Poisson-Driven Dirt Maps for Efficient Robot Cleaning

Jiirgen Hess Maximilian Beinhofer

Abstract— Being able to estimate the dirt distribution in an
environment makes it possible to compute efficient cleaning
paths for robotic cleaners. In this paper, we present a novel
approach for modeling and estimating the dynamics of the
dirt generation in an environment. Our model uses cell-wise
Poisson processes on a regular grid to represent the dirt in
the environment, which allows for an effective estimation of
the dynamics of the dirt generation and for making predictions
about the absolute dirt values. We propose two efficient cleaning
policies which are based on the estimated dirt distributions
and can easily be adapted to different needs of potential
users. In extensive experiments carried out in simulation and
with a modified iRobot Roomba vacuum cleaning robot, we
demonstrate the effectiveness of our approach.

I. INTRODUCTION

Cleaning is one of the most important applications of
nowadays and also future household robots. The very first
cleaning robots such as the iRobot Roomba, however, did
not systematically clean the environment but rather per-
formed predefined motion patterns mixed with random move-
ments [14]. Accordingly, such systems in general cannot
guarantee the success of the cleaning process, especially
when their operation time is limited. Recently, vacuum
cleaning robots that are able to systematically clean an
environment, like the Neato XV, the Samsung Navibot, and
the Evolution Robotics Mint, have been developed. These
robots apply simultaneous localization and mapping (SLAM)
procedures to estimate the pose of the vehicle which enables
them to clean the floor in a more systematic fashion. How-
ever, cleaning the entire environment is often not required
as some parts might quickly become dirty while others stay
relatively clean for longer periods of time. For example, in
the entrance area of a home or in the kitchen, there might
be more dirt than in other areas such as the living room.
Obviously, knowledge about the distribution of dirt in the
environment can enable cleaning robots to generate much
more efficient cleaning paths, as only the dirty parts of the
environment would have to be worked upon.

In this paper, we consider the problem of estimating the
dirt distribution on the floor of an environment and of plan-
ning efficient cleaning paths given this distribution to be used
by a robot with appropriate sensing capabilities. To model the
dirt distribution, we divide the environment into regular grid
cells and apply cell-wise Poisson processes for estimating the
amount of dirt in every cell. The corresponding dirt values
grow over time and are reset by the cleaning operation. We

All authors are with the Autonomous Intelligent Systems Lab, Computer
Science Department, University of Freiburg, Germany. This work has partly
been supported by the German Research Foundation (DFG) within the Re-
search Training Group 1103. hess@informatik.uni-freiburg.de

Daniel Kuhner

Philipp Ruchti

Wolfram Burgard

Fig. 1. The Roomba 560 robot we used in the experiments. The vacuum
cleaning unit of the robot is equipped with a dirt detection sensor. The
mounted Asus Xtion Pro Live depth camera is used for localization.

show that this model allows for the effective estimation of
the dynamics of dirt generation and the prediction of the
absolute dirt values.

To exploit the estimated dirt distribution maps, we de-
velop two efficient cleaning policies. The first policy aims
at minimizing the cleaning time while guaranteeing with
high confidence a user-defined bound on the maximum dirt
level in the environment. The second policy minimizes the
maximum dirt value in the environment within a given,
limited cleaning time.

The contribution of this paper is two-fold: First, we present
an approach for modeling and estimating the current dirt dis-
tribution as well as its dynamics in a given environment. The
resulting dirt distribution map can help the user to find typical
dirt hot spots and maybe change his behavior accordingly.
Also, it can be used to generate efficient cleaning policies for
cleaning robots. The second contribution is an approach to
generate these policies, resulting in shorter operation times
of the robot while still restricting the maximum dirt level in
the environment. The policies can be adjusted to the specific
preferences of the user in terms of cleanliness, cleaning
time, and even different importance of different areas in the
environment. The user benefits from this cleaning behavior,
as he is less disturbed by the noise generated by the moving
robot and the robot’s energy consumption is reduced.

This paper is organized as follows. After discussing related
work in the next section, we introduce the dirt map model,
the estimation, and the prediction of dirt in Sec. IIl. In
Sec. IV, we present the efficient cleaning policies. Finally,
we provide extensive experiments that evaluate our approach
both in simulation and with the real robot shown in Fig. 1.

II. RELATED WORK

One of the earliest navigation systems for autonomous
cleaning robots, targeted at chain stores, is the SINAS system
which started operation as early as 1996 [10]. It is one
example for the specific task of cleaning or rather covering
a known surface which is referred to as coverage path
planning. There is a large body of literature regarding the
general problem of coverage path planning (see Choset [1]
for an overview). Many approaches seek for the shortest
path that covers the entire, a priori known environment [3],
[9], [12]. In contrast to these complete coverage approaches,
we aim at covering only a part of the environment such
that according to our policies, either the time needed to
reach a certain level of cleanliness or the weighted maxi-
mum dirtiness after cleaning is minimized. Note that only
without any prior information about the dirt distribution, the
problem considered in this paper corresponds to the complete
coverage problem.

Covering only specific parts of an environment has
also been addressed in multi-robot navigation [8], [17].
Zlot et al. [17] for example generate possible exploration
goals and similarly to our approach frame the problem of
visiting all goals as a traveling salesman problem (TSP).

Cleaning applications that aim at covering specific parts or
the entire environment require that the robot can accurately
map the environment and localize itself. In the area of
floor cleaning, Gutmann et al. [4] propose an algorithm
for simultaneously estimating a vector field induced by
stationary signal sources in the environment as well as the
robot pose in this vector field. Jeong and Lee [6] use a single
camera pointing towards the ceiling and apply a landmark-
based SLAM algorithm. The approaches of Zhang et al. [16]
and Erickson et al. [2] show that SLAM can also be solved
with very limited range sensors like bumpers. In our work
we use a low-cost range sensor for mapping and localization.

The ideas presented in this paper are related to the work
of Luber et al. [11] from the area of people tracking. In that
paper, the authors propose spatial affordance maps to repre-
sent space-dependent occurrences of people activity events to
improve the people tracking. Similar to our approach, these
maps use cell-wise Poisson processes. An earlier work of
Kruse et al. [7] proposes a statistical grid, a grid map in
which each cell models the probability of the appearance of
a dynamic obstacle with a Poisson process. In this paper, we
apply Poisson processes to model and estimate the dynamics
of the generation of dirt in an environment and utilize this
dirt map to generate efficient cleaning policies.

III. POISSON PROCESSES FOR MODELING DIRT

To selectively clean an environment, a cleaning robot
needs to know where the dirt is. One approach for achieving
this if the state of the entire environment is not observable
by the robot, is to learn how quickly the individual parts of
the environment typically get dirty.

Motivated by the well-known occupancy grid maps [13],
our approach makes use of a regular tessellation of the
environment into grid cells. In the occupancy grid mapping

approach, it is typically assumed that the environment is
static and that therefore the occupancy of a cell does not
change over time. This assumption, however, is not reason-
able in the context of the distribution of dirt, as the dirt
in a cell grows over time because of polluting events like
crumbling or chipping and gets typically reset to zero by
cleaning. To model this behavior, we apply for every cell ¢
a homogeneous Poisson process N¢(¢) over time 7.

A. Properties

A homogeneous Poisson process {N¢(z),r > 0} is a
continuous-time counting process whose increments are sta-
tionary, independent, and Poisson distributed. The probability
of observing k polluting events during time interval (s,] is
given by

—A(t—s) AC(t —)k
e t—s
P - Ne(s) =k = IR
where the parameter A€ is called intensity. Additionally, at
time steps #, at which cell ¢ is cleaned, we fix its level of
dirt to N(z,) = 0.

B. Dirt Prediction

For deciding which cell to clean next, the cleaning robot
needs to be able to make predictions about the amount of dirt
in the individual cells of the dirt map. For predicting N°(¢),
we use its expectation. The expected value of the amount of
dirt k produced during the interval (s,¢] in cell ¢ according
to the distribution of Eq. (1) is given by

E[N(r) — N°(s)] = A(t —s). 2)

If the latest cleaning operation happened at time s, the dirt
level at time ¢ > s can be predicted as

E[N‘(7)]
=E[N(t) — N°(s)] + E[N“(s)]
=A°(t —s)+0. @)

C. Parameter Estimation

Before the robot can use the dirt map for efficient cleaning,
it needs to estimate its parameters A¢ for every cell c.
During operation, a cleaning robot equipped with a dirt
detection sensor receives for every grid-cell ¢ a series of
dirt readings kg, ...,k; at time steps f,...,%;. At the mo-
ment of sensing, the cleaning unit with the dirt detection
sensor coevally cleans the observed cell. Therefore, every
reading k; except the first ky is a sample from the Poisson
distribution defined in Eq. (1). If the robot observes the cell
in unit intervals, i.e., t; —t;_1 = 1 for all i, the maximum
likelihood estimator for A¢ is given by A&, = Ly7 k¢.
In our applications, the observation intervals of the vacuum
cleaning robot typically do not have unit length. However,
we can still construct a maximum likelihood estimator for A€
by considering its log-likelihood

log Z(A€ | kiy. .. knyto,. . tn)

4 : ti—ti 1)k
= (kilog/'tc—lc(t,'—l‘,;l)+10gu

> ol). @

Calculating the derivative of Eq. (4) and setting it to zero
yields the maximum likelihood estimator
1= ! ik” (5)
Z(ti_tifl) i=1 !
for the non-unit interval case.

In an initial learning phase, the robot cleans the whole
environment several times and applies the estimator A€ to
estimate the dirt map. After that, the learned map can be
used for efficient cleaning, while its parameters can still be
updated according to Eq. (5) to refine the estimate. For cells
¢ for which all &f =0, we set A¢ to € > 0, ensuring that all
cells are considered in the cleaning procedure.

IV. EFFICIENTLY CLEANING USING A DIRT MAP

In this section, we show how the learned dirt map can
be utilized for efficient cleaning. We propose two policies.
The first policy aims at minimizing the cleaning time while
guaranteeing that after cleaning, the dirtiest cell in the map
is less dirty than a user defined threshold. The second one
allows a user defined maximum duration of the cleaning
cycle and aims at minimizing the maximum dirt value in the
map during this time. A cleaning policy takes into account
the predicted state of the dirt map and the user preferences.
We define the predicted state of the dirt map at time ¢ as

m(t) := (B[N (1)],...,E[NY(1)]), (6)

where M is the maximum number of cells in the map.
The user preferences include a weight w, for every cell c,
describing how important the cleanliness of this cell is for
the user. The weights default to 100% and can be increased
in areas important for the user and decreased in unimportant
areas. Utilizing these definitions, we define a cleaning policy

T (m(t),Weys s Wey) = {Cip -5 Cin(m) } @)

as the set of cells that the robot has to clean during the
cleaning cycle at time ¢.

To execute a policy m;, we compute a path from the
parking position of the robot through all cells comprised
in the policy and back to the parking position. We frame
this problem as a traveling salesman problem (TSP) with
Ciyy- -+ Ciy(ny) @s vertices in a fully connected graph and apply
a state-of-the-art TSP solver [5] to this graph to find the
shortest collision-free path through all cells ¢;, ..., ¢;, (7). As
edge costs, we apply the Euclidean distances of the shortest
collision-free paths between the vertices, thereby ignoring
the rotational cost of the robot. They could however easily
be inserted into the calculation by extending the TSP to a
generalized TSP in which a state is comprised of several
orientations in the same position. Assuming that the robot
executes this path with constant velocity, we can calculate
the duration 7(m) of the policy execution.

A. Bounded Dirt Time Minimization Cleaning

The first efficient cleaning policy aims at reducing the
weighted maximum dirt value in the map after cleaning
below a user defined threshold dp,x with confidence 1 — 6,

while minimizing the execution time. More formally, at the
beginning ¢ of each cleaning cycle, we select the bounded
dirt policy

T (dmax) = argmin (7(7)), (8)

70;Pr (dmax) <6

where Pr(dmax) = P(max [weN¢(t +1(7))] > dmax | 7 =)
is the probability that after executing policy 7 at time ¢ the
dirtiest cell in the map has a weighted dirt value higher
than dpax. We can calculate Pr(dmax) from the estimated
A€ values, the predicted dirt map m(r) and the policy 7. To
do so, we set N°(t) =0 for all cells ¢ in @ and calculate
the (1 — &)-quantiles of the dirt distributions of all cells in
the map according to their learned A€ values. Note that the
confidence level 1 — & holds true assuming that the estimated
dirt map is correct. To calculate the policy, we select all cells
whose maximum value of the (1 — §)-quantiles exceeds dmax
and calculate a TSP path through these cells.

B. Bounded Time Maximum Dirt Minimization Cleaning

For the second efficient cleaning policy we consider, the
user specifies a maximum allowed execution time Tpax for
every cleaning cycle. Given this maximum execution time,
we aim at finding the policy that minimizes the weighted
maximum dirt value in the map after cleaning. More for-
mally, at the beginning ¢ of each cleaning cycle, we select
the bounded time policy

max E[weN (1 +1(n)) | = n]) .

c

9)
To calculate this policy, we do not need to consider quantiles,
as the cell with the highest expected dirt value is also the
cell with the highest (1 — §)-quantile for every & < 0.5.
For this policy, other than for the first one, the TSP solver
has to be applied iteratively. In every iteration, we add the
remaining cell with the highest expected dirt value to the
policy and apply the TSP solver. We repeat this process until
the specified Tyax value is reached.

Note that for both cleaning policies the set of cells
selected for cleaning changes in consecutive runs of the
same policy. If a cell with low dirt production value A€ does
not get selected for cleaning several times, its absolute dirt
value N¢(¢) keeps growing until its expected dirt value is
high enough such that the cleaning policy incorporates this
cell in the next cleaning cycle.

T (Tmax) = argmin
737(7) < Tmax

V. EXPERIMENTS

To evaluate the dirt map estimation and cleaning path
generation, we performed extensive experiments both in
simulation and with a real robot. In all experiments, we set
the confidence level 1 — & for the bounded dirt policy to 95%.

A. Learning a Dirt Map form Real Data

To analyze the dirt map learning in practice, we equipped
an iRobot Roomba 560 vacuum cleaning robot with an Asus
Xtion Pro Live Sensor and a notebook with a 2.26 GHz Intel
Core2 Duo processor (see Fig. 1). We found the Roomba

Fig. 2. Experimental setup and learned dirt map (red). The estimated
trajectory of the real robot when executing one of the planned paths is
shown in blue. The maximum A, value estimated in the experiment is 10.5.
The grid size of the dirt map is 0.15 m.

robot particularly suited for our problem, because it is
equipped with a dirt sensor, which generates a measurement
whenever a dirt particle hits a small metal plate inside
the suction unit. In the experiment, we used larger grained
flour as dirt. Every dirt measurement corresponded to about
0.03 g of flour. The environment used to perform the robot
experiments is shown in Fig. 2.

In order to learn the dirt map, we first built a grid map of
the environment. Afterwards, we repeatedly distributed the
dirt, mostly in front of the desk and cabinet, and manually
steered the robot for to clean the entire environment. We
repeated this ten times. Thereby we used Monte Carlo
localization [15] for robot pose estimation. In Monte Carlo
localization, at every time step ¢ the estimated probability
distribution of the pose of the robot is stored as a set
of weighted particles {x,[l],...,x,[n"]}, each representing a
hypothesis about the pose of the robot. After each entire
traversal of the environment, we updated the dirt map of the
environment according to Eq. (5) using the dirt measure-
ments received. To account for the localization uncertainty,
when receiving a dirt measurement k, we considered the
particle set after the resampling step in the particle filter,
when all particles had the same weight. We divided the
dirt measurement evenly on all particles and integrated, for
every particle, the resulting value ni as dirt measurement
for the cell in which the particle was located. This results
in the maximum-likelihood dirt map given the uncertainty in
localization. With increasing uncertainty in the localization,
the dirt map tends towards a uniform distribution, and with
a more accurate localization, the dirt map becomes more
peaked. Thus, the maps learned depend on the sensor and
actuator noise of the robot used. An example map learned
with the vacuum cleaning robot described above is shown in
Fig. 2.

AL et e bbb,

s

"
i Amax: 14 Timax: 20
4 length: 3.8 m length: 19.9m
(a) (b)

- L_.,}

g Tmax: 8
7 length: 7.9 m
)

© d

i dmax: 9
7 length: 9.8 m

¢

i'm-v-;
1

Aax: 9
length: 11.5m

(e) ®

] Tmax: 8
7 length: 6.2m

A 0 2 4 6 8 10

Fig. 3. Paths planned with our policies for the first cleaning cycle on
the dirt map learned from real data. The paths in (a) and (c) result from
the bounded dirt policy 7(dmax), the ones in (b) and (d) from the bounded
time policy 7(Tmax). The cleaning paths in (e) and (f) for the dirt and
bounded time policy result from increasing the weights w. of the cells in
the rectangle to 300%. To allow a comparison with the path length, the unit
of the 7 values stated in the figure is scaled such that the robot traverses
one meter per time step. In (a) and (c), the estimated values A for which
the dirt stays below a level of 9 and 14 with 95% confidence correspond to
5 and 9, respectively.

B. Cleaning Policies with User Preferences

Having learned the dirt map, we created cleaning paths
according to the bounded dirt and the bounded time policies.
Fig. 3 shows two results for each policy with different values
for the maximum dirt dy,x and the maximum time Tpax
allowed by the user. The cleaning paths were planned for the
first cleaning cycle after learning the dirt map. For additional
cleaning cycles, the paths change as the previously cleaned
cells get reset and other cells may get selected.

The time for computing the policies ranged from about one
second for the path from Fig. 3a to about four minutes for
the path from Fig. 3b. The large difference in computation
time is due to the fact that the bounded dirt policy (Fig. 3a)

- A=20
------ A=10
R N
4, -
? "
|
=< |

Cleaning Cycle

Fig. 4. Difference between the estimated dirt value of a cell 2 and the
ground truth A over a number of consecutive cleaning cycles. This figure
shows the average deviations as well as the corresponding empirical 95%
confidence intervals.

needs to call the TSP solver only once, while the bounded
time policy (Fig. 3b) applies the TSP solver iteratively. The
computation time, of course, depends on the number of dirty
cells in the environment as well as the TSP solver used. The
solver used in our experiments runs in approximately O(n?>?)
[5], but a faster one could be applied if less accuracy is
required. As can be seen in the figure, if the user specifies a
low maximum dirt value, more cells are cleaned by the robot.
The same holds for the maximum time allowed. For a higher
maximum time value, more cleaning steps are performed and
thus the environment is cleaned more thoroughly.

We also let the real robot execute the cleaning path
from Fig. 3c. The executed path estimated by the localiza-
tion system of the robot is shown in blue in Fig. 2. The
path execution was performed by an off-the-shelf navigation
system. Evaluating the accuracy of this system and adapting
the path execution accordingly could improve the cleaning
performance and will be addressed in future work.

Fig. 3e and Fig. 3f show the results of increasing the
weights of some cells in the dirt map. The rectangle in
the figure, located in the working area in front of the
table, specifies an area where the user increased the weight
of the cells to 300%. The changed cleaning path of the
corresponding bounded dirt policy is shown in Fig. 3e. Due
to the increased weights, more cells in the specified area
reach the dirt threshold and are thus visited additionally
compared to Fig. 3c. For the bounded time policy (Fig. 3f),
the cleaning path is changed such that more cells are visited
in the specified area. The restricted time, however, does not
allow the robot to pass all previously covered dirty cells, e.g.,
those in front of the cabinet.

These experiments show that the dirt map estimation
performs well and that the policies yield reasonable paths.
Additionally, they show that the user adapted weights natu-
rally integrate with the proposed policies.

But the results of the experiments also raise questions for
the practical application, e.g., how long does it take until
the estimation of the dirt map has converged? How efficient
are the proposed policies compared to a full coverage of the
environment and how does the structure of the environment

T T

2+ - Anax =5
E L dmax =10
Z A\ === dmax = 30
s
s 1.5 [n
= oy
2)
= oy
51 o
g2 1 B h
=l SR
e O
5] NG
° . S T TS
= 05 NG b
3 N
& o N

Environment

Fig. 5. Evaluation of the bounded dirt policy. The figure shows the average
ratio of cells traversed to the total number of cells given different values for
dmax and differently structured environments. Also shown are the empirical
95% confidence intervals.

influence this efficiency? To answer these questions, we
performed a number of simulation experiments.

C. Map Parameter Estimation

To efficiently clean the environment, the robot needs a
converged estimate of the parameter A€ for each cell in
the dirt map. This raises the question of how many times
the entire area has to be covered until the learning of the
dirt map has converged and the difference between the
estimated A¢ for each cell and the real A° is acceptable.
For this experiment, we simulated the cleaning of a single
cell. We repeatedly sampled polluting events from Poisson
distributions given differgnt values of A, cleaned the cell
and updated the estimate A. Fig. 4 visualizes the result for A
values of 3, 10, and 20. For all values, the difference between
the real and the estimated value decreases significantly after
only a few update steps. As an example, a difference of
one between the estimated and the real values is noted as a
black line in the figure. Note that in the experiment with the
real robot, a difference of one corresponds to a difference
of 0.03 g of dirt generation per cycle. As one can see, the
number of cycles needed for reaching this value increases
with the value to be estimated. However, even for a relatively
large value of 20, only 14 steps are needed until the required
distance of the estimated to the real A is reached.

D. Evaluation of Cleaning Policies

To evaluate the cleaning policies and their dependency on
the structure of the environment, we simulated different maps
with approximately 100 cells. The map size ranges from an
environment with 1 x 100 cells to a quadratic environment
with 10 x 10 cells. The 1 x 100 environment corresponds
to a long narrow corridor and is the worst case for our
approach as a single dirty cell can make it necessary to
traverse twice the number of cells in the environment. We
repeated the experiment 1,000 times for each environment
and different maximum dirt levels dinax as well as maximum
durations Tp,x. For each episode, we sampled a new dirt
map, i.e., we sampled a new ground-truth lambda value from
an exponential distribution with mean p, = 3 independently

T T [Toax =5 ||
...... Tmax = 10
] === Tmax = 30
=) max
g o8 |
<
g e T
8 \‘ ---------
y 0.6 | | -
£ A}
< Y
S 04| q B
.8 '
0.2 =
0 Il Il Il Il Il Il Il Il
L O > \p) NIERGN) » W S
S & D NN N NN
\,\} r\;\~ rxj‘\~ b;\g, c)‘\g’ S AY - O)‘*' \Q“r
Environment

Fig. 6. Evaluation of the bounded time policy. The figure shows the average
maximum dirt value remaining in the map after cleaning for different
values of dmax and differently structured environments. Also shown are the
empirical 95% confidence intervals.

for each cell. We applied the exponential distribution for its
similarity to the distributions in real environments. In real
environments, it is common that few parts are very dirty more
often, e.g., around the breakfast table, while most other areas
do not get dirty as regularly. The possible spatial dependency
of dirt values in the environment was not considered in the
simulation. This is the worst case for our cleaning policies, as
spatially correlated dirty cells lead to shorter cleaning paths.

Fig. 5 shows the results for the bounded dirt pol-
icy (dmax). It plots the number of cells needed to be
traversed by our cleaning policy for the different types of
environments. This includes cells that were not part of the
set selected for cleaning but were traversed to reach selected
cells. Also included are cells covered on the way from and
to the start position. That means that cleaning the entire
1 x 100 cell environment would yield a traversal cost of
200 cells while cleaning the other environments requires
traversing every cell in the environment, but at most the
number of cells in the environment plus two (for the 7x15
environment). One can see in the figure that for all values
of dpax, the number of traversed cells decreases as the
environment becomes less stretched. Already starting with
the 3 x 34 scenario, our policy traverses significantly less
cells than the full coverage path, which has to visit all cells.

To evaluate the bounded time policy 7(Tmax), we consider
the maximum dirt value in the map is after cleaning for a
given period of time. For this experiment, we sampled A€
values and actual dirt values from the Poisson distributions
given A for each cell. We then calculated a cleaning path
given the dirt expectation. Fig. 6 shows the maximum dirt
value in the map after cleaning as a ratio of the maximum
dirt value in the map before cleaning. As expected, the more
time the user allows for cleaning, the lower the maximum
dirt value is after cleaning. More importantly, one can see
that the efficiency does depend on the environment but that
the bounded time policy effectively reduces the maximum
dirt value even in demandingly structured environments.

These experiments show that the efficiency of our cleaning
policies depends on the structure of the environment. Nev-

ertheless, even for environments that are far from beneficial
for our approach, a significant reduction in cleaning time and
maximal remaining dirt can be achieved.

VI. CONCLUSION

In this paper, we presented a novel approach using Poisson
processes for representing, estimating, and predicting the
distribution of dirt in an environment. We described how
to acquire the parameters of these models and presented
two efficient cleaning policies for robotic vacuum cleaners
using these models. In extensive simulation experiments, we
showed that compared to the state of the art, which is full
and systematic coverage, our informed approach leads to sig-
nificantly shorter cleaning times while guaranteeing a bound
on the maximum dirt level. We furthermore demonstrated
the practical applicability of our approach in experiments
with a real robotic vacuum cleaner. In the future, we plan to
extend our approach to integrate the uncertainty in the path
execution as well as the uncertainty of the actuator when
calculating the path of the robot.

REFERENCES

[1] H. Choset. Coverage for robotics—a survey of recent results. Annals
of Mathematics and Artificial Intelligence, 31(1):113-126, 2001.

[2] L.H. Erickson, J. Knuth, J.M. O’Kane, and S.M. LaValle. Probabilistic
localization with a blind robot. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2008.

[3] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2001.

[4] J.S. Gutmann, E. Eade, P. Fong, and M. Munich. A constant-time
algorithm for vector field slam using an exactly sparse extended
information filter. In Proc. of Robotics: Science and Systems (RSS),
2010.

[5] K. Helsgaun. An effective implementation of the lin-kernighan trav-

eling salesman heuristic. European Journal of Operational Research,

126:106-130, 2000.

W.Y. Jeong and K.M. Lee. Cv-slam: A new ceiling vision-based slam

technique. In Proc. of Robotics: Science and Systems (RSS), 2005.

[7]1 E. Kruse and FM. Wahl. Camera-based observation of obstacle

motions to derive statistical data for mobile robot motion planning.

In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),

1998.

M. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. Kleywegt,

S. Koenig, C. Tovey, A. Meyerson, and S. Jain. Auction-based multi-

robot routing. In Proc. of Robotics: Science and Systems (RSS), 2005.

[9] J.C. Latombe. Robot Motion Planning. Springer Verlag, 1990.

[10] G. Lawitzky. A navigation system for cleaning robots. Autonomous
Robots, 9(3):255-260, 2000.

[11] M. Luber, G.D. Tipaldi, and K. Arras. Place-dependent people
tracking. In Proc. of the Intl. Symposium of Robotics Research (ISRR),
2009.

[12] R. Mannadiar and I. Rekleitis. Optimal coverage of a known arbitrary
environment. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2010.

[13] H. Moravec and A. Elfes. High resolution maps from wide angle
sonar. In Proc. of the IEEE Intl. Conf. on Robotics & Automation

[6

=

[8

=

(ICRA), 1985.

[14] B. Siciliano and O. Khatib, editors. Handbook of Robotics. Springer,
2008.

[15] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
2006.

[16] Y. Zhang, J. Liu, G. Hoffmann, M. Quilling, K. Payne, P. Bose,
and A. Zimdars. Real-time indoor mapping for mobile robots with
limited sensing. In Proc. of the 3rd Intl. Workshop on Mobile Entity
Localization and Tracking, 2010.

[17] R. Zlot, A. Stentz, M.B. Dias, and S. Thayer. Multi-robot exploration
controlled by a market economy. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2002.

