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Abstract

In this paper we consider the problem of three-dimensional scan registration for au-
tonomous mobile vehicles. The problem of 3D scan matching is of enormous importance
for the construction of metric representations of the environment, for localization, and for
navigation planning in the three-dimensional space. We present a probabilistic technique
that computes a probability density for each pair of scans and then performs the registration
using a greedy hill-climbing search in the likelihood space. We compare our approach with
the ICP-algorithm which currently is the most popular technique for matching 3D range
scans. We present experiments illustrating that the estimation error of the ICP algorithm is
significantly higher than the resulting error obtained with our probabilistic approach.

1 Introduction

The topic of learning 3D models of buildings (exterior and interior) and man-made objects has
received considerable attention over the past few years. 3D models are useful for a range of
applications. For example, architects and building managers may use 3D models for design and
utility studies using virtual reality (VR) technology. Emergency crews, such as fire fighters,
could utilize 3D models for planning as to how to best operate at a hazardous site. 3D models
are also useful for robots operating in urban environments. And finally, accurate 3D models
could be a great supplement to the video game industry. In all of these application domains,
there is a need for methods that can generate 3D models at low cost, and with minimum human
intervention.

In the literature, approaches for 3D mapping can be divided into two categories: Approaches
that assume knowledge of the pose of the sensors [1, 2, 3, 5, 14], and approaches that do
not [11, 15, 12, 7]. In the present paper, we are interested in using mobile robots for data
acquisition; hence our approach falls into the second category due to the inherent uncertainty in
robot odometry. A popular approach to deal with possible errors in odometry is the registration
of different scans. The technique presented in [11], for example, uses features extracted from
camera images for localization. However, they also rely on the supervision by a human operator
especially in situations with poor illuminations and spares features. [15] in contrast assumes that
the robot operates on a planar space and thus can use 2D scan matching techniques to estimate
the position of the vehicle. In [10] we presented an approach to simplify the models resulting
from this process. By fitting planes to the range data, we obtained a significant reduction of the



Figure 1:The robot Herbert which is equipped with a SICK LMS laser and an AMTEC wrist unit. The
3D-data are acquired by changing the tilt of the AMTEC module.

complexity of the model. [12] creates planar 3D models using camera images. In this system
the registration is carried out using landmarks such as edges extracted from the camera images.
Frueh et al. [7] present a technique to eliminate rotational errors of the robot by comparing 3D
scans. They extract planes out of the range scans and minimize the distances between different
planes.

In this paper we consider the problem of full 3D range scan registration without restrictions on
the displacements between two different scans. The data are acquired with the mobile robot
Herbert (see Figure 1), which is a Pioneer 2-AT system equipped with a 2D Sick LMS range
scanner mounted on an AMTEC PowerCube Wrist Module. Each complete sweep obtained
with this system consists results in 146.000 range data.

Currently, the Iterative Closest Point algorithm (ICP), which iteratively tries to minimize the
distances between the points on the first scan and the corresponding closest point in the second
scan, is one of the most popular techniques for range registration. Whereas this approach is
quite efficient, it has the major drawback, that a convergence to the correct position is not
guaranteed. To overcome this problem, we propose a probabilistic matching technique that
uses an approximative probabilistic and parametric model representing the characteristics of the
sensor. Compared to the ICP algorithm, our approach has several desirable advantages. First,
the parameters of the model can be adapted to the accuracy of the underlying sensor. Second,
our approach considers the complete rays of each laser beam and therefore can correctly handle
occlusions. It does not require any heuristics to deal with occlusions, as for example, proposed
in [9]. Finally, it can correctly handle maximum range measurements which generally are
filtered out in scan matching procedures.

2 The ICP algorithm

The Iterative Closest Point (ICP) Algorithm [4, 8] is a popular method of range data process-
ing. Given two sets of partially overlapping range data and an initial estimate of their relative
positions, the ICP approach computes a registration of these two sets in an iterative fashion. In
each round, the ICP algorithm determines for each point in the first set the closest point in the
second set. It then tries to find a relative position of the two scans such that the mean squared
error (MSE) given by the sum of the squared distances between the corresponding points is



Figure 2:Polygonal model obtained after registering two scans using our probabilistic method.

minimized. The process is continued until either the MSE falls below a given threshold or no
further improvement can be achieved.

The key properties of the ICP algorithm can be summarized as follows. First, it converges to the
nearest local minimum of the sum of squared distances between the closest points. Therefore,
the final location is not necessarily equivalent to the optimal position. Furthermore, a good
initial estimation of the transformation between point sets is required to ensure convergence to
a good position. Finally, the ICP algorithm cannot deal with maximum-range measurements.
Accordingly, it throws away a serious amount of information. In our experiments the maximum
range measurements form around 35% of the overall data.

3 Probabilistic Scan Registration

At the core of the probabilistic range scan registration is an approximative physical model of the
range scanning process. Obviously, an ideal sensor would always measure the correct distance
to closest obstacle in the sensing direction. However, sensors and models generated out of
range scanners are noisy. Therefore, our current model incorporates measurement noise and
random noise in order to deal with errors typically found in 3D range scans. First, we generally
have normally distributed measurement errors around the distance “expected” according to the
current position of the scanner and the given the model of the environment (e.g. the previous
scan). Additionally, we observe randomly distributed measurements because of errors in the
model and because of deviations in the angles between corresponding beams in consecutive
scans. Therefore, our model consist of a mixture of a Gaussian with a uniform distribution (see
Figure 3). The mode of the Gaussian corresponds to the distance expected according to the
current state of the robot and the given surface. Please note that this quantity can efficiently be
computed using ray-tracing techniques based on a spacial tiling and indexing [13]. In practice,
the values of the other two parameters, i.e. the variance of the Gaussian and the height of the
uniform have to be adapted to the actual accuracy of the sensor uses (see also [6]). Additionally,
to speed-up the computation, we use a piecewise linear approximation of this density.

To compute the likelihood of a beam, we compute the distancede to the closest obstacle in the



Figure 3:The probabilistic measurement model given as a mixture of a Gaussian and a uniform distri-
bution and its approximation by piecewise linear functions.

measurement direction. Then we compute the probability of the measured distancedm given
the expected distance, i.e. we determine the quantityP (dm | de) using the mixture computed for
de. Under the assumption that all beams inS are independent given the modelS ′, the likelihood
of a complete sweepS givenS ′ and a locationl is then computed according to

p(S | S ′, l) =
∏
s∈S

p(s | de(s, S ′, l)) (1)

Herede(s, S ′, l) is the distance expected according to the beam direction ofs, the previous scan
S ′, and the location of the scannerl. To compute this quantity, our current system constructs
a surface out ofS ′ by introducing a triangle between adjacent points whose distance does not
exceed a certain threshold which itself depends on the length of the beams. To determine the
most likely position of the scanS given a reference scanS ′ we apply a hill-climbing strategy
similar to that of ICP. We repeatedly change the positionl of the scanS as long as the likelihood
p(S | S ′, l) increases.

Compared to the ICP algorithm and other scan-matching techniques, our approach has several
advantages. First, it exploits the fact that each laser beam is a ray that does not go through
surfaces and therefore does not require special heuristics for dealing with occlusions. Please
note that there are variants of the ICP that match a scan to the corresponding closest points on
the surface. However, even those approaches cannot correctly deal with occlusions. Second,
our approach exploits maximum range readings since beams going through surfaces reduce the
likelihood of an alignment.

4 Experiments

The experiments described in this section are designed to analyze the advantages of our proba-
bilistic method over the ICP technique. To acquire the data we moved our mobile robot Herbert
(see Figure 1) over our university campus and recorded data by changing the tilt of the AMTEC
Wrist Module in a range of 145 degrees. During such a tilt operation the SICK LMS scanner
takes 400 scans each consisting of 361 beams at an angular resolution of 0.5 degrees.

Figure 2 shows the final model obtained by registering two 3D scans with our probabilistic
method. As can be seen from the figure, important details such as windows and corners are still



Figure 4:Details of two scans registered with ICP (left) and our probabilistic method (right).

Table 1: Resulting estimation errors.

Displacement ICP Ray-Tracing
5 cm 79.8 cm 8.8 cm

10 cm 74.6 cm 8.4 cm
20 cm 81.2 cm 11.6 cm
35 cm 86.3 cm 6.0 cm
50 cm 81.3 cm 10.7 cm
70 cm 85.9 cm 8.6 cm

100 cm 94.5 cm 11.1 cm
average 83.4 cm 9.3 cm

error (+/-) 5.7 (+/-) 3.7

clearly visible which indicates a small localization error. Figure 4 gives a detailed view of a part
of the model obtained after registering the two scans with the ICP algorithm and our technique.
As can be seen from the figure the ICP algorithm produces a larger error than our approach.

To quantitatively compare our algorithm to the ICP algorithm we randomly introduced errors
in the odometry data and applied both algorithms to register the scans. The correct pose of the
second scan relative to the first scan was estimated manually by inspecting different displace-
ments. Table 1 shows the results for different amounts of error introduced. As can be seen
from the figure the ICP algorithm never converges to the correct position. This is mainly due
to wrong assignments in areas in which the system scanned the ground. In contrast to that, our
probabilistic approach converges to the correct position with only a small residual error.

5 Conclusions

In this paper we presented a probabilistic method for full 3D scan registration. Our approach
is a dense matching technique that makes no assumptions about features or landmarks in the



environment. Additionally, it does not require that the ground is planar or that the range scans
contain planar structures. The key advantages of our method are threefold. First, our method in-
cludes a ray-tracing operation and therefore can correctly handle occlusions. It does not require
special heuristics for dealing with occlusions. Second, our approach is able to exploit maxi-
mum range readings which generally is not possible with scan matching procedures. Finally,
the basic parameters of the model are sensor-specific and in principle can be adapted according
to the accuracy of the sensor.

The technique has been implemented and tested on a mobile robot and in a realistic outdoor
scenario. We furthermore analyzed our approach and compared it to the popular ICP algorithm.
The experiments demonstrate that our approach can reliably register three-dimensional range
scans and that it provides a higher accuracy than the ICP technique.

References

[1] P. Allen and I. Stamos. Integration of range and image sensing for photorealistic 3D modeling. InProc. of
the IEEE International Conference on Robotics & Automation (ICRA), pages 1435–1440, 2000.

[2] R. Bajcsy, G. Kamberova, and L. Nocera. 3D reconstruction of environments for virtual reconstruction. In
Proc. of the 4th IEEE Workshop on Applications of Computer Vision, 2000.

[3] S. Becker and M. Bove. Semiautomatic 3-d model extraction from uncalibrated 2-d camera views. InProc. of
the SPIE Symposium on Electronic Imaging, San Jose, 1995.

[4] P. Besl and N. McKay. A method for registration of 3d shapes.Trans. Patt. Anal. Mach. Intell. 14(2), pages
239–256, 1992.

[5] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture from photographs. InProc. of the
23rd International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 1996.

[6] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic environments.Journal
of Artificial Intelligence Research, 11, 1999.

[7] C. Früh, M. v. Ehr, and R. Dillmann. Aufbereitung von 3D Laserscans für ein autonomes, mobiles Messys-
tem. InProc. Fachgespr̈ach Autonome Mobile Systeme (AMS), 2000.

[8] M. Greenspan and G. Godin. A nearest neighbor method for efficient icp. InProceedings of the 3rd Interna-
tional Conference on 3-D Digital Imaging and Modeling (3DIM01), 2001.

[9] J.-S. Gutmann and B. Nebel. Navigation mobiler roboter mit laserscans. InProc. Fachgespr̈ach Autonome
Mobile Systeme (AMS), 1997.

[10] D. Hähnel, W. Burgard, and S. Thrun. Learning compact 3d models of indoor and outdoor environments
with a mobile robot. InProc. of the European workshop on advanced mobile robots (EUROBOT), 2001.

[11] S. Hakim, P. Boulanger, and F. Blais. A mobile system for indoors 3-d mapping and positioning. InProc. of
the 4th Conference on Optical 3-D Measurement Techniques, 1997.

[12] M. Rous, A. Matsikis, F. Broicher, and K.-F. Kraiss. Erzeugung eines planaren 3D-Modells aus Kameraauf-
nahmen zur Anwendung in der mobilen Robotik. InProc. Fachgespr̈ach Autonome Mobile Systeme (AMS),
2000.

[13] H. Samet.Applications of Spatial Data Structures. Addison-Wesley Publishing Company, 1990.
[14] H. Shum, M. Han, and R. Szeliski. Interactive construction of 3d models from panoramic mosaics. InProc. of

the International Conference on Computer Vision and Pattern Recognition (CVPR), 1998.
[15] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot mapping with applications to

multi-robot and 3D mapping. InProc. of the IEEE International Conference on Robotics & Automation
(ICRA), 2000.


