the table until it approaches the extent of Level 2
which has the same elevation of Level 3, being originated by the same table. This situation is shown in (c). Finally the robotenters Level 2 from Level 3.
Our system recognizes these two Levels to have the same elevation. Accordingly it merges them and updates the common elevation estimate (d).

the y axis, a variation in the pitch results in a motion along
the x axis and a variation of the thrust results in a change
in the vertical velocity. We separately control the individual
variables via PID or PD controllers. Since in our case all
control commands are dependent on the current pose estimate,
our high level control module runs at a 10Hz, since the laser
scanner provides measurements at exact this rate.

Note, that the Mikrokopter (and most of commercial avail-
able platforms) comes with low level controllers for roll, pitch,
and yaw, thus we do not have to take care about the control
of the individual motors, but of the control of commands
resulting in a desired angle. In our particular case, the low
level controller of the Mikrokopter quadrotor runs at 500Hz.
Since commands for the yaw on common platforms result in
how fast the quadrotor should turn and not how far, these
parameters reflect the users wish of the robots aggressiveness
wrt. the yaw rotation. In contrary to this, commands for roll
and pitch result in a desired angle for which independent
mapping functions must be learned. In order to learn the
mapping for our quadrotor, we fixed one axis of the vehicle to
an external frame allowing the vehicle to rotate along the other
axis only. We learned the mapping function by monitoring
the current angle measured by the IMU compared to the sent
command. Our test bench for learning this mapping is shown

Fig. 4. Our test bench for learning a mapping between the commandand
the corresponding angle. This simple device allows for fixingone axis of the
quadrotor and monitoring the other one using the IMU.

in Figure 4.
The calculated commands are sent directly to the micro-

controller via RS232 which is in charge of the low level control
(roll, pitch, and yaw) of the platform. For safety reasons, the
user can always control the vehicle via a remote control and
our system mixes the user and the program commands. During
our experiments, we allow the programs to perturb the user
commands by±20%. In this way, if one of the control modules
fails the user still has the possibility to safely land the vehicle
without any loss of time since he does not need to press any
button first.

In particular, we control the pitch and the roll by two
independent PIDs that are fed with thex and they coordinates
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of the robot pose. The control function inx is the following:

uφ = Kp · (x− x∗) +Ki · ex +Kd · vx, (3)

Herex andx∗ are the measured and the desiredx-positions,
vx is the corresponding velocity, andex denotes the error
integrated over time. The control in they is analogous to
the control inx. Note, that the integral part could be omitted
(i.e.,Ki = 0), but we have encountered an improved hovering
behavior if a smallKi is used. This originates from the fact
that in our case only integer values can be transmitted to the
micro controller although the desired command is a float value.

We control the yaw by the following proportional controller:

uψ = Kp · (ψ − ψ∗). (4)

Hereψ andψ∗ are the measured and desired yaw anduψ is
the control input.

The altitude is controlled by a PID controller which utilizes
the current height estimatez, the velocityvz, and the current
battery voltageUt respectively. The controluz is defined as

uz = C(Ut) +Kp · (z − z∗) +Ki · ez +Kd · vz, (5)

with Kp,Ki andKd being the constants for the P, I, and D
part andC(Ut) being the thrust command offset given the
current battery voltageUt respectively. Herez∗ denotes the
desired height andez denotes the integrated error. Including
a thrust command offsetC(Ut) allows us to treat the system
as stationary, and therefore to use constant coefficients for
the PID. We learnedC(Ut) by monitoring the thrust and the
battery level of the vehicle in an expectation-maximization
fashion. We started with a PID control withoutC(Ut) and
computed the average thrust command required to keep the
current altitude using several test flights. For each battery level
Ut we computed the average thrust command required to keep
the current altitude. In subsequent flights we used this offset
as an initial guess forC(Ut) and repeated the experiments
resulting in an refinement forC(Ut) until no major change in
the estimated offset appeared.

E. Path Planning and Obstacle Avoidance

The goal of the path planning module is to compute
a path from the current location to a user specified goal
location which satisfies one or more optimality criteria and
is safe enough to prevent collisions even in the case of
small disturbances. Safety is usually enforced by choosing
a path that is sufficiently distant from the obstacles in the
map. Finally, due to the increased degrees of freedom of a
flying vehicle compared to a ground robot, the path should
be planned in 4DOF space instead of 3DOF. In our system
we use D* lite [22], a variant of theA∗ algorithm that can
reuse previous solutions to correct an invalid plan rather than
recomputing it from scratch. Since directly planning in 4DOF
is too expensive for our system, we compute the path in
two consecutive steps. First, we use D* lite to compute a
path in thex − y − z space, but we only consider actions
that move the robot in the 2D spacex − y. For each(x, y)
location we know from the multi-level map the elevation of the
surface underneath the robot. This known elevation is used to

determine a possible change in altitude the robot would have
to take when moving to a nearby cell. A change in altitude is
reflected by increased traversability costs proportional to the
distance in thez-direction. Furthermore, the cost function of
a state(x, y, z) of the robot depends on the distance of that
location to the closest vertical obstacle in the map.

Once we have the 2.5D trajectory calculated with D* lite we
augment it with theψ component. Since the laser scanner is
heading forwards, it is desirable that the robot turns towards
the direction of flight first to avoid collisions. On the other
hand, we want the quadrotor to perform small maneuvers, like
flying 10 cm backwards, without turning first. To achieve this
behavior we calculate the desired angle which would result in
flying forwards wrt. the local frame of the quadrotor. Trading
off the costs of rotation versus costs of moving to the desired
cell without rotating first allows the robot to perform pure
sidewards or even backwards movements and thus prevents
the vehicle from performing unnatural maneuvers.

Instead of switching to a new plan at every point in time,
we try to re-use the existing solution whenever possible. A
new plan is generated only when the actual plan is not valid
anymore due to dynamic obstacles or when a certain period
of time has been reached (∆t = 500 ms). The latter constraint
enables us to correct for detours in the trajectory that have
been introduced to avoid obstacles that are no longer present.
In our implementation, we use a grid resolution of 4 cm. With
these settings, the planner requires about 50-80 ms to compute
a typical 10 m path from scratch. Re-planning can be done
in less than 10 ms. Dynamic obstacles are detected by the
planner by considering the endpoints of the laser beams that
are not explained by the known map (background subtraction).
Additionally, we run a reactive obstacle avoidance module on-
board in parallel based on potential fields [23].

V. EXPERIMENTS

In this section we present experiments that show the per-
formances of each of the modules presented in the previous
section, namely: localization, SLAM, multi-level mapping,
autonomous pose stabilization, path planning, and obstacle
avoidance. Videos of a series of different flights can be found
on the Web [5].

A. Localization

Using 2D grid maps for localization enables our system
to operate with maps acquired by different kinds of robots
and not necessarily built by the flying vehicle itself. In
this section we present an experiment in which we perform
global localization of the flying quadrotor in a map acquired
with a ground-based robot. This robot was equipped with
a Sick LMS laser scanner. The height of the scanner was
80 cm. Throughout this experiment, the UAV kept a height
of 50 cm ±10 cm and the particle filter algorithm employed
5,000 particles. Given this number of particles, our current
implementation requires5ms per iteration on a Dual-Core
2 GHz laptop, while scan matching requires5ms on average.
Figure 5 shows three snapshots of the localization process
at three different points in time. The top image depicts the
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Fig. 5. Global localization of our quadrotor in a map previously acquired by
a ground-based platform. The blue and the green circle highlight the current
estimate of the particle filter and the true pose respectively. Particles are shown
as black dots within the free space. Top: initial situation.Middle and bottom:
after about 1 m and 5 m of flight. In the latter case, the quadrotor is localized.

initial situation, in which the particles were sampled uniformly
over the free space. After approximately1m of flight (middle
image), the particles start to focus around the true pose of the
vehicle. After approximately5m of flight the quadrotor was
globally localized (bottom image). The blue circle indicates
the current estimate of the filter.

B. SLAM

We also evaluated the mapping system by letting the quadro-
tor fly four loops (approximately 41 m each) in a rectangular
shaped building of approximate corridor size 10 m×12 m. The
result of our SLAM algorithm is shown in Figure 6. To
quantitatively evaluate the accuracy of our mapping systemwe
placed markers on the floor (labeled1, . . . , 4) and manually
landed the quadrotor close to the markers. Since we never
perfectly landed on those we manually moved the quadrotor
the remaining centimeters to match the predefined spots. This
enables us to measure three types of errors: the re-localization
error, the absolute positioning error and the error in open-
loop. The re-localization error is the difference between the
current estimate and the estimate of the same real world
pose in the previous loop. The error in open-loop is the re-
localization error without enabling graph optimization. The
absolute error is the difference between the estimated poseand
the ground truth. To measure the absolute error we manually
measured the relative locations of the markers and compared
it to the positions estimated by the robot when landing to the

Fig. 6. Map of on office building built with our approach usingthe quadrotor.
The labels 1-4 reflect the locations of individual markers used for evaluating
the accuracy of our mapping approach. Red triangles indicatethe pose of the
corresponding camera images. The clutter in the bottom of the map originates
from the seating containing horizontal slots (see bottom right image).

marker loop 1 loop 2 loop 3 loop 4 ground-truth
x1 1.11 m 1.11 m 1.11 m 1.10 m 1.11 m
y1 -7.50 m -7.51 m -7.50 m -7.50 m -7.50 m
x2 -6.21 m -6.21 m -6.21 m -6.21 m -6.21 m
y2 -9.21 m -9.21 m -9.21 m -9.21 m -9.21 m
x3 -7.85 m -7.85 m -7.85 m -7.85 m -7.85 m
y3 -3.83 m -3.83 m -3.83 m -3.82 m -3.82 m
x4 -0.01 m -0.01 m -0.01 m -0.01 m 0.00 m
y4 -0.00 m -0.00 m -0.00 m -0.00 m 0.00 m

TABLE II
ESTIMATED AND MANUALLY MEASURED LOCATIONS OF THE MARKERS

FOR THE FLIGHT CONTAINING FOUR LOOPS IN TOTAL.

corresponding markers. Table II shows the manually measured
and the estimated poses of the markers for all loops. As can be
seen, both, the relative error between the individual loopsand
the global pose estimation wrt. the manually measured ground-
truth have a maximum error of 1 cm. In this experiment,
the incremental mapping during the first loop was accurate
enough (<1 cm error) thus no optimization was needed since
all subsequent loops were also re-localized in the existing
map. We therefore also evaluated each loop independently of
each other without enabling graph optimization. The results of
the individual loop flights for marker 4 (origin) are shown in
table III (first row). The worst flight (2nd loop) resulted in an
error of approximately 0.37 m total distance to the origin. The
remaining rows in table III show the effect of using different
grid resolutions at the finest level of our hierarchical mapping
approach on the accuracy of the individual loops.

marker loop 1 loop 2 loop 3 loop 4 finest resolution
x4 -0.01 m -0.35 m -0.08 m -0.17 m

0.01 m
y4 -0.00 m 0.12 m -0.07 m 0.04 m
x4 -0.42 m -0.59 m -0.36 m -0.64 m

0.02 m
y4 0.20 m 0.23 m 0.11 m 0.33 m
x4 -0.91 m -0.59 m -0.54 m -0.60 m

0.04 m
y4 0.28 m 0.38 m 0.29 m 0.29 m

TABLE III
COMPARISON OF SINGLE LOOPS FOR DIFFERENT GRID RESOLUTIONS.

C. Multi-Level SLAM and Altitude Estimation

In the following we show the typical behavior of our altitude
estimation module. In this experiment, we let the robot fly
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Fig. 7. Estimation of the global height of the vehicle and the underneath
floor level. Whenever the quadrotor moves over a new level, the innovation
is used to determine a level transition. The estimate of the height of each
level is refined whenever the robot reenters that particularlevel. Top: the
office environment. Middle: the corresponding map after autonomously flying
over the vertical objects with a desired altitude of 150 cm. Bottom left: a
plot showing the estimated altitude of the vehicle over time versus the raw
measurement. The corresponding estimated levels are depictedin the bottom
right plot. Note, that Level 3 is merged with Level 2 after the loop closure.

autonomously in a typical office containing chairs, tables and
lots of clutter. The chairs have a height of48 cm and the
tables are arranged next to each other having a height of
77 cm. During this mission the system flew once over the
chair and several times over the tables where it also flew in a
loop. Figure 7 shows a snapshot of our multi-level mapping
system during this mission. As can be seen from this figure,
our algorithm correctly detected the objects at corresponding
levels. The estimated heights of the chair and the tables were
48.6 cm±2.7 cm and74.9 cm±2.8 cm respectively.

D. Pose control

Since the system is stabilized by independent controllers,
we discuss the result of each individual controller.

a) Yaw control: For testing the yaw controller we set a
desired yaw of0◦ and once in a while, we turned the helicopter
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Fig. 8. Experiments for the autonomous stabilization of yaw (a) and pose
(b). During the yaw stabilization experiment, the quadrotorwas required to
rotate to0◦, while the user manually turned the robot once in a while to a
random orientation. Within the pose stability experiment the quadrotor was
set to hover at(0, 0), but was manually moved backwards once in a while
and required to fly autonomously back to the initial pose.

via the remote control. When the user released the remote
control, the vehicle always returned back to its desired yaw
with an error of±2◦. Figure 8(a) plots the outcome of a typical
run for yaw stabilization.

b) Altitude control: Similar to the experiment regarding
the yaw, we ran an experiment to assess the behavior of
the altitude control. In this test we set the desired altitude
to 150 cm. In the beginning the vehicle was hovering over
the ground. After enabling the stabilization the vehicle started
climbing to the desired altitude. The desired height was kept
by the vehicle up to an error of±10 cm. The results are shown
in Figure 7. Note, that this experiment was performed while
flying over different elevations.

c) x, y control: Finally we show an experiment for the
pose stabilization only. Note, that the pose stability is strongly
affected by the latency of the system (i.e., the time needed
to calculate the command given the laser data). Although
incremental motion estimates take only 5 ms in average (with
a maximum of 15 ms) we have to deal with a latency of
120 ms in average due to the wireless transmission and due
to the sensor buffer. A typical run including autonomous pose
stabilization is shown in Figure 8(b). Here, the quadrotor was
set to keep the initial pose of(0, 0) and once in a while, the
user used the remote control to move the quadrotor around 1 m
backwards. The quadrotor then autonomously moved back to
the desired position. Depending on the latency in the system
the pose oscillations are typically around±20 cm.

E. Path Planning and Obstacle Avoidance

In this section we present an experiment demonstrating our
algorithms for path planning and dynamic obstacle avoidance.
The quadrotor was given a goal point approximately 5 m in
front of it. A person was standing on the left (see the shaded
area in Figure 9 entering the corridor when the quadrotor
moved to its desired goal. The second image shows the
situation when the person is completely blocking the robot’s
path. In this case the quadrotor hovered around the last valid
way point since there was no valid plan to the goal anymore.
When the person moved to the left again, the quadrotor was
able to follow a de-tour as shown in the right image of
Figure 9. Note, that the snapshots show the endpoints of the
laser only. Although it looks like the quadrotor might have the



10

Fig. 9. Experiment for path planning and dynamic obstacle avoidance. The
quadrotor is given a goal point 5 m in front of it. The planned path is shown
in the left image. A person enters the corridor (shaded area) and blocks the
robot’s path, which results in an invalid plan. The quadrotor therefore hovers
around the last valid way point (second image). In the third image the person
moved back leaving the quadrotor enough space for a de-tour.

space to fly around the person in the second image, there is
no valid plan due to the safety margins around the walls.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a navigation system for au-
tonomous indoor flying utilizing an open-hardware quadrotor
platform. We described a complete navigation solution that
approaches the different aspects of localization, mapping, path-
planning, height estimation, and control. Since we do not
rely on special characteristics of the flying platform like the
dynamics model, we believe that our system can easily be
adapted to different flying vehicles. All modules in our system
run on-line. However, due to the relatively high computational
cost of some algorithms only a part of the software runs on-
board on the ARM processor whereas the other part runs off-
board on a laptop computer. Some preliminary tests make us
confident that the whole system can run on-board using the
next generation of embedded computers based on the Atom
processor. We provided a wide range of experiments and some
videos that highlight the effectiveness of our system. In future
work we plan to add a time of flight camera into our system.
We believe that this technology can be effectively integrated
and will allow us to relax the assumption that the vehicle
moves over a piecewise planar surface.
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