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Abstract— In this paper, we present a localization method
for humanoid robots navigating in arbitrary complex indoor
environments using only onboard sensing. Reliable and accurate
localization for humanoid robots operating in such environ-
ments is a challenging task. First, humanoids typically execute
motion commands rather inaccurately and odometry can be
estimated only very roughly. Second, the observations of the
small and lightweight sensors of most humanoids are seriously
affected by noise. Third, since most humanoids walk with a
swaying motion and can freely move in the environment, e.g.,
they are not forced to walk on flat ground only, a 6D torso
pose has to be estimated. We apply Monte Carlo localization
to globally determine and track a humanoid’s 6D pose in a
3D world model, which may contain multiple levels connected
by staircases. To achieve a robust localization while walking and
climbing stairs, we integrate 2D laser range measurements as
well as attitude data and information from the joint encoders.
We present simulated as well as real-world experiments with
our humanoid and thoroughly evaluate our approach. As the
experiments illustrate, the robot is able to globally localize itself
and accurately track its 6D pose over time.

I. INTRODUCTION

In this paper, we consider the problem of humanoid robot
navigation in complex indoor environments, possibly con-
sisting of different levels connected by steps and staircases.
The capability to robustly navigate in such an environment
is the prerequisite for robots to fulfill high-level tasks such
as delivery or home-care.

In the last few years, humanoid robots have become a pop-
ular research tool as they offer new perspectives compared
to wheeled vehicles. For example, humanoids are able to
access different types of terrain and to climb stairs. However,
compared to wheeled robots, humanoids also have several
drawbacks such as foot slippage, stability problems during
walking, and limited payload capabilities. In addition, the
flat world assumption is violated, i.e., humanoids usually
cannot be assumed to move on a plane to which their
sensors are parallel due to their walking motion. The main
problems which have to be dealt with to solve reliable
localization for humanoids are the following. First, there
is often serious noise in the executed motion commands
depending on ground friction and backlash in the joints, i.e.,
odometry can only be estimated very inaccurately. Second,
the observations provided by the lightweight sensors which
typically have to be used with humanoids are rather noisy
and unreliable. As a result, accurate localization, which is
considered to be mainly solved for wheeled robots, is still a
challenging problem for humanoid robots.
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Fig. 1. Our laser-equipped Nao robot navigates in a multi-level indoor
environment. The robot uses a head-mounted 2D laser range finder, attitude
and joint angle sensors, as well as odometry information to perform Monte
Carlo localization of its 6D torso pose while walking and climbing stairs.

A 2D grid map representation, which stores occupancy
information of the environment discretized in cells, is in
general not sufficient for navigation with humanoid robots.
In complex environments containing obstacles on the floor
or staircases, the capability of humanoid robots to step over
or onto objects needs to be taken into account. Accordingly,
2.5D models which also represent the height of objects are
often used in the humanoid robotics community (e.g., [1],
[2], [3]). However, for arbitrary environments containing
several levels, a 3D representation is needed which stores
free and occupied areas in a volumetric way.

For reliably completing navigation tasks, a robot must
be able to globally determine its pose in such a model
and accurately track it over time. When operating in non-
planar, multi-level environments, a robot needs to estimate
a 6D state: In addition to the 2D position and yaw angle,
the height of the robot’s torso above the ground plane has
to be estimated. As our experiments demonstrate, also the
torso’s roll and pitch angles are relevant since they improve
localization accuracy in the 3D model.

So far, only noisy foot step odometry has been used to
locally track a humanoid’s pose in a 3D model (e.g., [4]). The
contribution of this paper is a robust localization system for
humanoid robots navigating in complex, multi-level indoor
environments. We apply Monte Carlo localization (MCL) to
estimate the robot’s 6D torso pose in a 3D environment repre-
sentation using 2D laser range data. Note that our approach
does not require the robot to stop and obtain a 3D scan.
As further measurements, we integrate data provided by an
attitude sensor and information from the joint encoders of
the robot. For our experiments, we use a modified version of



the humanoid robot Nao [5] which is additionally equipped
with a Hokuyo laser scanner (see Fig. 1). As we show in
simulated as well as in real-world experiments, the robot is
able to determine its global 6D pose and accurately track it
while walking and climbing stairs.

The remainder of this paper is structured as follows. We
first discuss related work in the next section. Section III
describes the humanoid used for our experiments, followed
by a description of our 3D environment representation in
Sec. IV. Our 6D localization approach is detailed in Sec. V.
Finally, Sec. VI illustrates the robustness and accuracy of
our localization approach in experiments.

II. RELATED WORK

In the last few years, many approaches for tracking
the pose of humanoids in the two-dimensional space have
been presented. For example, Ido et al. [6] apply a vision-
based approach and compare the current image to previously
recorded reference images in order to estimate the location of
the robot. Oßwald et al. [7] and Bennewitz et al. [8] compare
visual features to a previously learned 2D feature map during
pose tracking. Pretto et al. [9] track visual features over time
for estimating the robot’s odometry. Cupec et al. [10] detect
objects with given shapes and colors in the local environment
of the humanoid and determine its pose relative to these
objects. Seara and Schmidt [11] proposed to control the gaze
direction of a humanoid’s stereo camera in such a way that
the error of the robot’s estimated foot positions is minimized.
Furthermore, techniques using laser range data have also
been developed. Stachniss et al. [12] presented an approach
to learn accurate 2D grid maps of large environments with
a humanoid equipped with a Hokuyo laser scanner. Such a
map was subsequently used by Faber et al. [13] for humanoid
localization in 2D. Similarly, Tellez et al. [14] developed a
navigation system for such a 2D environment representation
using two laser scanners located in the feet of the robot.

Since a 2D map is often not sufficient for humanoid
motion planning, several methods use 2.5D grid maps which
additionally store a height value for each cell. Thompson et
al. [1] track the 6D pose of a humanoid equipped with a
Hokuyo URG-04LX laser scanner in such a representation.
However, they assume that the robot is only walking on
flat ground, constraining height, roll, and pitch within fixed
thresholds. In further approaches, authors use only odometry
data to estimate the robot’s pose while constructing a local
2.5D height map from 3D laser range measurements [2] or
a combination of a local height map and a 3D grid from
stereo data [15], [16]. To avoid problems resulting from the
accumulated error, old data is discarded after a short period
of time in these approaches.

Michel et al. [3] localize the robot with respect to a close
object. The authors apply a model-based approach to track
the 6D pose of a manually initialized object relative to the
camera. Stasse et al. [17] proposed an approach to simultane-
ously localizing the robot and mapping the environment. The
authors combine vision and motion information to estimate

the pose and velocities of the camera as well as visual feature
positions in 3D while the robot is walking on a small circle.

Finally, there exist navigation systems for humanoid robots
which use external sensors to track the robot’s pose, e.g., as
proposed by Michel et al. [18], [19].

In contrast to all of these approaches, we present a system
which is able to accurately determine the complete 6D pose
of a humanoid robot in a 3D representation of a complex,
multi-level environment using only on-board sensors.

Note that Kümmerle et al. [20] presented a localization
technique for wheeled robots in a multi-level surface (MLS)
map. MLS maps allow to store multiple levels per 2D grid
cell. However, they do not provide a volumetric represen-
tation of the environment which is needed for humanoid
navigation and they are not completely probabilistic.

III. THE HUMANOID ROBOT NAO

The humanoid robot Nao is 58 cm tall, weighs 4.8 kg
and has 25 degrees of freedom [5]. In addition to the
default sensors such as ultrasound and cameras, our hu-
manoid is equipped with a Hokuyo URG-04LX laser range
finder. While the measurements of this sensor are relatively
noisy [21], it is small and lightweight. The 2D range finder
is mounted in a modified head of the humanoid, providing a
field of view of 240◦ (see Fig. 1).

In order to obtain measurements of its joint positions, Nao
is equipped with Hall effect sensors which measure the angle
of each joint. Using the joints of the support leg, an estimate
of the robot’s torso position and orientation can be obtained
through forward kinematics at any time. Additionally, an
inertial measurement unit (IMU) yields an estimate about the
robot’s orientation. Measurements from a two-axis gyroscope
and a three-axis accelerometer are integrated in order to
obtain an estimate of the robot’s torso orientation around
the world’s x and y-axis (roll and pitch, respectively). The
measurements of this small and lightweight IMU are quite
noisy compared to the IMUs often used in robotics. However,
especially while walking, these values are more accurate
than the roll and pitch obtained through kinematics of the
measured support leg joint angles, because the robot’s feet
may not always precisely rest on the ground.

IV. 3D ENVIRONMENT REPRESENTATION

Humanoid robot navigation in complex environments re-
quires an adequate representation of the environment. In
non-planar multi-level environments, a full 3D occupancy
grid map is necessary since the map needs to encode both
occupied and free volumes.

In our system, we employ an octree-based mapping frame-
work that models occupied as well as free and unknown areas
in the environment in a probabilistic and memory-efficient
way. This enables our humanoid to use map resolutions as
small as 2 cm for a complete 3D indoor map. Our map
representation is available as an open-source library [22].

Note that we do not address the problem of simultaneous
localization and mapping (SLAM) in this work. We assume
that a volumetric 3D map of the environment has been
created beforehand.



V. 6D LOCALIZATION FOR HUMANOID ROBOTS

For humanoid localization in complex multi-level environ-
ments, we need to determine the complete six-dimensional
pose x = (x, y, z, ϕ, θ, ψ) of the robot. Accordingly, we
estimate the 3D position (x, y, z) and the roll, pitch, and
yaw angles (ϕ, θ, ψ) of robot’s body reference frame in the
global 3D map of the environment. This reference frame is
located in the center of the humanoid’s torso, which is also
the origin of all of its kinematic chains. For estimating the
robot’s 6D state, we apply Monte Carlo localization [23].

A. Monte Carlo Localization (MCL)

MCL is a Bayes filtering technique which recursively
estimates the posterior about the robot’s pose xt at time t:

p(xt | o1:t, u1:t) = η ·
sensor model︷ ︸︸ ︷
p(ot | xt) ·∫

xt−1

p(xt | xt−1, ut)︸ ︷︷ ︸
motion model

· p(xt−1 | o1:t−1, u1:t−1)︸ ︷︷ ︸
recursive term

dxt−1

Here, η is a normalization constant resulting from Bayes’
rule, u1:t denotes the sequence of all motion commands
executed by the robot up to time t, and o1:t is the sequence
of all observations. The term p(xt | xt−1, ut) is called
motion model and denotes the probability that the robot ends
up in state xt given it executes the motion command ut
in state xt−1. The sensor model p(ot | xt) denotes the
likelihood of obtaining observation ot given the robot’s
current pose is xt.

In MCL, the belief distribution over the robot’s current
state is approximated by a set of n weighted samples
or pose hypotheses Xt = {〈x(1)

t , w
(1)
t 〉, . . . , 〈x

(n)
t , w

(n)
t 〉}.

Here, each x
(i)
t is one pose hypothesis and w

(i)
t is the

corresponding weight, which is proportional to the likelihood
that the robot is in the corresponding state. The update of the
belief, also called particle filtering, consists of the following
steps:

1) Prediction: The current set of particles is
propagated forward according to the motion
model p(xt | xt−1, ut).

2) Correction: The importance weight of each particle
is computed according to the sensor model p(ot | xt)
given the map.

3) Resampling: New particles for Xt+1 are drawn with
replacement from Xt proportional to the particle
weights w

(i)
t . Afterwards, their weights are reset to

w
(i)
t+1 = 1

n . This step ensures that the filter converges
to pose hypotheses with high likelihoods.

The filter is initialized with a distribution of equally
weighted samples around the initial pose estimate (“track-
ing”), or with a uniform distribution over all possible hy-
potheses (“global localization”).

B. Motion Model

In the prediction step of MCL, a new pose is drawn for
each particle according to the motion model p(xt | xt−1, ut).

In the approach presented in this paper, the motion command
ut corresponds to the incremental motion of the humanoid’s
torso while walking, turning, or climbing stairs. It is repre-
sented as a 6D rigid body transform that can be computed
as

ut = T (x̃t−1)
−1 T (x̃t) , (1)

where T (x̃t) denotes the transform from the origin to the
estimated odometry pose x̃t in an arbitrary odometry co-
ordinate frame at time t. These estimated odometry poses
originate from forward kinematics of the measured leg joint
angles, as described in Sec. III.

To account for motion noise, the particle prediction step
adds multivariate Gaussian noise to the motion command for
each particle i:

x
(i)
t = T

(
x
(i)
t−1

)
ut T (N (0, δ ·Σ)) , (2)

where the scalar δ corresponds to the length of the trans-
lational part of ut and Σ ∈ R6×6 is the covariance of
the motion noise. Thus, we scale the motion noise so that
longer incremental torso trajectories imply higher motion
noise. Note that the torso also covers a distance while turning
because the humanoid constantly shifts its center of mass
from one foot to the other.

In practice, odometry and other sensor data do not arrive
at discrete timesteps but asynchronously and with different
update rates. To solve this problem and achieve time syn-
chronization, we update the MCL filter based on laser sensor
data, interpolating odometry and IMU sensor data between
two valid measurements. A second problem stems from the
fact that a full laser scan is not generated instantaneously
but over a certain amount of time in which the robot may
be moving. To overcome this problem, we apply temporal
uncertainty sampling as introduced by Thompson et al. [1].
For each particle, odometry transforms are interpolated to a
timestamp which is sampled uniformly around the current
laser timestamp in an interval corresponding to the time
needed for a complete scan.

C. Sensor Model

The belief about the humanoid’s 6D state is updated based
on three different sources of sensor information contained in
one observation ot. First, the laser range measurements lt
provided by the Hokuyo URG-04LX are integrated. Second,
we regard the height z̃t of the humanoid’s torso above the
current ground plane as a measurement of its joint encoders
and also integrate the angles for roll ϕ̃t and pitch θ̃t as
estimated by the noisy IMU. Since all these measurements
are independent, the sensor model decomposes to the product

p(ot | xt) = p(lt, z̃t, ϕ̃t, θ̃t | xt) =
p(lt | xt) · p(z̃t | xt) · p(ϕ̃t | xt) · p(θ̃t | xt) .

(3)

1) Laser Measurements: To integrate laser range readings,
we use the endpoint model proposed by Thrun [24]. Here,
the likelihood of a single range measurement lt,k depends
on the distance d of the corresponding hypothetical beam



endpoint to the closest obstacle represented in the map, i.e.,
p(lt,k | xt) = φ(d, σl), with

φ(d, σ) = exp

(
− d2

2σ2

)
. (4)

Here, σ is the standard deviation of the sensor noise and d
is a distance. Note that for a given 3D map, the distances to
the closest obstacles can be precomputed for all 3D cells.

Since a laser measurement consists of K beams lt,k, the
integration of a full scan lt is computed as the product of
the beam likelihoods

p(lt | xt) =
K∏
k=1

p(lt,k | xt) (5)

with the common assumption of conditional independence
between the beams.

2) Roll, Pitch, and Height Measurements: Furthermore,
we need to integrate the torso height z̃t above the ground
plane as computed from the values of the joint encoders
and the roll ϕ̃t and pitch θ̃t provided by the IMU. Here,
we evaluate the difference between the quantities predicted
according to the motion model and their measured values.
Similar to the laser measurements, their likelihoods are
computed using a distance function as in Eq. 4:

p(z̃t | xt) = φ(zt,ground − z̃t, σz) (6)
p(ϕ̃t | xt) = φ(ϕt − ϕ̃t, σϕ) (7)

p(θ̃t | xt) = φ(θt − θ̃t, σθ) , (8)

where σz , σφ, and σθ are given by the noise characteristics
of the joint encoders and the IMU, and zt,ground is computed
from the height difference between zt and the closest ground
level in the map.

Finally, the complete measurement update step of the
localization can be combined to the product of Eq. (5)-
(8) according to Eq. (3) by choosing appropriate weighting
factors for the individual likelihoods.

D. Global Localization in Multi-level Environments

When the robot has no initial guess about its pose, it
needs to estimate the pose globally. In MCL, this is done
by initially distributing the pose hypotheses over possible
robot poses in the whole environment, i.e., in our case also
over all levels. To efficiently draw robot pose hypotheses,
we sample x, y, and ψ uniformly within free areas of the
map and z from the probability distribution given by Eq. (6).
For each sampled 2D position (x, y), we hereby consider
the initial height measurement z̃0 at all represented ground
levels. Similarly, roll and pitch are sampled according to
Eq. (7) and (8) for an initial IMU measurement (ϕ̃0, θ̃0).

Obviously, global localization requires more particles than
pose tracking. However, once the initial particle cloud has
converged, the robot’s pose can be tracked using fewer
particles.

Fig. 2. The simulation environment with the humanoid at its initial position.
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Fig. 3. The pose estimated by our localization system compared to
odometry and ground truth for tracking in simulation. The 6D poses are
projected on the ground plane. The particle filter accurately tracks the robot’s
pose, while the odometry estimate quickly diverges.

VI. EXPERIMENTS

We now present localization experiments carried out with
our humanoid in a real environment as well as in the Webots
robot simulator [25]. The simulator realistically models the
Nao humanoid robot, its physical interaction with the envi-
ronment, and the data obtained by the sensors. The simu-
lated environment which we designed for our experiments
is shown in Fig. 2. It contains various levels, obstacles,
and manipulable objects in an area of 5 m × 5 m × 2 m.
The environment for the real robot consists of two levels
connected by a staircase as can be seen in Fig. 5, and has a
size of 6.6 m × 4.2 m × 2 m.

As the estimated localization pose of the robot, we use
the weighted mean of the particle distribution. Since we
only have a true pose available in the simulation, we take
the 2D position of the torso as estimated by an external
laser-based tracking system [26] as ground truth in our real
experiments. Thus, we only have ground truth values for the
x and y position of the torso with an accuracy of up to a
few centimeters.

In all our experiments, Nao was teleoperated using the
default behaviors for walking straight, on arcs, sideways, and
for turning. For climbing stairs, we used a manually designed
behavior. While walking, the robot does not move its head
to ensure a stable gait. The laser sensor plane is parallel to
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Fig. 4. Mean and standard deviation of the tracking error over 10 runs
while following the trajectory depicted in Fig. 3. The errors for roll and
pitch are not shown due to space constraints. See text for details.

the ground when standing still.

A. Pose Tracking

First, we evaluate the performance of the proposed lo-
calization technique for a simulated tracking experiment.
Figure 3 shows the trajectory of the robot projected on
the xy-plane. In this experiment, the robot was walking on
the ground floor. As can be seen, foot slippage and joint
backlash quickly lead to a drift in the odometry estimate.
Contrary to that, our localization accurately tracks the robot’s
movements.

Since any Monte Carlo method is susceptible to the effects
of pseudo-random number generators, we evaluate the errors
as mean and standard deviation over ten differently seeded
localization runs of the same recorded sensor data. The
tracking error of the localization is plotted in Fig. 4. The
average translational xy-error over the whole trajectory is
2.6 cm±0.8 cm, the average absolute yaw error is 1◦±0.9◦.
The corresponding values are 0.3◦ ± 0.3◦ for the roll and
0.3◦ ± 0.2◦ for the pitch error, and 0.6 cm± 0.2 cm for the
error of the torso height. This illustrates that our localization
method is able to accurately track the 6D pose of the
humanoid’s torso while it is navigating in the environment.

Ignoring the roll and pitch angles during localization
results in a larger error of the robot’s pose: The average
translational error increases to 5 cm, the yaw error to 2◦, and
the z error to 2 cm. This demonstrates that the humanoid’s
swaying motion of up to 5◦ in each direction needs to be
considered and a full 6D pose localization is required.

Furthermore, we evaluate the pose tracking performance in
a real multi-level environment which is depicted in Fig. 5. As
can be seen in Fig. 6 and 7, our localization system reliably
estimated the real robot’s torso pose while it was walking
through the environment and climbing stairs. Opposed to
that, accumulated errors from foot slippage quickly lead to
an erroneous odometry estimate.

Throughout all tracking experiments, n = 500 particles
were sufficient to track the robot’s pose. More particles did
not lead to a significant increase in accuracy. Note that our
proposed localization method efficiently runs online on a
standard desktop computer, without any special optimization
towards computing speed.

Fig. 5. The real-world experimental environment for the humanoid robot,
consisting of two levels connected by a staircase.
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Fig. 6. Experiments carried out in our real-world environment (Left: ground
floor only; right: ground floor and two stairs). Ground truth was obtained
through a laser-based external tracking system. While odometry quickly
diverges, our localization keeps track of the correct pose.

B. Global Localization

The plots in Fig. 8 display the evolution of 20, 000
particles during a global localization experiment in the envi-
ronment shown in Fig. 2. After initialization, the particles
were distributed uniformly in the free space on different
levels. As can be seen, the distribution quickly converged to
two clusters of hypotheses on different height levels, i.e., on
the ground floor and on the top platform of the staircase.
After integrating the sixth observation, the particle cloud
finally converged to the true pose.

VII. CONCLUSIONS

In this paper, we proposed a probabilistic localization
technique for humanoid robots using a 3D representation
of arbitrary complex environments. Our system deals with
all challenges occurring during humanoid robot navigation.
This includes only very rough odometry information, in-
herently noisy sensor data, and the violation of the flat

robot climbs stair

top of stair reached

straighten torso

Fig. 7. The robot reliably tracks its torso height during the stair-climbing
trajectory in Fig. 6 (right). Only the last part of the trajectory is shown. Note
that during stair-climbing, the motion model is only applied after completing
a step.



Fig. 8. Particle distribution for global localization in the simulated environment (see Fig. 2) after initialization, and after the first, third, and sixth update
of the filter (left to right). The robot is standing on the top level. The top plots show a projection into the ground plane, while the bottom plots show a view
from the side. Localization quickly converges to two clusters of particles on different height levels, which can be disambiguated after the sixth update.

world assumption. We apply Monte Carlo localization to
globally determine and reliably track a humanoid’s 6D pose,
consisting of the 3D position and the three rotation angles.
During localization, we integrate 2D laser range data, as
well as attitude estimates and measurements from the joint
encoders.

As we show in our experiments in simulation and with
a real humanoid robot, our method is able to accurately
estimate the 6D pose of the humanoid’s torso while walking
and climbing stairs. To the best of our knowledge, the
presented technique is the first approach to localization of
humanoids in such complex, multi-level environments.
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