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Abstract

This paper presents an algorithm for full 3d shape reconstruction of indoor and outdoor
environments with mobile robots. Data is acquired with laser range finders installed on
a mobile robot. Our approach combines efficient scan matching routines for robot pose
estimation with an algorithm for approximating environments using flat surfaces. On top
of that, our approach includes a mesh simplification technique to reduce the complexity of
the resulting models. In extensive experiments, our method is shown to produce accurate
models of indoor and outdoor environments that compare favorably to other methods.

Key words: Map building, 3d mapping, Model simplification

1 Introduction

The topic of learning 3d models of buildings (exterior and interior) and man-made
objects has received considerable attention over the past few years. 3d models are
useful for a range of applications. For example, architects and building managers
may use 3d models for design and utility studies using virtual reality (VR) technol-
ogy. Emergency crews, such as fire fighters, could utilize 3d models for planning
as to how to best operate at a hazardous site. 3d models are also useful for robots
operating in urban environments. And finally, accurate 3d models could be a great
supplement to the video game industry, especially if the model complexity is low
enough for real-time VR rendering. In all of these application domains, there is
a need for methods that can generate 3d models at low cost, and with minimum
human intervention.

In the literature, approaches for 3d mapping can be divided into two categories:
Approaches that assume knowledge of the pose of the sensors [1,2,3,4,5], and ap-
proaches that do not [6,7]. In the present paper, we are interested in using mobile
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robots for data acquisition; hence our approach falls into the second category due
to the inherent noise in robot odometry. However, unlike the approaches in [6,7]
which generate highly complex models, our focus is on generating low-complexity
models that can be rendered in real-time. The approach in [7], for example, com-
poses models where the number of polygons is similar to the number of raw scans,
which easily lies in the hundreds of thousands even for small indoor environments.
The majority of existing systems also requires human input in the 3d modeling
process. Here we are interested in fully automated modeling without any human
interaction. Our approach is also related to [8], which reconstructs planar models
of indoor environments using stereo vision, using some manual guidance in the re-
construction process to account for the lack of visible structure in typical indoor
environments.

This paper presents an algorithm for generating simplified 3d models of indoor and
outdoor environments. The data for generating these models are acquired by mobile
robots equipped with laser range finders. To estimate the pose of the robot while
collecting the data, a probabilistic scan matching algorithm is used. The resulting
pre-filtered data is globally consistent but locally noisy. A recursive surface identi-
fication algorithm is then employed to identify large flat surfaces, thereby reducing
the complexity of the 3d model significantly while also eliminating much of the
noise in the sensor measurement. The resulting 3d models consist of large, planar
surfaces, interspersed with small fine-structured models of regions that cannot be
captured by a flat-surface model.

The topic of simplification of polygonal models has long been studied in the com-
puter graphics literature (see e.g., [9,10,11]), often with the goal of devising algo-
rithms for real-time rendering of complex models. There are two important charac-
teristics of the data generated by robots that differ from the polygonal model studied
in the computer graphics literature. First, robot data is noisy. The models studied in
the computer graphics literature are usually assumed to be noise-free; hence, sim-
plifications are only applied for increasing the speed of rendering, and not for the
reduction of noise. This has important ramifications, as the noise in the data renders
a close-to-random fine structure of the initial 3d models. Second, built structure is
known to contain large, flat surfaces that are typically parallel or orthogonal to the
ground. Such a prior is usually not incorporated in polygon simplification algo-
rithms. Consequently, a comparison with the algorithm presented in [9] illustrates
that our approach yields significantly more accurate and realistic-looking 3d mod-
els.

2 Computing Consistent Maps

Our current system is able to learn 2d and 3d maps using range scans recorded
with a mobile robot. In both cases, the approach is incremental. Mathematically,
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Figure 1. Two-dimensional map of Sieg Hall at University of Washington, Seattle, con-
structed out of 8013 2d range scans.

we calculate a sequence of posesl̂1, l̂2, . . . and corresponding maps by maximizing
the marginal likelihood of thet-th pose and map relative to the(t − 1)-th pose and
map:

l̂t = argmax
lt

{p(st | lt, m̂(l̂t−1, st−1)) · p(lt | ut−1, l̂t−1)} (1)

In this equation the termp(st | lt, m̂(l̂t−1, st−1)) is the probability of the most
recent measurementst given the poselt and the map̂m(l̂t−1, st−1) constructed so
far. The termp(lt | ut−1, l̂t−1) represents the probability that the robot is at location
lt given the robot previously was at positionl̂t−1 and has carried out (or measured)
the motionut−1. The resulting posêlt is then used to generate a new mapm̂ via the
standard incremental map updating function presented in [12]:

m̂(l̂t, st) = argmax
m

p(m | l̂t, st) (2)

The overall approach can be summarized as follows: At any pointt− 1 in time the
robot is given an estimate of its posel̂t−1 and a map̂m(l̂t−1, st−1). After the robot
moved further on and after taking a new measurementst, the robot determines the
most likely new posêlt. It does this by trading off the consistency of the measure-
ment with the map (first term on the right-hand side in (1)) and the consistency
of the new pose with the control action and the previous pose (second term on the
right-hand side in (1)). The map is then extended by the new measurementst, using
the posêlt as the pose at which this measurement was taken.

It remains to describe how we actually maximize Equation (1). Our system applies
two different approaches depending on whether the scans to be aligned are two-
dimensional or three-dimensional scans.
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2.1 Two-dimensional Scan Alignment

Our algorithm to 2d scan matching is an extension of the approach presented in [7].
To align a scan relative to the previous scans, we use the mapm̂(l̂t−1,∆t, st−1).
Additionally to [7] we integrate over small Gaussian errors in the robot pose when
computing the maps. This avoids that many cells remain unknown especially if the
scans contain long beams, increases the smoothness of the likelihood function to
be optimized, and thus results in better alignments. To maximize the likelihood of
a scan with respect to the given map, we apply a hill climbing strategy. A typical
map resulting from this process is shown Figure 1. The size of the map is 50m times
14m.

2.2 Aligning Three-dimensional Range Scans

Unfortunately, three-dimensional variants of the maps and likelihood functions de-
scribed above would consume too much memory. Therefore this approach is not
applicable to 3d scan alignment. Instead, we represent 3d maps as triangle meshes
constructed from the individual scans. We create a triangle for triples of neigh-
boring scan points, if the maximum length of an edge does not exceed a certain
threshold which depends on the length of the beams.

To compute the most likely position of a new 3d scan with respect to the current
3d model, we apply an approximative physical model of the range scanning pro-
cess. Obviously, an ideal sensor would always measure the correct distance to the
closest obstacle in the sensing direction. However, sensors and models generated
out of range scanners are noisy. Therefore, our system incorporates measurement
noise and random noise in order two deal with errors typically found in 3d range
scans. First, we generally have normally distributed measurement errors around the
distance “expected” according to the current position of the scanner and the given
model of the environment. Additionally, we observe randomly distributed mea-
surements because of errors in the model and because of deviations in the angles
between corresponding beams in consecutive scans. Therefore, our model consists
of a mixture of a Gaussian with a uniform distribution. The mode of the Gaussian
corresponds to the distance expected given the current map. Additionally, we use
a uniform distribution to deal with maximum range readings. To save computation
time, we approximate the resulting distribution by a mixture of triangular distribu-
tions.

Whereas this approach saves memory, it requires more computation time than the
technique for 2d scan alignment. However, in practical experiments we found out
that this technique has two major advantages over the Iterative Closest Point (ICP)
algorithm [13,14] and other similar scan-matching techniques. First, it exploits the
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Figure 2. The probabilistic measurement model given as a mixture of a Gaussian and a
uniform distribution and its approximation by piecewise linear functions.

Figure 3. The platforms used for acquiring the 3d data. Outdoor system with two lasers
(left), indoor system (middle), outdoor system with pan/tilt unit (right).

fact that each laser beam is a ray that does not go through surfaces and therefore
does not require special heuristics for dealing with occlusions. Second, our ap-
proach also exploits the information provided by maximum range readings. For
example, if such a beam goes through surfaces in the map, it reduces the likelihood
of the current alignment.

To compute the likelihood of a beamb given the current map̂m(l̂t−1, st−1), we
first determine the expected distancee(b, m̂(l̂t−1,∆t, st−1)) to the closest obstacle in
the measurement direction. This is efficiently carried using ray-tracing techniques
based on a spatial tiling and indexing [15] of the current map. Then we compute
the likelihood of the measured distance given the expected distance, i.e. we de-
termine the quantityp(b | e(b, m̂(l̂t−1, st−1))) using the mixture computed for
e(b, m̂(l̂t−1, st−1,∆t)). Assuming that the beams contained inst are independent,
we compute the likelihood of the whole scan as

p(st | lt, m̂(l̂t−1, st−1)) =
∏
b∈st

p(b | e(b, m̂(l̂t−1, st−1))). (3)

To maximize Equation 1 we again apply a hill climbing technique.
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2.3 Generating Raw 3d Data

To record the 3d data used throughout this paper we used three different mobile
platforms with two different kinds of laser configurations (see Figure 3). In the
first configuration the robots carry two lasers. Whereas the first laser scans hori-
zontally, the second laser is upward-pointed (see left and center image in Figure 3).
These systems, which are used for in-door mapping, use the front laser to maps an
unknown environment in 2d, thereby recovering their pose. At the same time the
upward pointed laser scans the 3d structure of the environment. The robot depicted
in the right image of Figure 3 is used for out-door environments only. It carries a
single laser scanner that is mounted on a pan/tilt unit allowing the robot to dynam-
ically change the scanning direction.

With all robots we obtain a polygonal model by connecting consecutive 3d points.
To avoid closing wholes coming from doorways etc, we only create a polygonal
surface if the consecutive points are close to each other. A typical model resulting
from this process for the Wean Hall at Carnegie Mellon University is depicted in
Figure 4. This data set was recorded with the robot depicted in the middle image of
Figure 3

Figure 4. Model learned for a fraction of the Wean Hall at the Carnegie Mellon University
(left) and fractions of the raw data for parts of the wall (center) and the ceiling (right).

3 Learning Smooth 3d Models

Although the position estimation techniques described in Sections 2.1 and 2.2 ap-
proach described above produces accurate position estimates, the resulting models
often lack the appropriate smoothness. Figure 4 shows, in detail, a model of a cor-
ridor including parts of a doorway (see center image) and the ceiling (see right
image). As it can be easily seen, the data is extremely rugged. Whereas some of
the ruggedness arises from remaining errors in the pose estimation, the majority
of error stems from measurement noise in laser range finders. However, the key
characteristic here is that all noise is local, as the scans have been globally aligned
by the 2d mapping algorithm. As a result, global structures cannot be extracted by
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considering small areas of the data. Rather, one has to scan larger fractions of the
model in order to find such structures.

For example, consider the fractions of the doorway and the ceiling depicted in the
right two images of Figure 4. Although the corresponding objects are planar in
the real world, this structure cannot be extracted from the local surfaces. Figure 5
shows the surface normals for 5000 surfaces of the wall and the ceiling partly shown
in Figure 4. As can be seen from the figure, the normals are almost uniformly
distributed.

Figure 5. Normed surface normals for a ceiling (left) and a wall (right).

Please note that this problem is inherent to the sensor-based acquisition of high-
resolution 3d-models. In order to scan an object with high resolution, the distance
of consecutive scanning positions must be sufficiently small. However, the smaller
is the distance between consecutive scanning positions, the higher is the influence
of the measurement noise on the deviation between surface normals of neighboring
shapes (and also to the true surface normal).

Since approximations of larger structures cannot be found by a local analysis, more
exhaustive techniques are required. In our system, we apply a randomized search
technique to find larger planar structures in the data. If such a planar structure is
found, our approach maps the corresponding 3d-points on this planar surface. In a
second phase neighboring surfaces in the mesh, which lie on the same plane and
satisfy further constraints described below, are merged into larger polygons.

3.1 Planar Approximation of Surfaces

The algorithm to find planes for sets of points is a randomized approach. It starts
with a randomly chosen point in 3d and applies a region growing technique to find
a maximum set of points in the neighborhood to which a fitting plane can be found.
As the optimal plane we chose that plane which minimizes the sum of the squared
distances to the pointsvi in the current region. The normal of this plane is given by
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the eigenvector corresponding to the smallest eigenvalue of the3 × 3 matrix

A =
n∑

i=1

(vi − m)T · (vi − m), where m =
1

n

n∑
i=1

vi (4)

is the center of mass of the pointsvi. The minimum eigenvalue corresponds to the
sum of the squares of the distances between the plane and the pointsvi.

Our approach proceeds as follows. It starts with a random pointv1 and its nearest
neighborv2. It then repeatedly tries to extend the current setΠ of points by consid-
ering all other points in increasing distance from this point set. Supposev′ is a point
such that the point distancepointDist(Π, v′) betweenv′ and one point inΠ is less
thanδ (which is 30cm in our current implementation). If the average squared error
error(Π ∪ {v′}) to the optimal plane forΠ ∪ {v′} is less thanε (which was 2.8 in
all our experiments) and if the distance ofv′ to the optimal plane for(Π ∪ {v′}) is
less thanγ (γ = 10cm in our implementation) thenv′ is added toΠ. As a result,
regions are grown to include nearby points regardless of the surface normal of the
polygons neighboring these points (which are assumed to be random). This pro-
cess is described more precisely in Table 1. To find the best planes, this process is
restarted for different randomly chosen starting pointsv1 andv2. Our approach al-
ways selects the largest plane found in each round. If no further plane can be found,
the overall process is terminated.

Table 1. The plane extraction algorithm.

select point tuple v1, v2

Π := {v1, v2}
WHILE (new point can be found) BEGIN

Select point v′ with pointDist(Π, v′) < δ

if error(Π ∪ {v′}) < ε && ||(Π ∪ {v′}, v′)|| < γ

Π := Π ∪ {v′}
END WHILE

3.2 Merging of Surfaces

In a second phase, neighboring polygons belonging to the same plane are merged
to larger polygons. A polygon belongs to a plane, if all of its edges belong to this
plane. Two polygons of the same plane can be combined, if

(1) both polygons have exactly one sequence of common edges and
(2) if both polygons do not overlap.
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Figure 6. Sweeping a plane through a point set (left) and computing a “virtual” vertical 2d
scan from a 3d scan.

Our approach repeatedly performs this merging process until there do not exist any
further polygons that can be merged. Please note that both conditions are sufficient
to ensure that each merging operation leads to a valid polygon. Furthermore, the re-
sulting polygons are not necessarily convex, i.e. our approach does not close wholes
in the model coming from doors or windows, such as the technique describes in [6].

Obviously, our approach solves a mesh simplification problem that has been stud-
ied throughly in the computer graphics literature. The important difference between
our approach and mesh simplification algorithms from computer graphics, such
as [9,10], lies in the way the input data is processed. In contrast to our method,
which tries to fit a plane to a larger set of points, the techniques presented in [9,10]
only perform a local search and consider only pairs of surfaces. Neighbored sur-
faces are simplified by minimizing an error or energy function which specifies the
visual discrepancy between the original model and simplified model in terms of
discontinuities in the surface normals. Because of the local noise in our data these
techniques cannot distinguish between areas with a higher level of detail such as
corners and areas with few details such as planar structures corresponding to walls.
Thus, the simplification is carried out uniformly over the mesh. Our approach, in
contrast, simplifies planar structures and leaves a high level of detail where it really
matters.

3.3 Improving the Efficiency

One of the major problems with the approach described above is its time complex-
ity. For a typical data set consisting of 200,000 surfaces, a naive implementation on
a standard PC requires over 10 hours to extract all planes. For environments like the
ones considered here, a major issue therefore is the reduction of the overall search
space.

To speed-up the plane extraction process, our system extracts lines out of the indi-
vidual two-dimensional range-scans using the split-and merge technique which has
been applied with great success in the past [16]. Given the Hessian normal form of
the extracted lines we compute a histograms of the line angles. Thereby each line
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Figure 7. Histogram of the angles of line segments found in all scans of the horizontal
(left image) and vertical (second image) scanner. Points belonging a plane for one sweep
of a plane through the point set (third image). Points close to a plane found during a
high-resolution sweep for the first peak in the resulting histogram (rightmost image).

is weighted proportionally to the number points that belong to it.

For the system with two range scanners, we compute a separate histogram for each
scanner. Since the scans are obtained asynchronously, we treat both histograms in-
dependently and compute the histogram for possible plane directions based on the
product of these two distributions. Figure 7 shows the histograms obtained for a
fraction of Wean Hall data set (see Figure 4). Whereas the left image shows the
predominant angles found in the horizontal scans, the right image shows the same
for the vertical scanner. To extract the planes, our approach proceeds as follows.
For each local maximum found in the histogram for vertical lines and each peak
in the histogram for horizontal scans we construct the corresponding plane in 3d.
We then sweep this plane along its normal through the data set (see Figure 6). For
each possible plane, we perform two different sweeps with two different discretiza-
tions of the plane positions along its normal. The first sweep is carried out using
a discretization of 5cm. The second sweep is then carried out for each peak found
during the first sweep.

As an example consider the histograms shown in Figure 7. The left image of this
Figure shows a plot of the number of points that are closer than 40cm to the corre-
sponding plane for different positions the plane along its surface normal. Here we
used the data set shown in Figure 4. The second plot shows the histogram that is
computed from the data acquired with the vertical scanner. The histogram obtained
by the first sweep is illustrated in the third image. Finally, the rightmost image
in Figure 7 shows the histogram obtained using a sweep with a discretization of
1cm for the first peak in the third image of the same figure. As can be seen, the
finer discretization shows a second peak. This peak comes from the doors in the
environment which constitute planes that are slightly displaced from the walls.

For each peak in the high-resolution histogram, we collect all data points which are
close to the corresponding plane and apply the plane extraction process described
above. Because the number of points close to a plane generally much smaller than
the overall number of points, we obtain an speed-up, which turned out to exceed
one order of magnitude in all our experiments.

Please note that the same technique can be applied to 3d data gathered with the
laser mounted on the pan-tilt unit. However, it requires certain geometric transfor-
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mations to correctly identify vertical and horizontal lines from these data. For the
sake of brevity, we only present the corresponding equations for the extraction of
the angles of vertical lines. To compute angles of vertical lines we transform the
data into a set of “virtual” vertical 2d-scans. Figure 6 shows the different param-
eters characterizing a single beamd of a 3d scan. The termα denotes the angle
betweend and center beamy′ of the laser with in the currently scanned plane. The
quantityβ is the tilt of the laser scanner. To efficiently compute the vertical 2d-scan
we sort all beams according to their vertical tilt angleδ and their angleγ to the
center beamy′ after both have been projected onto the horizontal plane. These two
quantities can be computed out ofα andβ by straightforward geometric computa-
tions. Obviously, we have:

x = d · sin(α), y′ = d · cos(α), y = y′ · cos(β), z = y′ · sin(β)

Accordingly,tan(γ) andsin(δ) can be computed as follows:

tan(γ) =
x

y
=

d · sin(α)

y′ · cos(β)
=

d · sin(α)

d · cos(α) · cos(β)
=

tan(α)

cos(β)

sin(δ) =
z

d
=

y′ · sin(β)

d
=

d · cos(α) · sin(β)

d
= cos(α) · sin(β).

Thus, we obtain:

γ = arctan(
tan(α)

cos(β)
), δ = arcsin(cos(α) · sin(β)) (5)

The vertical 2d-scans are then extracted by selecting those points for whichγ lies
within a small interval around the currently considered angleγ∗.

4 Experimental Results

Our approach has been implemented and tested using three different platforms (see
Figure 3), in indoor and outdoor environments. The robots were equipped with
two 2d laser-range scanners or one 2d scanner mounted on a pan/tilt unit. Whereas
the angular resolution of the laser used on the outdoor system is 0.25 degree, the
angular resolutions of the lasers mounted on the indoor systems were 1 degree and
0.5 degrees. The resolution of the measured distances is 1cm and the measurement
error of these systems lies between 0 and 20cm (SICK PLS) and 0 and 5cm (SICK
LMS). The speed of the first two mobile platforms were 10cm/s.

The first experiment was carried out in the Wean Hall at the Carnegie Mellon
University. Here the robot traveled 10m through a corridor and measured 140,923
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Figure 8. Approximations for the Wean Hall data set: Our approach (left) and QSlim (right).
Magnified view of a doorway in the corridor environment: Our approach (left) and QSlim
(right).

Figure 9. 3D data gathered in Sieg-Hall, University of Washington (left image) and simpli-
fied model (right image).

points in 3d using a SICK PLS laser scanner. The corresponding raw 3d data shown
in Figure 4 consisted of 267,355 triangles. The result of our simplification technique
is shown in the left image of Figure 8. For this data set our approach needed 6 min-
utes to compute the planes and generated 3613 polygons or quads (see Table 2).
Only 34,227 triangles could not be approximated by larger planar structures. As
a result, we obtained a significant reduction by 86% of the input data. The right
image of Figure 8 shows the result of the QSlim system [9] which applies com-
puter graphics algorithms to reduce the complexity of 3d models. Please note that
this model contains the same number of polygons as obtained with our approach.
Obviously, the quality of our model is significantly higher than the quality obtained
by the QSlim system. Figure 8 shows magnified parts of these models which cor-
respond to the data shown in the left image of Figure 4. Apparently, our approach
provides accurate approximations of the planar structures and computes models
with a seriously lower complexity than the QSlim system.

The second experiment was carried out in a floor of the Sieg Hall at the University
of Washington, Seattle. The robot measured 1,933,018 3d data points which are
shown in the left image of Figure 9. Our approach needed 52 minutes to reduce
the overall data set to 2,471 polygons and and 242 quads. 151,624 triangles could
not be approximated by larger planar structures. The resulting smooth model is
depicted in the right image of Figure 9.

Additionally, we applied our approach to the data set depicted in the left image of
Figure 9. The right image shows the result after a planar approximation of the data.
In this case our algorithm reduced the number of objects in the data by more than
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Table 2. Statistics for the three data sets obtained in the experiments.

Wean Hall Sieg Hall Campus

number of points 140,923 1,933,018 210,921

time [min]
plane extraction 6:16 51:42 7:14
polygon merging 0:20 9:43 0:48

raw model
number of triangles 267,355 3,765,072 377,896

reduced model
number of polygons 2,626 2,471 255
number of quads 987 242 18
number of triangles 34,227 151,624 33,312

compression rate 86% 96% 91%

Figure 10. Photography of parts of two buildings at the University of Freiburg (left) and
learned model (right).

one order of magnitude. A further, quite complex example is shown in the right
image of Figure 10. The size of this area at the University of Freiburg is40× 60m.
A photography of the same campus area is depicted in the left image of Figure 10.
Obviously, the quality of the resulting model is quite good. In spite of the fact that
the model contains several non-planar structures like tress, we obtained a significant
reduction by 91%.

5 Related Work

Due to the various application areas like virtual reality, tele-presence, access to cul-
tural savings, the problem of constructing 3d models has recently gained serious
interest. The approaches described in [2,3,4,5] rely on computer vision techniques
and reconstruct 3d models from sequences of images. Allen et al. [1] construct
accurate 3d-models with stationary range scanners. Their approach also includes
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techniques for planar approximations in order to simplify the models. However,
their technique computes the convex hull of polygons in the same plane and there-
fore cannot deal with windows or doors. Furthermore, their approach to region
clustering assumes that the relative positions between consecutive scans are exactly
known. Systems similar to ours have been presented in [6] and [7]. Both techniques
use a mobile platform to construct 3d models of an environment using range sen-
sors. However, they do not include any means for planar approximation. Accord-
ingly our models have a significantly lower complexity. Recently, [17] developed
an approach based on the EM-algorithm to determine planar approximations. In
contrast to this method, our approach is inherently able to determine the number of
planes in the data set.

The problem of polygonal simplification has been studied intensively in the com-
puter graphics area [9,10,11]. The primary goal of these methods is to simplify a
mesh so that the visual appearance of the original model and the simplified model
is almost identical. Typical criteria used for simplification are the discontinuity of
the surface normals of neighboring surfaces as well as the relative angle between
the surface normal and the viewing direction. Because of the local noise in the data,
however, these methods fail to extract planar structures. Accordingly, our approach
provides significantly better approximations in such areas.

Furthermore, several researchers have worked on the problem of range-image reg-
istration in the context of the construction of three-dimensional models and in
the field of reverse engineering. A popular approach to combine several range-
images into a single model is the ICP-algorithm [13]. This technique iteratively
computes computes the displacement between two scans by matching the corre-
sponding meshes in a point-wise. Due to the fact that it does not exploit the odom-
etry information and the model of the robots motions, resulting estimates are not as
good as with our method. In practice we observed several situations in which the
ICP-algorithm diverges whereas our 2d and 3d scan matching techniques provides
a correct result.

A further class of approaches addresses the problem of data segmentation and
surface approximation out of segmented range data. For example, [18] presented
tensor-voting to detect surfaces in range data. The goal is to compute a segmen-
tation of the data and than extract features out of the segmented range data. Fur-
thermore, there are several approaches that consider the problem of shape match-
ing [19]. Finally there a approaches that consider the problem of template matching
in range scans. Among them are feature-based techniques [20] and other techniques
that use binary decision trees to speed-up the search [21]. Compared to these tech-
niques, our approach can be regarded as a pre-processing step that first reduces
the data to planar and non-planar structures. In this case, the techniques mentioned
need only to be applied to the non-planar parts of the models generated with our
system.
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6 Conclusions

We have presented an algorithm for acquiring 3d models with mobile robots. The
algorithm proceeds in two stages: First, the robot pose is estimated using a fast
scan matching algorithm. Second, 3d data is smoothed by identifying large planar
surface regions. The resulting algorithm is capable of producing 3d maps without
manual intervention, as demonstrated using data sets of indoor and outdoor scenes.

The work raises several follow-up questions that warrant future research. Most im-
portantly, the current 3d model is limited to flat surfaces. Measurements not repre-
senting flat objects are not corrected in any way. As a consequence, the resulting
model is still fairly complex. An obvious extension involves broadening the ap-
proach to include atoms other than flat surfaces, such as cylinders, spheres, etc.
Additionally, an interesting question concerns robot exploration. The issue of robot
exploration has been studied extensively for building 2d maps, but we are not aware
of robot exploration algorithms that apply to the full three-dimensional case. This
case introduces the challenge that the robot cannot move arbitrarily close to objects
of interest, since it is confined to a two-dimensional manifold. Finally, extending
this approach to multi-robot mapping and arbitrary outdoor terrain (e.g., planetary
exploration) are worthwhile goals of future research.
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