
Null Space Optimization for Effective Coverage of 3D Surfaces
using Redundant Manipulators

Jürgen Hess Gian Diego Tipaldi Wolfram Burgard

Abstract— In this paper we consider the problem of null
space minimization in coverage path planning of 3D surfaces
for redundant manipulators. Existing coverage solutions only
focus on Euclidean cost functions and often return suboptimal
paths with respect to the joint space. In the approach described
here, we explicitly consider the null space by treating different
inverse kinematics solutions as individual nodes in a graph
and model the problem as a generalized traveling salesman
problem (GTSP). The GTSP is a generalization of the TSP
where the nodes of the graph are subdivided into clusters
and at least one node in each cluster needs to be visited.
We evaluate our approach using a PR2 robot and complex
objects. Our results demonstrate that our method outperforms
Euclidean coverage algorithms in terms of manipulation effort
and completion time.

I. INTRODUCTION

Coverage of 3D surfaces is becoming an important and
interesting problem for personal robotics, mainly due to
its interesting and potential applications (e.g., autonomous
cleaning, painting, or scraping of complex 3D objects). As
for today, cleaning services are envisioned to be one of
the most relevant applications of mobile service robots in
the near future. Prassler and Kosuge [12] list thirteen com-
mercially available domestic cleaning robots, all of which
are floor cleaning robots and thus operate on a 2D planar
environment. To the best of our knowledge there is no
manipulation robot that can clean arbitrary 3D surfaces.

In this paper we consider the problem of coverage path
planning for robotic manipulators where the task space is
constrained to lie on the surface and specific costs in joint
space need to be minimized. We further assume that the
orientation of the end effector is orthogonal to the direction
of travel, which is the case for a variety of different tools
including paintbrushes, sponges, and squeegees.

A popular solution to the problem is to transform the
surface into a graph and solve the associated traveling
salesman problem (TSP). Although this approach is well
suited in order to minimize the Euclidean path length, it
limits the possibility to define appropriate cost functions in
joint space to perform null space optimization. There are
two reasons for this limitation. The first reason is that the
orientation of the end effector is only known after a full path
is available. The second reason is that the cost of travel from
a node to another one depends on the configuration of the
robot in the first node. This configuration is not unique for

All authors are with the Autonomous Intelligent Systems Lab,
Computer Science Department, University of Freiburg, Germany.
{hess,tipaldi,burgard}@informatik.uni-freiburg.de

Fig. 1. PR2 robot using a sponge to clean a bobby car.

redundant manipulators and may depend on the sequence in
which the nodes are visited.

To overcome these limitations, we model the problem
as a generalized traveling salesman problem (GTSP), a
generalization of the TSP, where a set of clusters is defined
over the nodes. As a result, our approach generates coverage
strategies that are optimized with respect to user-defined cost
functions over the joint-space.

We evaluate our approach using real data collected from a
PR2 robot. Fig. 1 shows a typical setup of our experiments,
where the robot is confronted with the task of cleaning the
surface of a bobby car using its arm. The results show that
our approach generates paths covering the object while min-
imizing the target cost defined by the above-mentioned cost
functions. We evaluate our approach using two different cost
functions, which are the completion time and the distance
in the joint space. According to the results, our method
outperforms Euclidean coverage algorithms with respect to
both cost functions.

II. RELATED WORK

In general, the term coverage path planning refers to the
problem of finding a path in a fully connected graph that
covers all nodes and minimizes some cost measure. Most of
the approaches for coverage assume that the environment is
known and seek the shortest path that traverses each location
once, which corresponds to the traveling salesman prob-
lem (TSP). Finding the optimal solution for a TSP is well-
known to be NP-hard. Practical solutions for 2D surfaces
typically rely on heuristics to reduce the problem size or

(a) Object Image (b) Surface Patches and Normals (c) Euclidean Graph (d) Joint-GTSP Solution

Fig. 2. Illustration of the coverage planning process. A solution generated with the Joint-GTSP is shown in (d).

utilize specific structures of environments.
Gabriely et al. [7], for example, decompose the surface

into a grid and suggest different coverage strategies based
on spanning trees. Other approaches use a decomposition
into non-overlapping cells of different shapes. Latombe, for
example, uses a trapezoidal decomposition [10]. Another
approach is the Boustrophedon cellular decomposition [5]
which divides the free space into cells which can be covered
with vertical back and forth motions that can be connected
across the cells. Huang et al. [9] use this decomposition and
compute an optimal coverage path by minimizing the number
of turns of the robot. Mannadiar and Rekleitis [11] propose
a graph structure based on the Boustrophedon cellular de-
composition and show that a complete minimal path through
this graph can be computed in polynomial time. All of these
approaches, however, assume a planar robot moving on a 2D
plane.

Recently, coverage algorithms have also been extended to
non-planar surfaces. Xu et al. [14], for example, extend the
work of Mannadiar and Rekleitis [11] to the field of aerial
coverage of terrain with unmanned aerial vehicles (UAVs).
Cheng et al. [4] focus on 3D urban coverage with UAVs.
Coverage has also been addressed in the field of spray
painting automotive parts. Atkar et al. [1] show how simple
automotive parts like convex bent sheets can be covered
such that the resultant paint deposition on the target sur-
face achieves acceptable uniformity. In these applications
however, the robot does not operate on the surface. They
also do not address the problem of minimizing costs in
the configuration space of the robot and do not consider
robotic manipulators. Breitenmoser et al. [3] extended 2D
coverage for mobile robots to 3D surfaces, by using Voronoi
tessellations to map the surface to a 2D plane. Although
closely related, they only considered mobile robots moving
on the surface and coverage in terms of Euclidean distance.

This paper presents a novel solution to the problem of cov-
ering 3D surfaces with a redundant manipulator. In contrast
to the majority of previous work, our method furthermore
addresses the problem of null space minimization.

III. FORMULATING A COVERAGE PROBLEM AS A GTSP

In this section we will present the formulation of the
coverage problem in terms of a GTSP. The GTSP is a
generalization of the TSP, where a set of clusters is defined
over the nodes. Each solution to a GTSP includes at least one
node from each cluster and, as in the TSP, the goal is to find
a tour with minimum cost. In our case, we are confronted

with a special version of the GTSP where the clusters do
not intersect and where we search for a tour that visits each
cluster exactly once.

First, we show how we convert the surface of the object
into set of locally planar patches. Then, we describe how
we use this representation to generate a Euclidean graph
which encodes collision-free traveling paths over the surface.
Finally, we use this graph to construct a GTSP that solves the
coverage problem by minimizing a user-defined cost function
in joint space.

A. Euclidean Graph Construction from Point Clouds

Our robot is equipped with a Kinect sensor that generates
a point cloud of the object to be covered. We approximate
the resulting point cloud with a set of planar patches, which
comprises the object model. Given the point cloud, we first
randomly select a point. We then determine the points that
lie within an ε-neighborhood, where the value of ε depends
on the size of the tool used to accomplish the task, and
use RANSAC to fit a plane. We accept the plane as a new
surface patch if the root mean square error (RMSE) is below
a threshold and mark the points used for calculation. The
process is restarted with the remaining points until all points
are marked or were drawn. An example of the resulting
surface representation is shown in Fig. 2b.

Having modeled the surface as a set of locally planar
patches and their surface normals, we aim at constructing
a graph G = (V,E), where V is the set of nodes and E is the
set of edges, with the following properties:

• The nodes correspond to the set of reachable patches.
• The edges represent collision free paths for the end

effector.

The construction of the graph proceeds as follows. We check
reachability of each patch. If a patch is not reachable, we
mark it accordingly and delete the node from the graph. For
each remaining node, we select the top k nearest neighbors
within a radius r and connect them linearly with an edge.
We then simulate an end effector movement along each of
the edges and check them for collision. If there is no valid
path along an edge, we delete the edge from the graph. As
a result, each node can be reached on a collision free path
along the edges through the graph. If the graph construction
results in more than one connected component, we apply
the optimization approach described below to each of the
components seperately. The resulting graph is shown in
Fig. 2c. The red patches were marked as not reachable.

j

i

k

(a) TSP

pj

pi

pk

(b) Joint-GTSP

pj

pi

pk

(c) Curvature-GTSP

Fig. 3. The different graph representations used. Edges between nodes respectively clusters which are not adjacent in the Euclidean graph are assigned
a constant high weight and not visualized in the figure.

B. GTSP for Joint Space Minimization

To perform joint space minimization, we formulate the
problem as a GTSP which we obtain by extending the Eu-
clidean graph to account for the possible joint configurations
for each pose. Each cluster pi of the GTSP corresponds
to a node i in the Euclidean graph. For each edge ei, j in
the Euclidean graph, we sample a set of inverse kinematics
solutions for both the start position i and the end one j.
The inverse kinematics solutions are samples in the null
space and due to redundancies. The solution sets are then
inserted in the respective clusters and used in the GTSP.
Nodes within the same cluster are not connected. Fig. 3b
illustrates the resulting graph. The nodes corresponding to
joint space solutions are marked solid black. The solid circles
mark the ends of each edge in the Euclidean graph and the
dotted circles the clusters.

The final step is to define the cost functions of the GTSP
in terms of joint space configurations. In this paper we are
interested in two cost functions, namely the manipulation
effort and the time to completion. For simplicity we model
the manipulator as being able to be controlled in velocity and
neglect the dynamics and accelerations. Note that they can
be easily taken into account by appropriately modifying the
expressions to be computed. We define the distance between
two nodes with respect to the manipulation effort as the
total amount of displacement of each joint between two
configurations:

dist(pk
i , pl

j) = ∑
m
‖∆qm‖, (1)

where pk
i and pl

j are the node k and l of the clusters pi and
p j and ∆qm is the displacement of the m-th joint between the
respective joint configurations. Similarly, with respect to the
time to completion, the distance is the minimal time needed
for the movement between the joint configurations assuming
maximum velocity vmax:

dist(pk
i , pl

j) = max
m

(
‖∆qm‖
vmax

). (2)

The cost assigned to edges in the GTSP graph are given by:

c(pk
i , pl

j) =

dist(pk

i , pl
j), if A(i, j) = 1 and i 6= j

h, if A(i, j) = 0 and i 6= j
∞, if i = j

,

(3)

where A is the adjacency matrix of the Euclidean graph and
A(i, j) = 1 if the two nodes i and j are adjacent. We assign
a constant value h to all edges leading from pk

i to pl
j if the

nodes i and j are not connected in the Euclidean graph. This
ensures that a solution can be found as the clusters are fully
connected. The quantity h is set to a high value to indicate
that those edges require additional path planning. Having
constructed this graph, we transform the GTSP into a TSP
using the method of Behzad et al. [2]. We then compute the
solution for the TSP using dedicated solvers described below.
As a result we obtain an effective coverage path with respect
to the cost function selected. In the following, we refer to
this GTSP as Joint-GTSP.

IV. HIERARCHICAL APPROXIMATION FOR EFFICIENT
PLANNING

Unfortunately, the size of the GTSP described above is
exponential in the number of nodes that correspond to inverse
kinematics solutions, which limits us to only a few inverse
kinematics samples. In this section we describe a hierarchical
approximation of the Joint-GTSP that scales quadratically in
the number of inverse kinematics solutions and exponentially
only in the number of edges in the Euclidean graph.

To find a suitable approximation, we analyzed the cost
profile of each joint in both the Joint-GTSP and the TSP
solution (see Fig. 4). The TSP solution was obtained by using
the Euclidean graph for solving for a solution, computing
the end effector orientations along the path and querying
for inverse kinematics solutions. Fig. 4 shows that most of
the gain of the GTSP solution is due to a cost reduction
of the joint corresponding to the end effector orientation.
Minimizing the effort of this joint in turn means minimiz-
ing the curvature of the path in Euclidean space. Using
this insight, we decided to decouple the full minimization
problem by first optimizing for the end effector orientation
and then optimizing the remaining joints. More formally, we
first generate a simplified GTSP problem that minimizes a
weighted cost function on the Euclidean distance and the
curvature of the path on the manifold (Curvature-GTSP). As
in the general case, each cluster pi of the Curvature-GTSP
corresponds to node i in the Euclidean graph. We then
consider only each start and end point of an edge in the
Euclidean graph as a node in the Curvature-GTSP. Thus,
the number of nodes in a cluster pi only corresponds to the
number of edges of node i in the Euclidean graph and is

 0

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250 300

Jo
in
t
D
is
p
la
ce
m
en
t

Time Step

q1
q2
q3
q4
q5
q6
q7

(a) TSP

 0

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250 300

Jo
in
t
D
is
p
la
ce
m
en
t

Time Step

q1
q2
q3
q4
q5
q6
q7

(b) Joint-GTSP

Fig. 4. Joint displacement for different TSP solutions. Joint q7 corresponds
to the end effector. Note the reduced impact of joint q7 when using the
Joint-GTSP.

independent of the number of inverse kinematics samples.
Each node pk

i in the graph defines its own coordinate system,
where the x axis is oriented with respect to the direction of
travel and the z axis with respect to the normal of the patch.
Let ∆X =

[
t R(u,θ)

]
be the transformation between the

coordinate frames of the nodes k and l of the clusters pi and
p j, where t is the translational and R(u,θ) the rotational part
expressed in axis-angle notation. The distance between the
two nodes is then:

dist(pk
i , pl

j) = (1−β)‖t‖+βθ , (4)

where β is a parameter, weighting between the Euclidean
distance and the curvature of the path. The cost assigned to
edges in the Curvature-GTSP graph are then computed in
the same way as in the general setting described in Eq. 3.

Fig. 3c shows an example of such a graph. The dotted
circles denote the nodes in the Euclidean graph and the
clusters in the GTSP. The smaller circles denote the end
points of each edge in the Euclidean graph and form the
new set of nodes in the Curvature-GTSP.

As the second step we solve the Curvature-GTSP using
the same reduction to a TSP as for the general case. For
further optimization of the path in joint space, we construct
a directed source to target graph of joint space positions
(see Fig. 5). The graph is constructed in the following way.
From the TSP solution we extract the sequence of 6 DoF end

source target

layer l layer l + 1

Fig. 5. Directed source to target graph. Each node corresponds to a joint
configuration and each layer to one end effector pose. The thick (blue) path
marks the solution.

effector positions of the tour. For each position, we compute
a set of inverse kinematics solutions that forms the nodes
of an intermediate layer l of the graph. Thus, each layer
corresponds to one end effector pose from the path and each
node to one inverse kinematics solution. We select the current
joint position of the manipulator as the source and connect it
to the first layer. The first layer is determined as the position
of the TSP tour closest to the current end effector position.
All nodes in layer l are connected forward to all nodes in
layer l+1. The target node of the graph is an artificial sink
as we do not require an exact final joint position. The weight
of each edge in this graph is equivalent to the cost functions
computed between the joint configurations of the respective
nodes in the Joint-GTSP. The solution is then found using
the Dijkstra algorithm to compute the shortest path through
the graph which is visualized in Fig. 5.

V. EXPERIMENTS

We validated our approach using real data recorded with
the PR2 mobile manipulation robot. The data has been
recorded from two different objects, a chair and a bobby car,
using a Kinect sensor. We used a single view of each object
but our approach also extends to multiple views that are
fused, for example using the method of Ruhnke et al. [13].
We chose the bobby car and the chair for their very different
surface structure. The bobby car is a complex non-convex
object whereas the chair is largely planar. For the construc-
tion of the Euclidean graph we chose the number of nearest
neighbors k to be 8 and set the search distance to 10 cm
to limit the graph complexity. These settings resulted in a
sufficiently dense graph. The β parameter in the cost function
of the Curvature-GTSP (see Eq. (3)) was set to 0.9, favoring
solutions with smoother curvature changes. The exact setting
was not crucial for the experiments. We evaluated three
approaches, the Joint-GTSP, the Curvature-GTSP, and the
TSP with a different number of inverse kinematics samples.
For the TSP construction, we used the Euclidean graph and
also fully connected the graph, setting a constant high weight
to all edges not adjacent in the Euclidean graph. After the
tour construction, we computed the end effector orientation
and optimized the joint space in the same way as for the
Curvature-GTSP. For the cases with a small number of
samples < 10, we manually sampled the joint around the
middle of the configuration space. The 100 samples were
obtained by sampling uniformly. We also simulated a non-
redundant manipulator by fixing one of the joints. This is
equivalent to the one sample case described below. The

(a) Chair (b) TSP (c) Curvature-GTSP (d) Joint-GTSP

Fig. 6. Sample coverage paths for the chair experiment.

TABLE I
RESULTS FOR THE CHAIR EXPERIMENT, OPTIMIZING FOR TASK TIME (LEFT) AND EFFORT (RIGHT).

Task Time Effort
TSP Curvature-GTSP Joint-GTSP TSP Curvature-GTSP Joint-GTSP

1 Sample 1 Sample

Dist. [m] 9.54 ± 0.00 12.03 ± 0.23 12.26 ± 0.18 9.54 ± 0.00 12.11 ± 0.25 12.09 ± 0.21
Effort 336.46 ± 3.34 228.25 ± 5.21 218.59 ± 5.05 335.88 ± 3.27 228.70 ± 5.67 215.65 ± 3.37
Task Time [s] 153.46 ± 1.55 97.76 ± 2.17 94.58 ± 2.15 153.19 ± 1.51 98.15 ± 2.34 95.43 ± 1.56
Calc. Time [s] 3.84 ± 0.36 114.40 ± 9.20 118.03 ± 6.68 4.12 ± 0.48 133.27 ± 8.07 131.06 ± 7.83

3 Samples 3 Samples

Dist. [m] 9.54 ± 0.00 12.04 ± 0.12 13.03 ± 0.26 9.54 ± 0.00 12.19 ± 0.19 13.10 ± 0.35
Effort 327.66 ± 2.29 220.41 ± 2.97 214.24 ± 5.69 305.39 ± 1.96 204.59 ± 3.28 183.73 ± 4.02
Task Time [s] 138.34 ± 1.47 87.15 ± 1.48 84.53 ± 2.64 141.67 ± 1.42 93.48 ± 1.97 86.98 ± 1.99
Calc. Time [s] 3.73 ± 0.15 129.60 ± 7.76 1649.11 ± 150.90 4.19 ± 0.31 137.88 ± 8.50 1808.6 ± 182.45

100 Samples 100 Samples

Dist. [m] 9.54 ± 0.00 12.09 ± 0.16 N/A 9.54 ± 0.00 12.18 ± 0.30 N/A
Effort 303.54 ± 4.93 205.17 ± 4.53 N/A 206.81 ± 1.44 134.49 ± 5.66 N/A
Task Time [s] 101.60 ± 1.53 69.91 ± 1.47 N/A 159.46 ± 3.57 101.56 ± 1.51 N/A
Calc. Time [s] 23.92 ± 0.69 148.42 ± 8.64 N/A 12.01 ± 0.41 152.72 ± 14.40 N/A

samples were obtained by fixing one joint and then using
OpenRAVE [6] to calculate the inverse kinematics solution.
The TSP has been solved using the LKH solver, a state-of-
the-art TSP solver based on the Lin-Kernighan heuristic [8].
Due to a random element in the selection of the initial tour
of the LKH solver, we repeated the experiments 10 times.

The results of our experiments are shown in Table I for
the chair and in Table II for the bobby car. To illustrate the
difference of the Cartesian path on the surface of the objects,
a sample solution for both objects can be found in Fig. 6
and Fig. 7. For both objects and minimization strategies,
i.e., effort and time (see Eq. (1) and Eq. (2)), we compute
the total Euclidean distance, the total effort, and the total
time for task completion as well as the calculation time.
In the calculation of the task completion time, we assume
a maximum velocity of vmax = 2rad/s for each joint and a
bang-bang velocity profile which is equivalent to impulsive
accelerations. The calculation time specifies the time needed
for solving for a coverage path given the Euclidean graph.

The table shows the results for one sample (no redun-
dancy), the maximum number of samples usable for the
Joint-GTSP (three for the chair and nine for the bobby car),
and 100 samples (only for the TSP and the Curvature-GTSP).
As can be seen, the TSP results in the shortest Cartesian path
but also in the highest effort and execution time. This comes

with no surprise as it is not possible to encode these costs
in the Euclidean graph. More interestingly, this also shows
that the shortest Euclidean path is not always the best one
with respect to execution time. The Joint-GTSP results in a
significant reduction in terms of effort and time although the
length of its Cartesian path increases.

For both the one sample and the maximum samples cases,
we see that the Joint-GTSP and the Curvature-TSP perform
significantly better than the TSP in both experiments (min-
imum effort and minimum time) while the Joint-GTSP per-
forms slightly better. If we increase the number of samples
to 100, we see that the Curvature-GTSP is able to perform
better than the Joint-GTSP at the maximum number of usable
samples, with no significant overhead on the calculation time.

VI. CONCLUSION

In this paper we presented a novel approach to perform
null space minimization for coverage path planning problem
on 3D surfaces. Existing coverage algorithms mostly focus
on robots moving on a planar surface, minimizing Euclidean
properties on the plane. We showed that when considering
redundant manipulators this property does not hold anymore
and costs in joint space need to be explicitly considered.
We showed how these costs can be expressed by modeling
the problem in terms of a generalized traveling salesman
problem and presented a general framework for null space

(a) TSP (b) Curvature-GTSP (c) Joint-GTSP

Fig. 7. Sample coverage paths for the bobby car experiment.

TABLE II
RESULTS FOR THE BOBBY CAR EXPERIMENT, OPTIMIZING FOR TASK TIME (LEFT) AND EFFORT (RIGHT).

Task Time Effort
TSP Curvature-GTSP Joint-GTSP TSP Curvature-GTSP Joint-GTSP

1 Sample 1 Sample

Dist. [m] 5.89 ± 0.00 7.61 ± 0.19 7.48± 0.15 5.89 ± 0 7.49 ± 0.12 7.53± 0.16
Effort 206.66± 3.52 180.27 ± 3.52 157.29 ± 4.02 205.33 ± 3.49 176.95 ± 6.95 153.07 ± 3.57
Task Time [s] 85.00 ± 0.36 72.08 ± 1.65 63.31 ± 1.59 84.80 ± 0.60 70.92 ± 2.45 63.67 ± 1.48
Calc. Time [s] 1.06 ± 0.25 30.01 ± 1.89 31.07± 3.38 1.11 ± 0.24 32.16 ± 2.51 26.58 ± 0.81

9 Samples 9 Samples

Dist. [m] 5.89 ± 0.00 7.88 ± 0.22 8.49 ± 0.29 5.89 ± 0.00 7.73 ± 0.14 8.97 ± 0.30
Effort 202.70 ± 3.93 174.92 ± 7.90 169.28 ± 6.13 171.67 ± 2.22 143.83 ± 4.15 137.50 ± 7.78
Task Time [s] 72.25 ± 0.56 61.60 ± 1.93 60.85 ± 1.65 81.00 ± 0.41 67.10 ± 2.55 68.42 ± 3.37
Calc. Time [s] 1.15 ± 0.09 30.84 ± 1.86 1549.44 ± 183.41 1.17 ± 0.13 31.98 ± 2.10 2255.48 ± 213.98

100 Samples 100 Samples

Dist. [m] 5.89 ± 0.00 7.60 ± 0.15 N/A 5.89 ± 0.00 7.61 ± 0.16 N/A
Effort 202.19 ± 3.84 164.03 ± 4.04 N/A 159.70 ± 2.67 131.88 ± 5.86 N/A
Task Time [s] 68.14 ± 0.32 54.86 ± 1.34 N/A 85.44 ± 0.90 68.63 ± 3.05 N/A
Calc. Time [s] 4.29 ± 0.29 35.25 ± 3.43 N/A 2.47 ± 0.36 33.50 ± 1.94 N/A

optimization of arbitrary cost functions. We further showed
an efficient approximation of the general approach that scales
quadratically with the number of inverse kinematics samples.
The approach has been evaluated using real data collected
from a PR2 robot. Results obtained with real-world objects
show that we are able to obtain paths that cover the object
thereby minimizing a user-defined cost function in the null
space. They furthermore show that our approach outperforms
Euclidean coverage algorithms in terms of manipulation
effort and completion time. Interestingly, the experiments
also show that the shortest path in Euclidean distance is not
always the best one with respect to execution time. In the
future we plan to extend the approach to incorporate the
mobility of the base and the potentially more flexible bi-
manual manipulation.

REFERENCES

[1] P.N. Atkar, A. Greenfield, D.C. Conner, H. Choset, and A.A. Rizzi.
Uniform coverage of automotive surface patches. The International
Journal of Robotics Research, 24(11):883–898, 2005.

[2] A. Behzad and M. Modarres. A new efficient transformation of
the generalized traveling salesman problem into traveling salesman
problem. In Proc. of the Intl. Conf. of Systems Engineering, pages
6–8, 2002.

[3] A. Breitenmoser, J. Metzger, R. Siegwart, and D. Rus. Distributed
coverage control on surfaces in 3d space. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pages 5569–
5576, 2010.

[4] P. Cheng, J. Keller, and V. Kumar. Time-optimal UAV trajectory
planning for 3d urban structure coverage. In Proc. of the IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems (IROS), pages 2750–
2757, 2008.

[5] H. Choset and P. Pignon. Coverage path planning: The boustrophedon
cellular decomposition. In Intl. Conf. on Field and Service Robotics,
1997.

[6] R. Diankov. Automated Construction of Robotic Manipulation Pro-
grams. PhD thesis, Carnegie Mellon University, Robotics Institute,
2010.

[7] Y. Gabriely and E. Rimon. Spanning-tree based coverage of contin
uous areas by a mobile robot. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), volume 2, pages 1927–1933, 2001.

[8] K. Helsgaun. An effective implementation of the Lin-Kernighan trav-
eling salesman heuristic. European Journal of Operational Research,
126:106–130, 2000.

[9] W.H. Huang. Optimal line-sweep-based decompositions for coverage
algorithms. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), volume 1, pages 27–32, 2006.

[10] J.C. Latombe. Robot motion planning. Springer Verlag, 1990.
[11] R. Mannadiar and I. Rekleitis. Optimal coverage of a known arbitrary

environment. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), pages 5525–5530, 2010.

[12] E. Prassler and K. Kosuge. Domestic robotics. In Springer Handbook
of Robotics, pages 1253–1281. Springer, 2008.

[13] M. Ruhnke, R. Kümmerle, G. Grisetti, and W. Burgard. Highly
accurate 3d surface models by sparse surface adjustment. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2012.

[14] A. Xu, C. Viriyasuthee, and I. Rekleitis. Optimal complete terrain
coverage using an unmanned aerial vehicle. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), pages 2513–2519, 2011.

