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Abstract— Grounding language to the visual observations of
a navigating agent can be performed using off-the-shelf visual-
language models pretrained on Internet-scale data (e.g., image
captions). While this is useful for matching images to natural
language descriptions of object goals, it remains disjoint from the
process of mapping the environment, so that it lacks the spatial
precision of classic geometric maps. To address this problem, we
propose VLMaps, a spatial map representation that directly fuses
pretrained visual-language features with a 3D reconstruction of
the physical world. VLMaps can be autonomously built from video
feed on robots using standard exploration approaches and enables
natural language indexing of the map without additional labeled data.
Specifically, when combined with large language models (LL.Ms),
VLMaps can be used to (i) translate natural language commands into
a sequence of open-vocabulary navigation goals (which, beyond prior
work, can be spatial by construction, e.g., “in between the sofa and
the TV” or “three meters to the right of the chair”) directly localized
in the map, and (ii) can be shared among multiple robots with
different embodiments to generate new obstacle maps on-the-fly (by
using a list of obstacle categories). Extensive experiments carried out
in simulated and real-world environments show that VL.Maps enable
navigation according to more complex language instructions than
existing methods. Videos are available at https://vimaps.github.io.

I. INTRODUCTION

People are excellent navigators of the physical world — due in
part to their remarkable ability to build cognitive maps [1] that form
the basis of spatial memory [2], [3] to (i) localize landmarks at
varying ontological levels, such as a book; on the shelf; in the living
room, or to (ii) determine whether the layout permits navigation
between two points. Classic methods for robot navigation [4], [5]
build geometric maps for path planning and can parse goals from
natural language commands [6], [7], but struggle to generalize
to unseen instructions. Learning methods directly optimize for
navigation policies grounded in language end-to-end (commands
to actions) [8], [9], but require copious amounts of data.

Meanwhile, recent works show that visual-language models
(VLMs) [10], [11] pretrained on Internet-scale data (e.g., image
captions) can be used out-of-the-box to ground language to the
visual observations of a navigating agent, without additional data
collection or model fine-tuning. These models enable mobile
robots to handle new instructions that specify unseen object goals
and can be combined with exploration algorithms to search for
the first instance of any object (CoW) [12] or traverse object-
centric landmarks in graphs (LM-Nav) [13]. While promising,
these methods predominantly use VLMs as critics to match image
observations to object goal descriptions, but do so in ways that
remain disjoint from the mapping of the environment. Without
grounding language onto a spatial representation, these systems
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First move to the plant, then 3 meters south,
then go between the\keyboad and the\bowl

Fig. 1: VLMaps is a spatial map representation in which pretrained visual-
language model features are fused into a 3D reconstruction of the physical
world. Spatially anchoring visual language features enables natural lan-
guage indexing in the map, which can be used to, e.g., localize landmarks
or spatial references with respect to landmarks — enabling zero-shot spatial
goal navigation without additional data collection or model finetuning.

may struggle to (i) recognize correspondences that associate
independent observations of the same object, to (ii) localize
spatial goals e.g., “in between the sofa and the TV”, or to (iii)
build persistent representations that can be shared across different
embodiments, e.g., mobile robots, drones. Existing VLM-based so-
lutions generalize to new object goals, but lose the spatial precision
of classic geometric maps — is it possible to get the best of both?

In this work, we investigate the utility of a spatial visual-
language map representation VLMaps, which fuses pretrained
visual-language features from image observations directly with
a 3D reconstruction of the physical world. VLMaps can be
effectively built from video feed on robots using standard
exploration algorithms. When paired with large language models
(LLMs) in Socratic fashion [14], VLMaps can translate natural
language instructions into a sequence of open-vocabulary goals,
directly localized in the map. A key aspect of VLMaps is that they
are spatial, which enables them to:

o Localize spatial goals beyond object-centric ones, e.g., “in
between the TV and sofa” or “to the right of the chair” or
“kitchen area” using code-writing LLMs, expanding beyond
capabilities of CoW or LM-Nav.

Generate new obstacle maps for new embodiments given
natural language descriptions of landmark categories that they
can or cannot traverse, e.g., “tables” are obstacles for a large
mobile robot, but traversable for a drone.

Extensive experiments show that using VLMaps enables more
effective long-horizon multi-object goal navigation than baseline
alternatives, e.g., CoW [12] and LM-Nav [13], and, in particular,
excels at enabling spatial open-vocabulary navigation tasks.
We also provide ablations on different ways of constructing
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Fig. 2: VLMaps enables a robot to perform complex zero-shot spatial goal navigation tasks given natural language commands, without additional
data collection or model finetuning.

VLMaps with different language models as well as a discussion
on limitations, which point to areas for future work. Code and
videos are available at https://vimaps.github.io.

II. RELATED WORK

Semantic Mapping. The maturity of traditional SLAM tech-
niques together with the advancements in semantic understanding
capabilities of convolutional neural networks has recently spurred
considerable interest around augmenting 3D maps with semantic
information [15], [16]. The literature has focused on either densely
annotating 3D volumetric maps with 2D semantic segmentation
CNNss [16] or object-oriented approaches [17], [18], [19], which
build 3D maps around detected objects to enable object-level pose-
graph optimization. Although progress has been made at generat-
ing more abstract maps, such as scene graphs [20], [21], current
approaches are limited to a predefined set of semantic classes. In
contrast to this, VLMaps are open-vocabulary semantic maps that,
unlike prior work, enable natural language indexing in the map.

Vision and Language Navigation. Recently, also Vision-and-
Language Navigation (VLN) has received increased attention [8§],
[22]. Further work has focused on learning end-to-end policies that
can follow route-based instructions on topological graphs of simu-
lated environments [8], [23], [24]. However, agents trained in this
setting do not have low-level planning capabilities and rely heavily
on the topological graph, limiting their real-world applicability [9].
Moreover, despite extensions to continuous state spaces [22], [25],
[26], most of these learning-based methods are data-intensive.

Zero-shot Models. The recent success of large pretrained vision
and language models [10], [27] has spurred a flurry of interest in
applying their zero-sot capabilities to different domains including
object detection and segmentation [28], [29], [11], robot manipu-
lation [30], [31], [32], [33], and navigation [13], [12], [34]. Most
related to our work is the approach denoted LM-Nav [13], which
combines three pre-trained models to navigate via a topological
graph in the real world. CoW [12] performs zero-shot language-
based object navigation by combining CLIP-based [10] saliency
maps and traditional exploration methods. However, both LM-Nav
[13] and CoW [12] are limited to navigating to object landmarks
and are less capable to understand finer-grained queries, such as
“to the left of the chair” and “in between the TV and the sofa”. In
contrast, our method enables spatial language indexing beyond
object-centric goals and can generate open-vocabulary obstacle
maps. A concurrent work is NLMap [34], which demonstrates
that VLMs can be used to build queryable scene representations
to allow LLM robot planning [35] with new objects and locations.

III. METHOD

Our goal is to build a spatial visual-language map representation,
in which landmarks (“the sofa”) or spatial references (“between the
sofa and the TV”’) can be directly localized using natural language.
We propose VLMaps as one such representation, which can be con-
structed using off-the-shelf visual-language models (VLMs) and
standard 3D reconstruction libraries. In the following subsections,
we describe (i) how to build a VLMap (Sec. I1I-A), (ii) how to use
these maps to localize open-vocabulary landmarks (Sec. I1I-B), (iii)
how to build open-vocabulary obstacle maps from a list of obstacle
categories for different robot embodiments (Sec. III-C), and (iv)
how VLMaps can be used together with large language models
(LLMs) for zero-shot spatial goal navigation on real robots from
natural language commands (Sec. III-D), without additional data
collection or model fine-tuning. Our pipeline is visualized in Fig. 3.

A. Building a Visual-Language Map

The key idea behind VLMaps is to fuse pretrained visual-
language features with a 3D reconstruction. We achieve this by
computing dense pixel-level embeddings from an existing visual-
language model (over the video feed of the robot) and by back-
projecting them onto the 3D surface of the environment (captured
from depth data used for reconstruction with visual odometry).

In our work, we utilize LSeg [11] as the visual-language model,
a language-driven semantic segmentation model that segments
the RGB images based on a set of free-form language categories.
The LSeg visual encoder maps an image such that the embedding
of each pixel lies in the CLIP feature space. In our approach,
wie fuse the LSeg pixel embeddings with their corresponding 3D
map locations. In this way, without explicit manual segmentation
labels, we incorporate a powerful language-driven semantic prior
that inherits the generalization capabilities of VLMs. The only
assumption we make is access to odometry, which is readily
available from RGB-D SLAM systems and enables us to build
a map from sequences of RGB-D images,

Formally, we define VLMap as M € RH*WXC 'where H and
W represent the size of the top-down grid map, and C' represents
the length of the VLM embedding vector for each grid cell. To-
gether with the scale parameter s, a VLMap M represents an area
with size sH x sV meters. To build the map, we, for each RGB-D
frame, back-project all the depth pixels u= (u,v) to form a local
depth point cloud that we transform to the world frame, Py =
D(u)K ~'d and Py, = Ty Py, where @ = (u,v,1), K is the
intrinsic matrix of the depth camera, D(u) € R is the depth value of
the pixel u, Ty, is the transformation from the world coordinate
frame to the k-th camera frame, P, € R is the 3D point position in
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Fig. 3: System overview. A VLMap is created by fusing pretrained visual-language features into the reconstruction of the environment to enable
visual-spatial-language-based reasoning. By providing a list of open-vocabulary labels, we retrieve segmentation masks for semantic classes required

by downstream applications.

the k-th frame, and Py € R? is the 3D point position in the world
coordinate frame. We then project the point Py, to the ground
plane and get the pixel u’s corresponding position on the grid map,

z
05 |, Pl = L%—P +05] (1)
where py, ., and pY, ., represent the coordinates of the projected
point in the map M.

Once we build the grid map, we apply LSeg’s visual encoder
f(Z) : REXWxS _ REHXWXC (5 the RGB image 7 and
generate the pixel-level embedding F;, € R¥*W*C  Given
the RGB-D registration, we project each image pixel u’s
embedding q = Fj(u) € RY to its corresponding grid cell
location (pi},qp» Pinap) in the top-down grid map. Intuitively,
there exist multiple 3D points projecting to the same grid
location in the map. Thus, we average their embeddings,
M(prwnapﬂ pijnap) = %Z?:l q; where M(pfnaw p%@ap) eRC
represents the map features at the grid position (pf,,.,, Piap)-
n represents the total number of points projecting to the grid
location (pf, ., P¥ap)- and q; € RY denotes the corresponding
pixel embedding of each point. We note that these n points might
not only come from a single frame, but also from points from
multiple frames. Therefore, the resulting features contain the

averaged embeddings from multiple views of the same object.
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B. Localizing Open-Vocabulary Landmarks

We now describe how to localize landmarks in VLMaps with
free-form natural language. Formally, we define the input language
listas £=[lp,11,...,1ps] where 1; represents the i-th category in text
form, and M represents the number of categories defined by the
user. Some examples of the input language list are [“chair”, “sofa”,
“table”, “other”] or [“furniture”, “floor”, “other”]. As Li et al. [11],
we apply the pre-trained CLIP text encoder [10] to convert such
list of texts into a list of vector embeddings [eg,e1,....en], €€ RC,
which are organized into an embedding matrix £ € RM*¢
where each row of the matrix represents the embedding of a
category. The map embeddings M are also flattened into a matrix
QeRHEWXC \where each row represents the embedding of a pixel
in the top-down grid map. We then compute the pixel-to-category
similarity matrix S=Q-ET, where S ¢ RFW>M Each element

>

S;; in the matrix stores the similarity value between a pixel and a
text category, indicating how likely this pixel belongs to the class.
By applying the argmax operator along the row direction to S and
reshaping the resulting vector to shape H x W, we get the final
segmentation result R € R *W Each element R;; represents the
label index of the input language list £ at the grid map location
(i,7). With the final resulting matrix R, we compute the most
related language-based category for every pixel in the grid map.

C. Generating Open-Vocabulary Obstacle Maps

Building a VLMap enables us to generate obstacle maps that
inherit the open-vocabulary nature of the VLMs used (LSeg and
CLIP). Specifically, given a list of obstacle categories described
with natural language, we can localize those obstacles at runtime to
generate a binary map for collision avoidance and/or shortest path
planning. A prominent use case for this is sharing a VLMap of the
same environment between different robots with different embod-
iments (i.e., cross-embodiment problem [36], [37]), which may be
useful for multi-agent coordination [38]. For example, a large mo-
bile robot may need to navigate around a table (or other large fur-
niture), while a drone can directly fly over it. By simply providing
two different lists of obstacle categories — one for the large mobile
robot (that contains “table’), and another for the drone (that does
not), we can generate two distinct obstacles maps for the two robots
to use respectively, sourced on-the-fly from the same VLMap.

To do so, we first extract an obstacle map O € {0,1}>W
where each projected position of the depth point cloud in the
top-down map is assigned 1, and otherwise 0. To avoid points
from the floor or the ceiling, points Py are filtered out depending
on their height,

o 1, t1 <Py, <ty and p,,,=iand p},,,=Jj
* 0, otherwise

@

where t1,t2 € R are the lower and upper thresholds for the
y-component of the point Py,. Second, to obtain obstacle maps
tailored to a certain embodiment, we define a list of potential
obstacle categories Lobs = [lobso, lobsts - » lobsar], wWhere Lops;
represents the i-th obstacle category in language, and M represents
the total number of obstacle categories defined by the user. We



then apply the open-vocabulary landmark indexing introduced in

Sec. I1I-B and obtain segmentation masks for all defined obstacles.

For a specific embodiment &, we choose a subset of classes out of
the whole potential obstacle list £, and take the union of their
segmentation masks to get the obstacles mask @emk. We ignore
false predictions of obstacles on floor region in @emk by taking
the intersection with O to get the final obstacle map O, -

D. Zero-Shot Spatial Goal Navigation from Language

In this section, we describe our approach to long-horizon
(spatial) goal navigation, given a set of landmark descriptions
specified by natural language instructions such as

Notably different from prior work [12], [13], VLMaps allow us
to reference precise spatial goals such as: “in between the sofa at
the TV” or “three meters to the east of the chair” Specifically, we
use a large language model (LLM) to interpret the input natural
language commands and break them down into subgoals [35],
[13], [14]. In contrast to prior work, which may reference these
subgoals with language and map to low-level policies with
semantic translation [39] or affordances [35], [40], [41], [42],
we leverage the code-writing capabilities of LLMs to generate
executable Python robot code [43], [33], [44], [27] that can (i)
make precise calls to parameterized navigation primitives, and (ii)
perform arithmetic when needed. The generated code can directly
be executed on the robot with the built-in Python exec function.
Note that recent works [43], [33], [44], [27] have shown that
code-writing language models (e.g., Codex [44]) trained on
billions of lines of code from Github can be used to synthesize
new simple Python programs from docstrings. In this work, we
re-purpose these models for mobile robot planning, by priming
them with several input examples of natural language commands
(formatted as comments) paired with corresponding robot code
(via few-shot prompting). The robot code can express functions
or logic structures (if-then-else statements or for/while loops)
and parameterize API calls (e.g., robot.move_to(target_name)
or robot.turn(degrees). The full list is available in the Appendix,
Sec. A) that map to spatial behaviors specified by the language
commands. At test time, the models can subsequently take in
new commands and autonomously re-compose API calls to
generate new robot code respectively (prompt in , input task
commands in green, and generated outputs are highlighted ):

# move first to the left side of the counter, then
move between the sink and the oven, then move back and
forth to the sofa and the table twice
robot.move_to_left(‘counter’)
robot.move_in_between(‘sink’, ‘oven’)
pos1 = robot.get_pos(‘sofa’)
pos2 = robot.get_pos(‘table’)
for i in range(2):

robot.move_to(pos1)

robot.move_to(pos2)
# move 2 meters north of the laptop, then move 3
meters rightward
robot.move_north(‘laptop’)
robot.face(‘laptop’)
robot. turn(180)
robot.move_forward(2)
robot. turn(90)
robot.move_forward(3)

The code-writing LLM generates code that not only references
the new landmarks mentioned in the language commands (as
comments), but also can chain together new sequences of API
calls to follow unseen instructions accordingly. The prompt has
been truncated for brevity here. Please see the full prompt in the
Appendix (Sec. B).

The navigation primitive functions being called by the language
model (e.g., robot.move_to_left(‘counter’)) use a pre-generated
VLMap to localize the coordinates of the open-vocabulary land-
marks (“counter”) in the maps (described in Sec. I1I-B) modified
with predefined scripted offsets (to define “left”). We then navigate
to these coordinates using an off-the-shelf navigation stack that
takes as input the embodiment-specific obstacle map (generated
using the same VLMap, with the process described in Sec. I1I-C).

IV. EXPERIMENTS

The goals of our experiments are four-fold: (i) to quantitatively
evaluate our VLMaps approach against recent open-vocabulary
navigation baselines on the standard task of multi-object goal
navigation (Sec. IV-B), (ii) to investigate whether our method can
better navigate to spatial goals specified by language commands
versus alternative approaches (Sec. IV-C), (iii) to study whether
VLMaps with their capacity to specify open-vocabulary obstacle
maps can provide utility in improving the navigation efficiency of
different robots with different embodiments (Sec. IV-D), and (iv) to
demonstrate on real robots that VLMaps can enable zero-shot spa-
tial goal navigation given unseen language instructions (Sec. [V-E).

A. Simulation Setup

Experimental setup. We use the Habitat simulator [45] with the
Matterport3D dataset [46] for the evaluation of multi-object and
spatial goal navigation tasks. The dataset contains a large set of real-
istic indoor scenes that help evaluate the generalization capabilities
of navigating agents. To evaluate the creation of open-vocabulary
multi-embodiment obstacle maps, we adopt the AI2THOR simula-
tor due to its support of multiple agent types, such as LoCoBot and
drone. In these two environments, the robot is required to navigate
in a continuous environment with actions: move forward 0.05 me-
ters, turn left 1 degree, turn right 1 degree and stop. For map cre-
ation in Habitat, we collect 12,096 RGB-D frames across ten dif-
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Fig. 4: Object mask for object type “chair”’. 4a shows the top-down map
of the scene and the red circles specify the locations of type ““chair”. 4b
shows the ground truth mask for type “chair” and 4c, 4d, 4e show the
predicted masks by CLIP Map, CoW and VLMaps.

ferent scenes and record the camera pose of each frame. Similarly,
we collect 1,826 RGB-D frames across ten rooms in AI2THOR.
Baselines. We evaluate VLLMaps against three baseline methods,
all of which utilize visual-language models and are capable of
zero-shot language-based navigation:

o LM-Nav [13] creates a graph where image observations of an
environment are stored as nodes while the proximity between
images are represented as edges. By combining GPT-3 and
CLIP, it parses language instructions into a list of landmarks
and plans on the graph towards corresponding nodes.

o CLIP on Wheels (CoW) [12] achieves language-based object
navigation by building a saliency map for the target category
with CLIP and GradCAM [47]. By thresholding the saliency
values, it retrieves a segmentation mask for the target object
category and then plans the path on the map.

o CLIP-features-based map (CLIP Map) is an ablative baseline
that generates a feature map for the environment in a similar
way as ours. Instead of using LSeg visual features, it projects
the CLIP visual features onto the map averaged across views.
Object category masks are generated by thresholding the
similarity between map features and the object category features.

For additional context and analysis, we also report results from
a system that has access to a ground truth semantic map for nav-
igation, to provide a systems-level upper bound on performance.

B. Multi-Object Navigation

We collect 91 sequences of tasks for the evaluation of object
navigation. In each sequence, we randomly specify a starting
position of the robot in one scene and then pick four among 30
object categories as subgoal object types. The robot is required
to navigate to these four subgoals sequentially. In each sequence
of subgoals, when the robot reaches one subgoal category, it
should call the stop action to indicate its progress. We consider
the navigation to one subgoal as success when the distance of stop
position from the correct object is within one meter. To evaluate
the long-horizon navigation capabilities of the agents, we compute
the success rate (SR) of continuously reaching one to four subgoals
in a sequence, shown in Tab. I. We also report the independent

subgoal success rate, which indicates the total successful subgoals
number divided by the total subgoals number (364 subgoals).

No. Subgoals in a Row  Independent
Tasks -
1 2 3 4 Subgoals

LM-Nav [13] 26 4 1 1 26
CoW [12] 42 15 7 3 36
CLIP Map 33 8 2 0 30
VLMaps (ours) 59 34 22 15 59
GT Map 91 718 171 67 85

TABLE I: The VLMaps-approach performs favorably over alternative
open-vocabulary baselines on multi-object navigation (success rate [%])
and specifically excels on longer-horizon tasks with multiple sub-goals.
We observe that VLMaps performs consistently better
compared to all baselines. LM-Nav has a weak performance
as it is only able to navigate to locations represented by images
stored in graph nodes. To obtain more insights into the map-based
methods, we visualize the object masks generated by VLMaps,
CoW, and CLIP Map, in comparison to GT, in Fig. 4. The
masks generated by CoW (Fig. 4d) and CLIP (Fig. 4c) both
contain considerable false positive predictions. Since the planning
generates the path to the nearest masked target area, these
predictions lead to planning towards wrong goals. In contrast,
the predictions obtained with VLMaps shown in Fig. 4e are less
noisy, which leads to higher success rates in object navigation.

C. Zero-Shot Spatial Goal Navigation from Language

In these experiments, we investigate the performance
of VLMaps versus other baselines for zero-shot spatial
goal navigation from language. Our benchmark consists of 21
trajectories in seven scenes, with manually specified corresponding
language instructions for evaluation. Each trajectory contains
four different spatial locations as subgoals. Examples of subgoals
are “east of the table”, “in between the chair and the sofa”, or
“move forward 3 meters”. There are also instructions for the robot
to realign itself in reference to nearby objects such as “with the
counter on your right”. We only consider a subgoal as having
been achieved, when the robot reaches the subgoal location within
a range of one meter. We compute the in-a-row success rate in the
same way as in Sec. [V-B. For all map-based methods, including
CoW, CLIP Map, ground truth semantic map and our method, we
apply the code generation techniques introduced in Sec. III-D. For
LM-Nav, we simply use the same parsing method in the original
paper [13] to break down the language instruction into subgoals.

No. Subgoals in a Row
1 2 3 4
LM-Nav [13] 5 5 0 0

Tasks

CoW [12] 33 5 0 0
CLIP Map 9 0 O 0
VLMaps (ours) 62 33 14 10
GT Map 76 48 33 29

TABLE II: The VLMaps approach can navigate to spatial goals specified
by natural language and outperforms other open-vocabulary zero-shot
navigation baseline alternatives (success rate [%]) in this setting.

Tab. IT summarizes the zero-shot spatial goal navigation success
rates. Our method outperforms other baselines in this task.



Different from object navigation tasks where agents only need
to approach a certain object type within a range disregarding
the relative spatial shift to the object, the language-based spatial
goal navigation tasks require the robot to accurately arrive at the
described location in reference to the object. This poses a bigger
challenge to the landmark localization ability of the method. The
low localization ability of CoW and CLIP Map analyzed in the pre-
vious section (Sec. [V-B) leads to their high failure rates in this task.

D. Cross-Embodiment Navigation

We study the ability of VLMaps to improve navigation effi-
ciency by retrieving different obstacle maps for navigation with
different embodiments (given the same VLMap). We evaluate
more than 100 sequences of subgoals as in Sec. IV-B in the
AI2THOR simulator. We evaluate VLMaps on both a LoCoBot
and a drone to test its capability of generating obstacle maps at
runtime for multi-embodiment navigation. We apply the open-
vocabulary obstacle map generation method in Sec. I1I-C to create
an obstacle map for the drone (drone map) and one for the
LoCoBot (ground map) by defining obstacles for them differently
(see the prompts in Appendix Sec. E). We test the navigation ability
of these embodiments with three setups: a LoCoBot with a ground
map, a drone with a ground map, and a drone with a drone map.

We evaluate the Success Rate (SR) and the Success rate
weighted by the (normalized inverse) Path Length (SPL) [48]
defined as: SPL = + Zf\]:l SZW where N is the total
number of evaluated tasks, .S; € {O,l}lis the binary indicator of
success, /; denotes the ground truth shortest path length, and p;,
denotes the actual path length of the agent in navigation. This
metric indicates how efficient the actual path is compared to the
ground truth shortest path when the navigation task is achieved.
In our three setups, the ground truth trajectories for the LoCoBot
and the drone are planned on floor-level and on height level of
1.7 meters respectively.

No. Subgoals in a Row Independent
Tasks 1 2 3 4 Subgoals

SR SPL SR SPL SR SPL SR SPL SR

LoCoBot (ground map) 53 49.0 28 17.8 14 6.7 6 2.5 523
Drone (ground map) 53 41.8 28 15514 53 6 2.0 533
Drone (drone map) 56 45430 16317 70 7 25 55.0

TABLE III: VLMaps generate different obstacle maps for different robot
embodiments, conditioned on a list of obstacle categories. This improves
object navigation efficiency (Success [%] weighted by Path Length, SPL).

The results provided in Tab. III show that the average navigation
success rates of the ground-map version of the LoCoBot and the
drone are similar because the same obstacles map is used for
planning. However, there is an obvious gap between their SPL
values. This is because when the drone does not have access to
a customized obstacle map, it fails to benefit from flying over
ground objects to improve the navigation efficiency. In contrast,
while achieving similar success rate compared to the drone with a
ground map, the drone with a drone map manages to navigate with
higher path efficiency, reflected by the increased SPL values. The
comparable SPL values for the drone with the drone map and the
LoCoBot with the ground map shows that VLMaps help to general-

Fig. 5: VLMaps enable different embodiments to define their own obstacle
maps for navigation. The left image shows the top-down view of an
environment. The middle columns show the observations of agents during
navigation. The images on the right demonstrate the obstacles maps gen-
erated for different embodiments and the corresponding navigation paths.

ize the navigation efficiency among different embodiments. An ex-
ample of the multi-embodiment object navigation task is shown in
Fig. 5, where by defining a more efficient obstacles map, the drone
flies over the sofa and reaches the laptop target directly, while the
LoCoBot has to move aside first to avoid colliding with the sofa.

E. Real Robot Experiments

We also perform real-world experiments using the HSR mobile
robot for indoor navigation given natural language commands.
For map creation, we record 374 frames for the evaluated scene
and use an off-the-shelf RGB-D SLAM solution, RTAB-Map [49]
to estimate the camera poses. During inference, we also use the
global localization module of RTAB-Map to initialize the robot
pose. We test our VLMaps in a semantically rich indoor scene
with more than ten different classes of objects. We define 20
different language-based spatial goals for testing purposes. Across
different test runs, we initialize the robot at different locations.

The robot finishes ten navigation goals out of the 20. Among the
successful trials, six of them are spatial goals like “move between
the chair and the wooden box” or “move to the south of the table”.
three of them are goals relative to the current position of the robot
like “move 3 meters right and then move 2 meters left”. Another
one is an instruction with repetition: “move between the keyboard
and the laptop twice”. We observe that failure cases are caused
by: 1) inaccurate depth, which introduces noise during the map
creation and decreases the landmark indexing accuracy and 2)
action noise, which can negatively influence the navigation perfor-
mance at test time. Overall, these results demonstrate the ability
of VLMaps to index landmarks with natural language in the real
world and, more importantly, its applicability to achieve a wide va-
riety of open-vocabulary language-based spatial navigation goals.

V. DISCUSSION AND LIMITATIONS

In this work, we propose VLMaps, a spatial map representation
enriched with pretrained visual-language features, which enables
natural language indexing in the map. When combined with large
language models, VLMaps can be applied in zero-shot spatial goal
navigation and can be shared among multiple robots with different
embodiments to generate new obstacles map in runtime. VLMaps
are not without limitations. Notably, they remain sensitive to 3D
reconstruction noise and odometry drift during navigation. They
also cannot resolve object ambiguities during landmark indexing
when the scene is cluttered with similar objects. In future work, we
plan to improve VLMaps with better visual language models and
to extend it to scenes with dynamic objects and moving humans.
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APPENDIX

A. Full List of Navigation Primitives

Our full list of navigation primitives are listed in Table I'V.

primitives

| functions

move_to(pos)
move_to_left(object_name)
move_to_right(object_name)
get_pos(object_name)

get_contour(object_name)

with_object_on_left(object_name)
with_object_on_right(object_name)
move_in_between(object_a, object_b)
turn(angle)

face(object_name)

turn_absolute(angle)

move_north(object_name)
move_south(object_name)
move_east(object_name)

move_west(object_name)

move_to_object(object_name)
move_forward(dist)

move to a position on the
map.

move to the left side of the
nearest front object.

move to the right side of the
nearest front object.

get the map position of the
nearest front object.

get the contour turning points
of the nearest front object on
the map.

turn until the nearest object
is on the robot’s left side.
turn until the nearest object
is on the robot’s right side.
move in between two objects.
turn right a certain angle. If
the angle value is negative,
turn left.

turn until the nearest object
is in front of the robot.

turn to absolute angle. O is
north, 90 is east, -90 is west,
180 is south.

move to the north side of the
nearest front object.

move to the south side of the
nearest front object.

move to the east side of the
nearest front object.

move to the west side of the
nearest front object.

move to the nearest object.
move forward “dist” meters.

TABLE IV: List of the navigation primitives used.

B. Full Prompts

Our full prompts used for getting the navigation results are
listed below.

C. Prompt engineering.

For all methods in this work (including baselines), when using
CLIP text encoding, instead of simply prompting the label of
the object categories, we use the ensemble of prompt templates
like “A photo of label”, “A picture of label” mentioned in [10]
to improve the retrieval performance.

D. Top-Down Map Semantic Segmentation

For ablation purposes, we compute the semantic segmentation
masks for the top-down maps in the Habitat simulator with
the Matterport3D dataset. We use the collected RGB-D frames
mentioned in Sec. IV-A to create the VLMaps and the CLIP on
Wheels saliency maps. We evaluate all the semantic categories (the
full list can be found in the link') supported in the Matterport3D
dataset except “void”, “floor”, “ceiling”, “objects”, “misc”. To
get the ground truth semantic masks, we use the RGB-D frames
and the ground truth image semantic masks to create a semantic
top-down map. We back-project the depth pixels to the 3D space
and project them to the top-down map. We assign the associated
semantic values to the top-down map pixels. If multiple points are
projected to the same location, we overwrite the old value if the
new point’s height is larger than the previous points. To compute
semantic masks for VLMaps, we apply the open-vocabulary
landmark indexing technique described in Sec. I1I-B to the whole
list of categories. To compute semantic masks for the CLIP on
Wheels, we compute the saliency values and apply the same
thresholding process as in [12] to get a binary mask for each
category. We evaluate the semantic segmentation metrics used
in [50]. The segmentation results is shown in Table V.

We also show the IOU values of the top-10 frequent categories
in Table VI. The table shows that VLMaps performs better than

Uhttps://github.com/niessner/Matterport/blob/master/metadata/mpcat40.tsv
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CoW Map in most of the top-10 frequent categories. This is
mainly because the GradCam used in CoW introduces a lot
of noise in the saliency map, causing over-segmentation in the
results. We also note that in the class “seating”, VLMaps gets
0 IOU score. Since the LSeg model we used is pre-trained on
segmentation datasets where some query classes might not be
in the pre-defined training categories, LSeg’s visual encoder
will encode visually unseen objects (‘“‘seating’) to a similar seen
object’s embedding space (like “chair” or “sofa” here). As a result,
visual-text misalignment could happen.

Metric CoW Map  VLMaps (ours)
pixel accuracy 66.1 92.3
mean accuracy 9.6 27.7
mlOU 5.7 19.0
frequency weighted mIOU 429 85.9

TABLE V: Top-Down Map Semantic Segmentation Results.

Class Class Portion 10U
CoW  VLMaps (ours)

wall 39.70 63.80 98.57
chair 9.66 6.99 77.04
table 8.14 1.20 13.82
door 4.94 12.50 28.28
seating 4.54 8.77 0.00
stairs 375 12.35 22.02
cabinet 3.38 1.13 1.87
sofa 2.7 1.66 24.46
bed 2.64 247 38.3
shelving 2.60 0.87 1.59

TABLE VI: Top-10 frequent per-class IOU

We visualize qualitative segmentation results in Figure 6. We
observe that for categories “wall”, “chair”, “counter”, “table”, and
“bed”, the segmentation results are mostly correct. Sometimes,
when the “sofa” and “chair” are in similar material and shape (in
Figure 6a and 6b), VLMaps might fail to differentiate them, lead-
ing to wrong planning behaviors. We also observe from Figure 6¢
and Figure 6e that the segmentation of some objects are noisy. This
could be caused by the features fusion strategy we adopt. For ex-
ample, in the top left corner of Figure 6e, there are some chairs and
tables predictions with noise compared to the ground truth in Fig-
ure 6f. When we generate VLMaps for the scenes, we average the
visual embeddings of points projecting to the same location on the
top-down map. The averaging operation might introduce noise in
the fused features, leading to noisy segmentation predictions (pre-
dicting ““sink” on the table). In the future, more advanced fusion
techniques can be explored to improve the segmentation results.

E. Prompts for Obstacle Maps Generation

In Sec. IV-D, we generate open-vocabulary obstacle maps
for a drone and a LoCoBot with the method introduced in Sec.
HI-C. For the LoCoBot (ground robot), we first define a potential
obstacle list as [“chair”, “wall”, “wall above the door”, “table”,
“window”, “floor”, “stairs”, “other’’] and perform open-vocabulary
landmark indexing. Later, we only select the union of the masks

for the objects “wall”, “chair”, “table”, “window”, “stairs”, “other”

as the obstacle map. For the drone (flying robot), we perform

landmark indexing with the potential obstacle list: [“chair”, “sofa”,
ceiling

“wall”, “table”, “counter”, “window”, “floor”, “stairs”, *
lights”, “cabinet”, “counter support”, “other’’]. Afterwards, we
take union of the masks for [“wall”, “window”, ceiling

CLINTS

lights”, “cabinet”,

CLINT3

stairs”,
other”’] to generate the obstacle map.
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Fig. 6: Qualitative semantic segmentation results
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