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In this paper, we present a wireless micro inertial measurement unit (IMU) with the smallest volume and weight requirements available at
the moment. With a size of 22 mm x 14 mm x 4 mm (1.2 cm3), this IMU provides full control over the data of a three-axis accelerometer,
a three-axis gyroscope, and a three-axis magnetometer. It meets the design prerequisites of a space-saving design and eliminates the need
of a hard-wired data communication while still being competitive with state-of-the-art commercially available MEMS IMUs. A CC430
microcontroller sends the collected raw data to a base station wirelessly with a maximum sensor sample rate of 640 samples per second.
Thereby, the IMU performance is optimized by moving data post processing to the base station. This development offers important
features in portable applications with their significant size and weight requirements. Due to its small size the IMU can be integrated into
clothes or shoes for accurate position estimation in mobile applications and location-based services. We demonstrate the performance of
the wireless micro IMU in a localization experiment where it is placed on a shoe for pedestrian tracking. With sensor data-fusion based
on a Kalman filter combined with the Zero Velocity Update (ZUPT) we can precisely track a person in an indoor area.
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1 Introduction

In recent years, location-based services for indoor mobile devices are becoming more and more popular
due to their increasing functional range. To effectively direct people in their environments, for example to
specific products or to particular exhibition booths, an accurate localization system is needed. In indoor
applications, where typically no GPS signal is available, one promising localization approach, e.g., for cell
phones or mobile robots, relies on inertial sensors.

In the domain of mobile robots inertial sensors are commonly used to improve odometry [2] or for flight
stabilization or autonomous hovering of helicopters or quadrotors [3]. Furthermore, inertial sensors have
been applied for localization of airplanes and miniature indoor blimps [4, 5].

For human tracking, miniature inertial sensors can be integrated into clothes or shoes [6, 7, 8, 9]. The
IMUs can extend the functionality of pedometers by full 3D location information. Even more complex
tasks like full-body human motion capture have been addressed using inertial sensors [10]. Additionally, the
combination of inertial sensors with wireless signal sensors [11] allows for correction of the errors accumulated
during integration of inertial sensor data as shown by Xsens with the MVN MotionGrid. Similarly, personal
devices like cell phones can be localized inside of buildings.

However, due to their size, weight or power consumption, commercially available IMUs are not ideally
suited for certain applications such as miniature aerial vehicles [5, 12, 13] or inconspicuous integration into
clothes or shoes.
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Figure 1. Overview of the size and the data performances of state-of-the-art IMUs.

2 State-of-the-Art Inertial Measurement Units (IMU)

Today many different IMUs are available commercially. Fig. 1 shows an overview of the dimensions and the
performance data of commercial state-of-the-art IMUs and those developed by scientific research groups. The
performance of an IMU is typically characterized by the bandwidth, drift, linearity and sample rate of its
sensors. For portable applications, IMUs with small dimensions are essential. In contrast to the commercial
products, existing research prototypes are typically smaller and lighter. However, for precise data processing
and state estimation in dynamic applications high raw data rates are required which is a bottleneck in the
development of IMU designs.

For the stability of the sensor output a minimum sensor drift is necessary. Especially the drift of the
gyroscope is crucial since it cannot be reset during the measurement phase. IMUs with a low sensor drift
and a high sensor performance typically have large dimensions and communicate to computers by cable. High-
performance devices like the NG LITEF IMUs for civil and military aviation are equipped with hermetically
sealed cases and fiberoptic gyroscopes which provide low noise, high stability and a low drift factor. In
contrast to that, the NG LITEF µIMU-I [14] is based on MEMS gyroscopes and has a size of 160 cm3.
However, due to their size, weight or power consumption, these IMUs are not suited for mobile applications
in small unmanned aerial vehicles and clothes or shoes.

Besides the high-performance devices mentioned above, smaller IMUs like the Xsens MTi [15], the Sparkfun
Electronics Razor IMU [16], and the X-IMU [17] are commercially available. However, the smaller size
comes at the cost of a reduced sensor data performance and compensation accuracy. Whereas the Xsens
MTi provides orientation estimates from onboard sensor data fusion and compensated raw sensor data,
most small-sized IMUs provide only uncompensated raw sensor data. Therefore, the Xsens MTi is the most
common small-sized inertial sensor in research.

Apart from commercial products, several research groups have put effort into further enhancement with
respect to special characteristics. One important aim, for example, is the miniaturization of the device.
Barton et al. demonstrated a cubic IMU design and wireless communication [18]. Lin et al. presented a
system for the analysis of yaw movements. Another approach is the combination of typical accelerometers
and gyroscopes with a linear encoder for which Lim et al. claim a size of 10 mm x 15 mm [19]. Tsai et al.
presented a small wireless IMU without gyroscopes in a size of 1 cm3 [20]. In contrast to these miniature
devices, our Micro-IMU provides a considerably higher sensor performance and full control over gyroscopes,
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Figure 2. Block diagram of the Micro-IMU

accelerometers, and magnetometers while being one of the smallest IMU designs available.

3 Design of the Micro-IMU

In this paper, we present a wireless Micro-IMU [1] which meets the size, format, and power consumption
constraints for embedded mobile applications like the integration into clothes and shoes. By using MEMS
sensors with large scale integration, the performance is still comparable to state-of-the-art commercially
available MEMS IMUs. In our Micro-IMU we apply modern accelerometers and gyroscopes which feature
three-axis technology and integrated analog-to-digital conversion with automatic temperature compensation
in a one-chip design. This saves space in the IMU design as analog converters, high precision voltage references
and 3D packaging are not needed. Thus, a four-layer PCB is sufficient for integration of all sensors and a
microcontroller.

One important aspect of the design is the decision to move data-processing from the IMU to a base station.
Through this step, the required processing power and therefore the power consumption of the IMU can be
reduced, as the demanding computation of sensor data fusion filters and other algorithms to enhance the
data quality is moved to more powerful computers with less constraints in size and weight. In this case,
the energy source of the IMU can be minimized in weight and size or the operation time can be increased,
respectively. This is important especially for battery-powered embedded microsystems.

The components and the data flow of our Micro-IMU are shown in Fig. 2. The CC430 microcontroller is
interfaced to the three-axis accelerometer (MMA8451Q), three-axis magnetometer (HMC6343), and three-
axis gyroscope (ITG3200) via the I2C protocol. A 28 MHz oscillator is used for the transceiver functionality
along with a voltage regulator for the RF-circuitry. Furthermore, a separated voltage regulator for the digital
circuitry is used to avoid high frequency distortions in the sensor data.

The sensors are systematically selected for a high data rate and digital resolution while providing the full
scale range at the same time.

• Accelerometer : The Freescale Semiconductor MMA8451Q low-power three-axis accelerometer with a res-
olution of 14 bits is used. The chip offers a g-selection, which allows a selectable full-scale of ±2 g, ±4 g, or
±8 g. According to that, the sensitivity is 122µg, 244µg, or 488µg, respectively. Additionally, the sensor
can be configured to generate inertial wake-up interrupts and provides several low-pass filters, the user
can select for a reduction of aliasing effects and noise.

• Gyroscope: The digital gyroscope InvenSense ITG3200 is used for measuring the angular rate. The three-
axis MEMS gyroscope provides a 16-bit resolution and several internal low-pass filters. The sensor offers
a full-scale of 2,000◦/sec and a maximum sensitivity of 0.061◦/sec.

• Magnetometer : The digital Honeywell HMC6343 magnetometer is used for measuring the geomagnetic
field. It has a three-axis magneto-resistive sensor with 12 bits of resolution.

Table 1 shows the configuration and the respective specification of the sensors implemented on the Micro-
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Sensor Full-Scale Sensitivity Maximum sampling Digital
Type range rate resolution

Accelerometer
MMA8451Q ±4 g 0.003 g 800 samples/s 14 bit
Gyroscope
ITG3200 2,000◦/s 0.061◦/s 8k samples/s 16 bit
Magnetometer
HMC6343 ±1 Gs 0.1◦ 10 samples/s 12 bit

Table 1. Specification of the sensors implemented on the Micro-IMU

Figure 3. The Micro-IMU V1 side
view. The connector at the right
top of the IMU can be removed
after programming the device. Figure 4. The Micro-IMU V1 top

view.
Figure 5. The Micro-IMU V1

bottom view.

IMU.
For reading the digital sensor data and radio data transmission, we apply a CC430 microcontroller on the

Micro-IMU. It combines an integrated CC1101 wireless transceiver and an MSP430 microcontroller which is
a 16-bit RISC mixed-signal processor for ultra-low power applications. The wireless transceiver works in the
SRD-Band (a band designed for low-power communication devices), which is specified in the European Union
from 863 MHz to 870 MHz with a maximum allowed power output of 10 dBm. The low-power communications
protocol SimpliciTI from Texas Instruments is used, as this protocol is efficient due to the minimal frame
overhead. The transceiver part of the CC430 supports the maximum allowed power output, i.e., 10 dBm
and a maximum radio transmission data rate of 500 kbaud/s. For validation of the communication link a
hardware CRC16 module is implemented on the CC430 so that the full processing power can be used for
data acquisition and transmission. In our current configuration the CC430 microcontroller can provide sensor
data wirelessly at a maximum sensor sample rate of 640 samples per second with low power consumption.

By choosing QFN-packages and using a four-layer PCB layout, the size of the IMU is reduced almost
to the accumulated footprint of the ICs. The two inner layers are floated with ground copper serving as a
ground plane for the quarter-wave antenna. The large ground plane acts as the “missing half” of a dipole
antenna and is important for the radiation quality of the antenna. Furthermore, using an increased ground
plane reduces the noise floor and minimizes the overall resistance as all devices are connected to this ground
plane. The Johanson Technology SWRA250 is used to provide on-chip impedance matching between the
transceiver and antenna of the Micro-IMU. Subsequently the SWRA250 reduces the size of the matching
network which is superior to procedural impedance matching networks.

Micro-IMU V1: Our first prototype is shown in Fig. 3 to 5. Instead of a chip antenna, we employ a
quarter-wave wire-antenna on the Micro-IMU which can be adjusted to the available space on the embedded
system. Fig. 3 shows the dimensions of our Micro-IMU which are 18 mm × 16 mm × 4 mm (1.2 cm3). The
programming port on the top right is optional and can be removed for further size reduction. The high
frequency components are implemented in the bottom layer of the PCB (shown in Fig 5) in order to avoid high
frequency disturbance on the measurements. In the first version of the Micro-IMU V1 the acceleration sensor
STMicroelectronics LIS3LV02 was used. Because of its non-homogeneous drift and the noise performance
with respect to the three axes, we replaced this sensor with the Freescale Semiconductor MMA8451Q.

Micro-IMU V2: For the implementation of a chip antenna on the Micro-IMU, we developed a second
prototype. The top view of the redesign is shown in Fig. 7. The size of the IMU is 22 mm× 14 mm× 4 mm
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(1.2 cm3). Fig. 6 shows the Micro-IMU mounted on an accumulator which powers the device for about 1
hour of continuous operation.

For reception of the raw IMU sensor data we developed a hardware module which can be connected to
a standard PC via USB. For the user’s convenience, this hardware module is USB bus-powered, applies a
CRC check to the incoming data stream, and automatically deletes invalid packets.

4 Data Processing

One important factor concerning the quality of orientation and positioning estimates is the data post-
processing. In the following section, we will present techniques for sensor characterization of deviations and
error compensation. The error compensation can be implemented as a data post-processing.

4.1 Compensation

Some systematic deviations, namely offset (Fig. 8), temperature drift, scaling factor (Fig. 9) and angle
misalignment of each sensor axes (Fig. 10), on the sensor readings can be compensated by calibration. The
errors of the sensors are caused by variations in the production process of the sensors and environmental
dependencies like the temperature. Each sensor will have its own compensation coefficient, which implies
every sensor is required to be characterized [21]. The experimental methods for calibration of the sensors
of the Micro-IMU are given in Table 2. In the following, we briefly describe the individual calibration
experiments.

Static and climate chamber experiment: The offset error

O(T ) = B + C(T ). (1)

of the gyroscope and acceleration sensor is depending on a static bias error B = [bx by bz]T and a temperature
drift C(T ) = [fx(T ) fy(T ) fz(T )]T . To analyze the offset error of the gyroscope Og(T ) and the accelerometer
Oa(T ), we statically mount the Micro-IMU in a climate chamber and expose it to different temperatures
ranging from 5◦C to 55◦C. For temperature drift and bias compensation, we apply a least-squares cubic
spline approximation to the sensor data recorded in the climate chamber as shown in Fig. 11 and Fig. 12.
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Errors Gyroscope Acceleration Sensor Magnetic field sensor

Offset error (bias) Static Cube Rotation about all axes
Temperature drift Climate chamber Climate chamber –
Scaling factor (gain) Rotation table Cube Rotation about all axes
Angle misalignment Rotation table Cube Rotation about all axes

Table 2. Methods for calibration of different errors.
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Figure 11. The temperature drift of the gyroscope ITG3200.
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Figure 12. The temperature drift of the accelerometer
MMA8451Q.

Although the implemented digital gyroscope ITG3200 has a built-in temperature compensation, it still
exhibits a distinct temperature drift as depicted in Fig. 11. For compensation of the offset error Og(T ) of the
gyroscope, the CC430 microcontroller has an internal temperature diode which can be used to measure the
temperature through the internal analog digital converter. The temperature sensor has a linear output over
the temperature range from 10◦C to 85◦C. However, its offset error can be large and needs to be calibrated
precisely. In our Micro-IMU design, we transmit the temperature data wirelessly together with the sensor
data to the base station to compensate the offset error of the gyroscope.

The response of the digital accelerometer MMA8451Q, which is shown in Fig. 12, indicates that the noise
of the sensor increases with the temperature. This effect is caused by the electronic noise which is generated
by the thermal agitation of the charge carriers inside a semiconductor. The increased noise in the first
part of the measured sensor response in Fig. 12 is caused by the vibration in the heating mechanics of the
climate chamber. Furthermore, Fig. 12 indicates that the accelerometer has no significant temperature drift.
Consequently, the offset error of the accelerometer MMA8451Q can be approximated by Oa(T ) = Ba.

Cube-Experiment: The offset error, the scaling factor error, and the angle misalignment of the acceleration
sensor are determined in the cube experiment. Taking these errors into account, the measurement A =
[ax ay az]T of the three-axis accelerometer depends on the real acceleration values A′ = [a′x a′y a′z]T through

A = Sa(A′ +Ba) . (2)

Here, the matrix

Sa =

sa,xx 0 0
0 sa,yy 0
0 0 sa,zz


︸ ︷︷ ︸

scaling

R(αa, βa, γa)︸ ︷︷ ︸
rotation

(3)
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combines the scaling factors and the angle misalignment of the individual measurement axes, given the
rotation matrix

R(αa, βa, γa) =

 cos βa cos γa − cos βa sin γa sin βa

cosαa sin γa + sinαa sin βa cos γa cosαa cos γa − sinαa sin βa sin γa − sinαa cos βa

sinαa sin γa − cosαa sin βa cos γa sinαa cos γa + cosαa sin βa sin γa cosαa cos βa

 .

(4)
Under the assumption that the misalignment angles αa, βa γa are very small, the rotation matrix

R(αa, βa, γa) can be approximated by the anti-symmetric matrix [22]

R(αa, βa, γa) =

 1 −γa βa

γa 1 −αa

−βa αa 1

 . (5)

To determine the nine unknown parameters sa,xx, sa,yy, sa,zz, αa, βa, γa and ba,x, ba,y, ba,z in Eq. (2), we
mount the Micro-IMU inside of a hollow metal cube, where the sensor axes are aligned with those of the
cube. As illustrated in Fig. 13, we place the cube in twelve different positions and measure the accelerations
which should match the gravity vector g = [0 0 9.81 m/s2]T . Six positions (1, 2, 3, 4, 5, 6) are orthogonal
positions to the ground. The other six positions (7, 8, 9, 10, 11, 12) are in 45◦ to ground using the V-block
depicted in Fig. 14.
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We determine the unknown parameters by minimizing the deviation

ra =
12∑

i=1

∣∣‖A′i‖ − ‖g‖∣∣, (6)

of the compensated acceleration measurements from the gravity. Fig. 14 shows the errors of the accelerometer
output of the three axes in the twelve different positions of the experiment and the corresponding errors
after calibration.

Experiment with the rotation table: The scaling factor error and the angle misalignment of the gyro-
scope is determined in an experiment using the rotation table. Taking these errors into account, the mea-
surement Ω = [ωx ωy ωz]T of the three-axis gyroscope depends on the real angular speed Ω′ = [ω′x ω′y ω′z]T
through

Ω = Sg(Ω′ +Og(T )) , (7)

where Sg includes six unknowns parameters for misalignment and scaling analog to Sa. As we assume the
ambient temperature to be static during the experiment, the temperature drift error can be determined in
advance so that the static bias error Bg is the remaining part of the offset error Og(T ) to be determined in
this experiment.

We determine the nine unknown parameters by mounting the Micro-IMU to a rotation table (Fig. 16),
which can rotate the IMU with a constant angular velocity ω̃. In our experiment the Micro-IMU was rotated
with nine different angular velocities from −400◦/s till 400◦/s in 100◦/s steps around the x-, the y-, and the
z-axis. Analog to the cube experiment, we determine the unknown parameters in an iterative minimization
of the deviation

rg =
27∑

i=1

∣∣‖Ω′i‖ − ω̃i

∣∣ (8)

of the compensated angular velocity measurements from the reference values of the angular velocity.
Fig. 17 shows the output of the uncalibrated gyroscope and the true values during the experiment, which

illustrates the scaling error of the uncalibrated sensor. Fig. 18 shows the calibrated data of the gyroscope
and the reference values of the rotation table.
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Figure 20. Output of the uncalibrated magnetometer during a
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Figure 21. Output of the calibrated magnetometer during a
walk.

Rotation about all axes experiment: The offset error, the scaling factor error and the angle
misalignment of the magnetometer are determined in the rotation about all axes experiment. Taking these
errors into account, the measurement M = [mx my mz]T of the three-axis magnetometer depends on the
real magnetic field M ′ = [m′x m′y m′z]T trough

M = Sm(M ′ +Bm) , (9)

where Sm includes the scale factor and angle misalignment compensation and Bm the offset compensation.
To determine Bm and Sm we mounted the IMU on a robot without any metallic materials and rotated

it around all three axes on a green field outdoors to read the magnetometer. In contrast to the passive
surroundings on the green field, ferromagnetic materials (steel, nickel, and iron) affect the magnetic field [23].
For the calibration of earth’s magnetic field compass, the sensors should have a sufficient distance from ferrous
objects that could not bend the fields and cause a systematical error.

In our calibration approach, we choose the scaling of the magnetic field so that the earth’s magnetic field
has a norm of 1. Based on that, we determine Bm and Sm using a linear optimization on

rm =
N∑

i=1
M ′

T
i M

′
i − 1 (10)

through singular value decomposition.
Figure. 19 shows the uncalibrated and the calibrated magnetic field measurements recorded during the
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calibration experiment. The norm ‖M ′‖ represents the earth’s magnetic field strength. It can be seen that
after calibration, the scalar error and bias has been removed and the norm or the calibrated measurements
of the earth’s magnetic field strength remains close to 1.

Fig. 20 shows the data of the uncalibrated magnetic field measurements of the Micro-IMU during a
short walk compared to that of the factory calibrated Xsens MTi. After calibration, Fig. 21 shows that the
deviation of the calibrated measurements of the Micro-IMU from that of the Xsens MTi is minimized.

4.2 Comparison between Uncalibrated and Calibrated Measurements

For calculating the errors of the uncalibrated sensor data Z and the calibrated sensor data Z ′, the root mean
square

ZRMS =

√√√√ 1
N

N∑
n=1

(Z − Z ′)2 (11)

of the deviations in the individual experiments are calculated. The errors of the uncalibrated and the
calibrated measurements of the accelerometer, the gyroscope and the magnetometer are shown in Table 3.

Errors Gyroscope Accelerometer Magnetometer

Uncalibrated 25.64◦/sec 0.052m/s2 14.69nT
Calibrated 0.15◦/sec 0.015m/s2 3.90nT

Table 3. Comparison between uncalibrated and calibrated sensors.

4.3 Evaluation of Measurement Error and Allan Variance

After compensation of static measurement deviations, the measurement data quality is determined through
the evaluation of the bias-drift and the measurement noise. The drift of the measurement values of the
gyroscopes and accelerometers has a devastating effect on the on accuracy of an IMU as it leads to a
quadratic effect on the position estimated by integration of the measurement data.

To gain knowledge about the magnitude of drift and noise we evaluate the Allan variance σ2
a of the

measurement data. The Allan variance is an instrument for representing the root mean square random drift
errors as a function of averaging time intervals ∆t [24]. It is defined as

σ2
a(∆t) = 1

2(N − 1)

N−1∑
i=1

(xi − xi−1)2 (12)

depending on the differences between consecutive measurements of the sensor data recorded at the measure-
ment period ∆t.

The graph of the Allan variance expresses five types of noise terms with various gradients as shown in
Fig. 22. Random walk, rate random, bias instability, quantization noise and rate ramp. White noise or
random walk appears with a gradient of -0.5 on the diagram of the Allan variance. The noise based on a
bandwidth of 1 Hz is identified by fitting a straight line trough the slope of the curve at the averaging time
of 1 s. The bias instability is defined as the flat region around the minimum of the graph. The drift value
can be identified as the global minimum of the Allan variance.
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Figure 22. Schematic diagram of the Allan variance.
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Figure 23. The Allan variance of the gyroscope ITG3200 of the
Micro-IMU.
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Figure 24. The Allan variance of the acceleration sensor
MMA8451Q of the Micro-IMU.

4.4 Evaluation Results

For the sensor characterization by means of the Allan variance, we first captured the raw sensor data of
the Micro-IMU V2 for four hours with a sample rate of 340 samples per second. The resulting curve for the
gyroscope of the Micro-IMU is depicted in Fig. 23 and the precise characterization values for noise and drift
are presented in Table 4. Comparing the three axes, the z-axis of this sensor significantly outperforms the
other two axes. This effect can be explained by the MEMS-nature and the geometry of the sensor. As the
structures for all three axes are manufactured in one planar chip design having the z-axis orthogonal to the
PCB, trade-offs have to be made concerning the sensor quality in certain measurement axes.

Regarding the acceleration sensor shown in Fig. 24 a similar distinction between the z-axis and the other
two axis can be observed. Again the MEMS-nature causes certain priority-orientations, in this case the
quality of the noise in the x- and y-axis is improved. The drift of the sensor is similar in all three axis. The
exact characterization values are given in Table 4.

4.5 Comparison with the Xsens MTi

We compared the Micro-IMU to the Xsens MTi [15], which is a state-of-the-art commercially available IMU
based on MEMS sensors and widely-used in many research areas. In our comparison, we collected a set of
raw data from the Xsens MTi over a period of four hours with a data rate of 100 samples per second, which
is the maximum sampling rate of the device. We analyzed this data by means of the Allan variance. The
obtained curves are shown in Fig. 25 and 26 and the precise characteristics can be found in Table 4.

As can be seen in Fig. 24 and 26 the noise values of the accelerometers are in the same range, except
for the z-axis in which the MTi performs slightly better than the Micro-IMU. This is due to the fact that
the Xsens MTi uses a 3D PCB-design witch allows to place an individual sensor for each measurement axis
on one of the three orthogonally placed PCBs. The drift of the acceleration sensor of our Micro-IMU is on
average two times lower than that of the Xsens MTi.

For the gyroscope the Micro-IMU significantly outperforms the MTi concerning drift and noise. The noise
level of the Micro-IMU is on average six times lower than that of the MTi and the drift is lower by a factor
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Figure 25. The Allan variance of the gyroscope of the Xsens
MTi.
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Figure 26. The Allan variance of the acceleration sensor of the
Xsens MTi.

Micro-IMU Xsens MTi

Interface Wireless RS232/USB
Sampling Rate 640 sample/sec 100 sample/sec
Bandwidth Acc. 320 Hz 30 Hz
Bandwidth Gyro. 320 Hz 40 Hz
Power Consumption 110 mW 350 mW
Price 150 EUR (Production) 2500 EUR
Size (OEM) 22 x 14 x 4 mm3 48 x 33 x 15 mm3

Weight (OEM) 3 g 11 g
Gyroscope
Noise in ◦/s/

√
Hz

x-axis 0.00012 0.00070
y-axis 0.00009 0.00080
z-axis 0.00008 0.00060
Drift in ◦/s
x-axis 0.00004 0.00012
y-axis 0.00005 0.00012
z-axis 0.00002 0.00009
Acceleration Sensor
Noise in m/s2/

√
Hz

x-axis 0.00150 0.00090
y-axis 0.00110 0.00095
z-axis 0.00205 0.00085
Drift in m/s2

x-axis 0.00017 0.00023
y-axis 0.00014 0.00027
z-axis 0.00011 0.00029

Table 4. Comparison between the Xsens [15] and our Micro-IMU.

of three. Overall, despite of its small size, the performance of our Micro-IMU showed to be comparable to
that of the Xsens MTi in an extensive static evaluation.
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5 Pedestrian Tracking Application

We demonstrate the applicability and the performance of our wireless Micro-IMU in a pedestrian tracking
application. In that application, we estimate the trajectory of a pedestrian whose shoe is equipped with an
IMU.

Our approach to calculate the position of a pedestrian based on inertial sensors is direct integration ac-
cording to [25]. The gyroscope is used to obtain the orientation data by applying the navigation equations,
which were used to transfer the sensor coordinate system to the global coordinate system. After coordinate
transformation of the acceleration data, the velocity and the position can be obtained by integration over
time. A detailed discussion of the navigation equations can be found in [26]. However, the estimated orien-
tation suffers from accumulating errors due to the sensor drift. Thus, a sensor data fusion with additional
sensors can be used to improve the accuracy of the orientation estimates. In this study, we apply senor
data fusion based on a modified Kalman filter as described in [27]. The structure of the system is shown in
Fig. 27.

R
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Orienatation 
calculation

Orienatation 
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Kalman filterKalman filter--
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Reference Yaw 
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Figure 27. Kalman filtering structure for orientation determination. [27]

In our modified Kalman filter we model the system state as the orientation error δΘ and the angular rate
error δΩ. As measurements we use the difference between the gyro-based and the magnetic field/acceleration-
based orientations. Through this state and measurement representation we avoid to model the non-linear
system behavior. In the orientation estimation, the angular rate data Ω of the three-axis gyroscope is
corrected by subtracting the bias error δΩ estimated from the Kalman filter based sensor data fusion, which
will be mentioned in the following. Then, the gyro-based orientation Θ is calculated from the corrected
angular rate Ω̂ using the navigation equations and Quaternion algebra.

For the calculation of the orientation reference, we combine the three-axis magnetometer and accelerometer
data to obtain another set of orientation data ΘR. Note that the reference orientation can be calculated only
if the acceleration data is static, which means that the norm of the acceleration data is close to the value
of the gravity. The deviation ΘR −Θ between the reference orientation and the orientation estimate of the
gyroscope is utilized as filter measurement to correct the state δΘ and δΩ estimated in the Kalman filter.
After Kalman filtering, the corrected orientation Θ̂ is obtained by subtracting δΘ from Θ using Quaternion
algebra. It can be seen that Θ̂ = Θ and Ω̂ = Ω if the acceleration data is not static. Therefore, the incorrect
ΘR will not affect the resulted Θ̂.

However, since the magnetic field measurements are often affected by local disturbances which would
result in an incorrect reference orientation ΘR, we detect and minimize the magnetic field disturbances in
our filter. By processing the magnetic field and acceleration measurement data, magnetic disturbances can
be detected and an alternative magnetic field vector can be generated to calculate the reference orientation.
In this way, the impact of disturbances can be minimized.

In our filter, the position is calculated recursively by integrating the acceleration data over time. Hence,
the filter suffers from accumulating errors in the estimated translational velocity and therefore also in the
estimated position. In order to deal with accumulating errors in the acceleration and the velocity, we apply
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Figure 28. Comparison between the filter estimates with and without ZUPT.

Micro-IMU

Figure 29. For an experiment the Micro-IMU was mounted on a
shoe.
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Figure 30. The trajectory estimated from the uncalibrated
Micro-IMU on a walk in comparison with the true trajectory.

the ”Zero Velocity Update” (ZUPT) technique [28]. In each step during normal walking, there exists the
so-called still phase, a time period when the foot is not moving relative to the ground. Ojeda et al. showed
that the velocity value should be reset when the still phase is detected. We found experimentally that the
best indication for the still phase can be obtained by observing the gyroscope data. If the norm of the
angular rate measurement Ω of the gyroscope is smaller than a predefined threshold, we assume that the
foot is in the still phase and the velocity can be reset. In this way, the accumulation of errors in the velocity
estimation can be effectively suppressed, which is shown in Fig. 28.

5.1 Experiment

We implemented the sensor data fusion algorithm described above and evaluated the tracking performance of
our Micro-IMU mounted on the toe-cap of a pedestrian as shown in Fig. 29. For comparison, we additionally
mounted an Xsens MTi on the shoe. The Xsens MTi provides both, Kalman filtered orientation estimates
and the calibrated raw data of the individual sensors. However, in our experiments, we only used the
calibrated raw data as input for the sensor data fusion algorithm. Note, that the this experiment focuses
on the evaluation of the performance of the whole IMU in one of its common applications instead of the
separate evaluation of the individual sensors employed on the IMU.

In a large experimental area in an office building the pedestrian walked three times on a round-trip,
traveling a distance of about 60 m. We acquired highly accurate reference positions of the shoe using an
optical motion capture system (MoCap) and compared the position and the velocity estimates of our filter
algorithm to the MoCap references.
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Figure 31. The trajectory estimated from the calibrated
Micro-IMU on a walk in comparison with the true trajectory.
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Figure 32. The trajectory estimated from the Xsens on a walk
in comparison with the true trajectory.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

45

50

Deviation from real position in m

N
um

be
r 

of
 m

ea
su

re
m

en
ts

 

 

Micro−IMU uncalib.

Figure 33. Relative error deviation in
4 Hz of the uncalibrated Micro-IMU.
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Figure 34. Relative error deviation in
4 Hz of the calibrated Micro-IMU.
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Figure 35. Relative error deviation in
4 Hz of the Xsens MTi. (std = 0.48 m)
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Figure 36. Velocity error of the calibrated and uncalibrated Micro-IMU

Fig. 31 and 32 shows the comparison of the filter estimates using our Micro-IMU and the Xsens MTi
to the reference trajectory. Fig. 30 shows the trajectory estimated using the the uncalibrated measurement
data of the Micro-IMU and Fig. 33 shows the relative deviations from the trajectory, respectively. As can be
seen in Fig. 31 the calibration procedure described in Section 4.1 substantially improved the quality of the
measurement data and therefore enabled an accurate tracking of the pedestrian. Compared to the trajectory
estimated using the measurements of the Xsens MTi, the trajectory estimated based on our Micro-IMU is
closer to the reference trajectory as shown in Fig. 33, 34, and 35.

We additionally evaluated the velocity error of the filter estimates with respect to the reference velocities
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obtained from the MoCap reference trajectory. Fig. 36 shows the x- and the y-component of the error of
the velocity estimates using the uncalibrated and calibrated Micro-IMU. Whereas the uncalibrated mea-
surements of the Micro-IMU result in a maximum velocity error of 6 m/s, the calibrated measurements of
the Micro-IMU result in a substantially lower velocity error. Overall, the results of the pedestrian tracking
experiment indicate that an error compensation with calibration is inevitable for an accurate tracking of
objects.

6 Conclusion and Future Work

In this paper, we presented the design of a wireless Micro-IMU that features minimum size and weight. By
using highly integrated digital sensors and relocating data post-processing from the IMU to a base station,
we are capable of competing with state-of-the-art commercial MEMS IMUs such as the Xsens MTi. At the
same time, the dimensions of the Micro-IMU are considerably smaller and the static performance data of the
sensors are comparable or better in terms of noise and drift. We believe that this achievement is important
for an accurate tracking of people or objects in indoor environments. In the presented work, the miniature
size of the designed Micro-IMU made it possible to integrate the IMU into clothes or shoes. We demonstrated
the calibration results and the overall performance of our Micro-IMU in an extensive tracking experiment
where our Micro-IMU enabled an accurate tracking of a pedestrian on a trajectory of 60 m length.

In our further development we would like to evaluate the dynamic measurement noise in a target applica-
tion to improve the parameters of the filter algorithm.
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