1 Towards Lazy Data Association in SLAM

Dirk Hahnel, Sebastian Thrit) Ben Wegbreit, and Wolfram Burgartl

! Department of Computer Science, University of Freiburg, Germany
2 Department of Computer Science, Stanford University, Stanford, CA

Abstract. We present a lazy data association algorithm for the simultaneous localization and
mapping (SLAM) problem. Our approach uses a tree-structured Bayesian representation of
map posteriors that makes it possible to revise data association decisions arbitrarily far into
the past. We describe a criterion for detecting and repairing poor data association decisions.
This technique makes it possible to acquire maps of large-scale environments with many
loops, with a minimum of computational overhead for the management of multiple data
association hypotheses. A empirical comparison with the popular FastSLAM algorithm shows
the advantage of lazy over proactive data association.

1.1 Introduction

Simultaneous localization and mapping (SLAM) addresses the problem of a vehicle
acquiring a map of its environment while simultaneously localizing itself relative to
this map. Most state-of-the-art algorithms approximate posterior distributions over
the map and the vehicle pose. In doing so, they accommodate the uncertainty that
arises from the robot’s sensor noise.

It is widely acknowledged that the SLAM problem consists of a continuous
and a discrete component [6,23]. The continuous estimation problem pertains to
the location of individual features in the environment and the pose of the robot
relative to these features. The discrete aspect of the SLAM problem idatiae
association probleni2,4,14], which is the problem of determining whether or not
two features observed at different points in time correspond to one and the same
object in the physical world. Data association problems arise when matching two
consecutive range scans [13]; or when closing a large cycle in the environment [3,9].
Unfortunately, the number of possible data associations may grow exponentially
over time. With unknown data association, the SLAM posterior may (in the worst
case) possess exponentially many modes; whereas it commonly contains only a
single mode for SLAM problems with known data associations.

The data association problem has been addressed extensively in the SLAM liter-
ature [18,22,24]. Most state-of-the-art online data association techniques in SLAM
areproactive in the sense that they generate all hypotheses at the time a feature is
observed, or a fixed number of time steps thereafter. The most basic example of a
proactive strategy is incremental maximum likelihood (ML) data association, which
chooses the most likely hypothesis [5]. In more sophisticated approaches, ML data
association decisions are made for groups of features at-a-time [22]. Other proactive
algorithms generate many data association hypotheses when a feature is observed,
and later terminate all but one of them as more sensor data arrives. Two examples



of the latter approach are the multi hypothesis Kalman filter (MHT) [2] and particle
filter-based algorithms like FastSLAM [10,15,7]. These algorithms are significantly
more robust, but at the expense of a much higher computational overhead required for
managing many hypothetical maps. The main problem with proactive techniques is
computational: In ambiguous situations, multiple data association hypotheses must
be generated to ensure that (with high likelihood) the correct association is among
them.

This paper seeks to establisteay data association technigue that can “repair”
past data association techniques arbitrarily far back into the past. Just as the ML
data associator, our approach picks the most likely data association when a feature
is observed. However, it differs from ML in that it monitors sensor data to detect
whether a different set of data associations (past and present) can yield a map
of higher likelihood. When such an opportunity is detected, past data association
decisions are revised accordingly. We illustrate our approach in the context of several
challenging mapping task, one involving a subterranean vehicle mapping a mine. A
comparison with the popular FastSLAM algorithm illustrates the advantages of lazy
over proactive data association.

1.2 Preliminaries

1.2.1 SLAM with Known Data Association

We adopt the common probabilistic formulation of the SLAM problem. The vehicle
pose at time is denotef]; we will use&;.; to denote the sequence of vehicle poses
from time 1 to time ¢. The environment of the vehicle is composedioffeatures
whose locations will be denoted = 64, ..., 6y, the vehicle's estimate @ is the
map. The goal of SLAM is to recover the map®fand the vehicle patky., from
sensor measurements and robot controls. Measurements will be denatecbg
controls byu,. The goal of a SLAM algorithm is to recover the posterior distribution
over the map and the vehicle pQs&;.;,© | z1.¢, u1.¢).

Underknown data associaticend Gaussian noise, this posterior can be estimated
using the extended Kalman filter (EKF) [16,21,20]. However, the EKF is inefficient
in that its update requires time quadratichh A flurry of recent research has led
to a number of algorithms that can perform the update in constant time under the
assumption of known data association [11,15,26].

1.2.2 Incremental Data Association

Letcy . be a vector otorrespondence variableahich are a discrete variable whose
valuesareifl,2,..., N}.If ¢, = n, the measurement corresponds to the feature
0,.1f ¢, = ¢, for two different points in times and¢, both measurements detected
the same object in the physical world. We now seek to identify the sequence of
correspondence variableg,; that maximize the posterior
él:t = argmaxp(ﬁl:h e | Z1:t, Ul:t, cl:t) (11)
C1:t

Unfortunately, the maximization is carried out overariables; furthermore, these
variables interact, and there is an exponential number of values that the combined
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Figure 1.1.(a) The data association tree, whose branching factor grows with the number of
landmarks in the map. (b) The proposed algorithm maintains the log-likelihood for the entire
frontier of expanded nodes, enabling it to find alternative paths. (c) Improved path.

vector ¢y, can take. This exponential complexity makes finding the correct data
association difficult.

Incremental ML approaches to SLAM bypass this problem by estimatingtthe
data associatiof} at the time the-th measurement arrives; and freeze it forever after.
This is equivalent to assuming that the optimal setting of the association variables
can be found by optimizing one after the other:

ét = argAmaXp(&:t, e | Z1:ty Ul t, ét, él:t—l) (12)
Ct

where the variableg;.;_, are held constant in the optimization on the right-hand
side. Figure 1.1a illustrates this approach. Shown there is the tree of possible data
association variables, with tinieat the root and timeat the leaves. The incremental
approach greedily follows what appears to be the most likely path at each step, from
the root on down. This is illustrated by the path highlighted in gray in Figure 1.1a.
Unfortunately, once a wrong choice has been made, the incremental ML approach
cannot recover. Moreover, wrong data association decisions introduce errors in the
map which, subsequently, can induce more errors in the data association. For this
reason, incremental ML data association is considered brittle in SLAM.

1.3 Lazy Data Association

1.3.1 Tree Search

Our approach uses a search procedure for considering alternative data association
decisions not just at the present time step, but also for time steps in the past. A simple
argument (reminiscent of that underlying the correctness of the A* algorithm [19])
enables us to drastically reduce the number of nodes expended during this search.
Figure 1.1b illustrates the basic idea: Our approach maintains not just a single path
through the data association tree, but an entire frontier. Every time a node is expanded
(e.g., through incremental ML), all alternative outcomes are also assessed and the



corresponding likelihoods are memorized. This is illustrated in Figure 1.1b, which
depicts the log-likelihood for an entire frontier of the tree. Notice that we chose to
represent the likelihood values as log-likelihoods, which is numerically more stable
than probabilities.

Finding the maximum in Equation (1.1) implies that the log-likelihood of the
chosen leaf is greater or equal to that of any other leaf at the same depth. Since the
log-likelihood decreases monotonically with the depth of the tree, we can guarantee
that we indeed found the optimal data association values when the log-likelihood
of the chosen leaf is greater or equal to the log-likelihood of any other node on
the frontier. Put differently, when a frontier node assumes a log-likelihood greater
than the one of the chosen leaf, there might be an opportunity to further increase
the likelihood of the data by revising past data association decisions. Our approach
then simply expands such frontier nodes. If an expansion reaches a leaf, this leaf
is chosen as the new data association; otherwise the search is terminated when the
entire frontier possesses values that are all smaller or equal to the one of the chosen
leaf. This approach is guaranteed to always maintain the best set of values for the
data association variables; however, occasionally it might require substantial search.

1.3.2 Equivalency Constraints

The key missing link is a SLAM representation that lets us efficiently modify
data association variables. Our approach effectively implements the idea of global
data association, but it does so via a set of auxiliary variables, cadjetyalency
variables Each such variable is of the forfy(¢, s) wheret ands are two different
points in time. The equivalency relatioy{t, s) holds if and only if bothc; and ¢,
correspond to the same physical landmark, that is; ¢s. Clearly, each assignment
of the data association variables; defines a set of such equivalency relationships.
Conversely, each set of equivalency relationships constrains the space of all valid data
association values. In the limit as all equivalency relations are recovered, the data
association can be determined up to a simple index permutation (which can never
be recovered, since the index of a feature is arbitrary). The optimization problem
defined in Equation (1.1), thus, becomes one of finding equivalency constraints.

Let I' define an arbitrary set of such pairwise equivalency constraints. Each
constrainty € I" is of the form~(t, s). The goal then is to identify the optimal set
of constraintd’”, that is, the set of constraints that maximizes the posterior:

arglglaxp(gl:t,@ | 21:t7U1:t7F) (1.3)

The notion of equivalency constraints makes it possible to relate two features to each
other even though their absolute identity is unknown.

1.3.3 Recovering the Path Posterior under Equivalency Constraints

Our approach for recovering the path posterior is similar in spirit to the Lu/Milios
algorithm [12]. Thekeyinsight is that equivalency constraints can be “translated” into
soft constraints that tie together two poses in the path posterior. More specifically,
consider the constraint(t, s). This constraint can be ‘softened’ into a constraint



that ties together the location of the feature detected; land the one detected by
zs. This quadratic constraint is of the form

[f(ztvgt) - f(zs’gs)]T R [f(«%;ft) - f(zsvgs)} (14)

Here R is a quadratic penalty, anflis the function that projects the measurement
z; into 3D coordinates, based on the robot pgseln general,f is a non-linear
projection; however, by approximating it with a first order Taylor expansion we
obtain a quadratic constraint of the form

4(¢) _“]T mlae) -] 15)

with a Jacobean matriz and a vecton (indexes omitted for brevity). This quadratic
constraint captures the information pertaining to the robot path, which arises from
multiple sightings of the same feature according to the data association constraint
~(t, s).

Additional constraints for the robot path originate from the robot contrgls
here written in negativibg-form

t
—logp(&r | wie) = —logp(ér) = D logp(& | uy, & 1)

T=2

t
= const. + 3> [& — g(ur, & 1)]" Qr (& — glur, &1))]
T=2

t T
~ const. +% E [BT ( & > - bT] Q- {BT ( & > — bT] (1.6)
— 67'71 é-‘rfl

EachB. is a Jacobean matrix, atds a vector. The last step of this approximation
involves again a Taylor expansion, in which the nonlinear motion model is linearized.
Adding Equations (1.5) and (1.6) together leads to a system of quadratic equations
in the path variableg; .; of the form

J:=const. +[C & — c]T P [C- &y —d (1.7)

HereC' is a sparse matrix that links together elements in the path vectok; end

a vector. The matrix? defines a Mahalanobis distance composed of the tdtms
and Q.. This quadratic function is (up to a constant) the logarithm of a Gaussian
approximation to the posterior over the robot path under the constraint Sdie
mean of this Gaussian is recovered by setting the first derivative to zero:

aJ  _r . 1L
i =C"P[C-&i—c =0 (1.8)

The solution to this equality is given by

Gu=(C"PC)'CT"Pe (1.9)



where the matrix in the inversion is high-dimensional but extremely sparse. The
covariance is simply the second derivative/of

0%J
af%:t

The mean and covariance are the estimate of the SLAM posterior at tifitee
classical solution to this problem involves the inversion of a spare matrix, which is
costly [8]. However, there exists a number of efficient approximations, such as loopy
belief propagation [17] and tree-based approximation techniques [27] for approxi-
mating these quantities; all of those techniques can exploit an existing solution when
modifying the set of equality constraints.

The key insight into this set of quadratic equations is that incrementally adding or
removing a constraint can be done computationally very efficiently. This is the direct
result of the matrix inversion lemma. Suppose we would like to add a constraint of
the form~(t, s). This leads to a local modification of the matfixand the vector
in (1.7), which involve only; and&,:

=ctpc (1.10)

C'— C+8SAST
d —c+ S0 (1.11)

HereA and§ are alow-dimensional matrix, and vector, respectively. The matisx

a projection matrix for mapping low-dimensional vectors back into high-dimensional
spaces. According to the inversion lemma gives us a new solution for the inverse
termin (1.9):

ctpcht=(C+85AST)T P[C+ SAST))?
=T PC+25TATSPC + STATS P ST)~1 (1.12)

1.3.4 Incorporating Negative Measurement Information

The approach described thus far only accounts for matching points in 3D space.
Equality constraint bend the path of the robot relative to the path reconstructed from
pure odometry. As a result, the likelihood maximizing set of equality constraints
would be the empty set, and each feature would simply be declared a new one.
This is because a bent path is less likely under the robot’s control variables than a
non-bent one.

The problem with the approach thus far is that it does not account for “negative”
information. Negative information pertains to situations where a robot fails to see
a measurement. Range sensors, which are brought to bear in our implementation,
return positive and negative information with regards to the presence of objects in
the world. The positive information are object detections. The negative information
applies to the space between the detection and the sensor. The fact that the robot
failed to detect an object closer than its actual reading provides information about
theabsencef an object within the measurement range.

To evaluate the effect of a new constraint on the overall likelihood of the data,
our approach evaluates both types of information: positive and negative. Both types
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Figure 1.2.(a) Mine map with incremental ML scan matching and (b) using our lazy data
association approach. The map is approximately 250 meters wide, and acquired without
odometry information.

are obtained by calculating the pairwise (mis)match of two scans under their pose
estimate. In our implementation, the log-likelihood of each measurement is obtained
by superimposing a scan onto a local occupancy grid map build by another scan. In
doing so, it is straightforward to determine the probability of a measurement in a

way that incorporates both the positive and the negative information.

1.4 Experimental Results

We have implemented a version of our algorithm complex enough to permit testing
in realistic setting with large-scale data sets. Our first data set was acquired in
an abandoned mine [1,25], using a vehicle equipped with a laser range finder. The
vehicle does not provide any odometry or controls information; and no values for

are available. A further difficulty arises from the absence of well-defined “landmarks”
inthe mine. When faced with ra@(10°) laser measurements, the number of possible
data association variables is beyond what can be handled computationally. To make
this problem tractable, we modified the basic algorithm in a number of ways. Instead
of using all poses in the optimization, our approach acquires local occupancy maps of
approximately five meters length, assuming that within a local map, the incremental
ML data association techniques works reliable (which in practice it does). As aresult,
we only have to align a few hundred local maps, making the problem computationally
tractable. Further, we have not yet implemented the most efficient version of our
algorithm (e.g., we are not using Equation (1.12)), which makes our implementation
slower than real-time.

The left panel of Figure 1.2a depicts the result of incremental ML data associa-
tion, which is equivalent in our case to regular incremental scan matching. Clearly,
certain corridors are represented doubly in this map, illustrating the shortcomings of
the ML approach. The right panel, in comparison, shows the result of our approach.
Clearly, this map is more accurate than the one generated by the incremental ML
approach. Its diameter is approximately 250 meters wide, and the floor of the mine
is highly uneven.
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Figure 1.3.(a) Log-likelihood of the actual measurement, as a function of time. The lower
likelihood is caused by the wrong assignment. (b) Log-likelihood using our approach, which
recursively fixed false data association hypotheses. The success of our approach is manifested
by the lack of a distinct dip.
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Figure 1.4. Example of our lazy data association technique: (a) When closing a large loop,
the robot first erroneously assumes the existence of a second, parallel hallway. However, this
model leads to a gross inconsistency as the robot encounters a corridor at a right angle. At this
point, our approach recursively searches for improved data association decisions, arriving on
the map shown in diagram (b).

Figure 1.3a illustrates the log-likelihood of the most recent measurement (not
the entire path), which drops significantly as the map becomes inconsistent. At
this point, our approach engages in searching alternative data association values. It
quickly finds the “correct” one and produces the map shown in Figure 1.2b. The area
in question is shown in Figure 1.4, illustrating the moment at which the likelihood
takes its dip. The log-likelihood of the measurement for our approach is shown in
Figure 1.3b.

We also compared lazy data association with a popular proactive one, the Fast-
SLAM algorithm [10,15,7]. Our comparison is based on the implementation in [10],
which addresses mapping with laser range finders (instead of idealized point fea-
tures). The data set was gathered in a large indoor environment, using a Pioneer 2
robot equipped with a laser range-finder. To make this problem difficult, the robot
first traversed a small loop a number of times, before closing a larger loop. This is
shown in Figure 1.5a. Figure 1.5b shows the result for the incremental ML approach,
which is implemented here as an incremental scan matching algorithm. FastSLAM'’s
map is shown in Figure 1.5c, for 100 particles. Both of these maps show inconsisten-
cies in the upper left corner. Our approach produces the map in Figure 1.5d, which
is significantly more accurate.

When mapping the small cycle, FastSLAM runs out of particles. This is shown in
Figure 1.6, which plots the particles (including their paths) before and after closing



the small cycle on the right. While in principle, the problem can be reduced by
using larger particle sets, eventually such a deprivation takes place, posing intrinsic
limits on FastSLAM'’s ability to map large environments with many cycles. This is a
fundamental problem inherent in all proactive approaches; FastSLAM is among the
most robust proactive approaches in the present literature.

1.5 Conclusion

This paper described a new algorithm for data association in SLAM. In essence,
our approach searches the combinatorial tree of possible data association decisions.
The search is lazy: only when an alternative assignment shows promise will it be
evaluated. To implement this efficiently, our approach condenses maps into graphical
representation, and employs equality constraints for alleged data associations. Using
linear algebra techniques, these constraints can be added or removed efficiently. We
have evaluated our approach using some of the most challenging data sets in our
possession, and have consistently found that it produces accurate maps, even if for
maps with many large cycles.

Acknowledgments

The research has been sponsored by DARPAs MARS Program (contracts N66001-
01-C-6018 and NBCH1020014), which is gratefully acknowledged. The authors
also acknowledge an inspiring discussion with Peter Cheeseman who suggested to
explore lazy data association techniques.

References

1. C. Baker, Z. Omohundro, S. Thayer, W. Whittaker, M. Montemerlo, and S. Thrun. A
case study in robotic mapping of abandoned mine®réteedings of FSR-2003

2. Y. Bar-Shalom and T. E. Fortmanfiracking and Data AssociationAcademic Press,
1988.

3. M. Bosse, P. Newman, M. Soika, W. Feiten, J. Leonard, and S. Teller. An atlas framework
for scalable mapping. IRroceedings of ICRA-2003

4. J.C. Cox. Areview of statistical data association techniques for motion correspondence.
International Journal of Computer Visioa0(1):53—-66, 1993.

5. G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A computationally efficient solution
to the simultaneous localisation and map building (SLAM) problem. Working notes
ICRA'2000 Workshop W4: Mobile Robot Navigation and Mapping, 2000.

6. G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba. A solution
to the simultaneous localisation and map building (SLAM) probl#8EE Transactions
of Robotics and Automatip2001.

7. A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultaneous localization and mapping
without predetermined landmarks. Rroceedings of IJCAI-Q3

8. Anshul Gupta, George Karypis, and Vipin Kumar. Highly scalable parallel algorithms
for sparse matrix factorizationEEE Transactions on Parallel and Distributed Systems
8(5):502-520, 1997.

9. J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic environments. In
Proceedings of CIRA-00



(b) Incr. ML (map inconsistent on Ieft)

Figure 1.5.(a) Path of the robot. (b) Incremental ML (scan matching) (c) FastSLAM. (d) Our
approach.

(b)

Figure 1.6. The problem with FastSLAM is particle deprivation: (a) Particle paths before
closing the small loop on the right and (b) after closing it.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

D. Hahnel, D. Fox, W. Burgard, and S. Thrun. A highly efficient FastSLAM algorithm for
generating cyclic maps of large-scale environments from raw laser range measurements.
In Proceedings of IROS-03

J.J. Leonard and H.J.S. Feder. A computationally efficient method for large-scale con-
current mapping and localization. Rroceedings of ISRR-99

F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.
Autonomous Robqtd:333-349, 1997.

F. Lu and E. Milios. Robot pose estimation in unknown environments by matching 2d
range scansJournal of Intelligent and Robotic Syste8:249-275, 1998.

M. Montemerlo and S. Thrun. Simultaneous localization and mapping with unknown
data association using FastSLAM. Pnoceedings of ICRA-03

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that provably con-
verges. InProceedings of IJCAI-Q3

P. Moutarlier and R. Chatila. An experimental system for incremental environment
modeling by an autonomous mobile robot.Aroceedings of ISER-89

K.P. Murphy, Y. Weiss, and M.l. Jordan. Loopy belief propagation for approximate
inference: An empirical study. IRroceedings of UAI-99

J. Neira and J.D. Tabd. Data association in stochastic mapping using the joint compat-
ibility test. IEEE Transactions on Robotics and Automatitbi(6):890-897, 2001.

N. J. NilssonPrinciples of Artificial Intelligence Springer Publisher, 1982.

R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in
robotics. InAutonomous Robot Vehiclel67-193. Springer, 1990.

R.C. Smith and P. Cheeseman. On the representation and estimation of spatial uncertainty.
International Journal of Robotics Resear&{4):56-68, 1986.

J.D. Tar@s, J. Neira, P. Newman, and J. Leonard. Robust mapping and localization in
indoor environments using sonar data. TR TM 2001-04, MIT Marine Robotics Lab,
2001.

S. Thrun. Robotic mapping: A survey. Hxploring Artificial Intelligence in the New
Millenium. Morgan Kaufmann, 2002.

S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent mapping and
localization for mobile robotsMachine Learning31:29-53, 1998.

S. Thrun, D. Bhnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Burgard, C. Baker,
Z. Omohundro, S. Thayer, and W. Whittaker. A system for volumetric robotic mapping
of abandoned mines. Proceedings of ICRA-03

S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, and A.Y. Ng. Simultaneous
mapping and localization with sparse extended information filters. In J.-D. Boissonnat,
J. Burdick, K. Goldberg, and S. Hutchinson, edité*mceedings of WAFR-02

M. J. Wainwright Stochastic processes on graphs with cycles: geometric and variational
approachesPhD thesis, MIT, 2002.



