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Abstract. While interacting with the world is a multi-sensory experi-
ence, many robots continue to predominantly rely on visual perception
to map and navigate in their environments. We propose AVLMaps, a 3D
spatial map representation that stores cross-modal information from au-
dio, visual, and language cues. AVLMaps fuse features from pre-trained
multimodal foundation models into a multi-layer representation. This
enables robots to index goals in the map based on multimodal queries,
such as textual descriptions, images, or audio snippets of landmarks.
AVLMaps allow for zero-shot multimodal spatial goal navigation and
perform better than alternatives in ambiguous scenarios. These capa-
bilities extend to mobile robots in the real world. Videos and code are
available at https://avlmaps.github.io.
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1 Introduction
Humans efficiently integrate multiple sensing modalities to navigate the phys-
ical world. Acoustic signals, such as the sound of breaking glass or a buzzing
microwave, provide valuable complementary information. This is evident in the
utility it offers to the visually impaired for navigation. In contrast, current mo-
bile robots heavily rely on visual, LiDAR, or ultrasound perception in human-
centered environments. How to effectively incorporate audio signals as an ad-
ditional sensing modality for cross-modal reasoning in robotics tasks remains a
relevant research question.

To address this issue, we propose Audio-Visual-Language Maps (AVLMaps),
a unified 3D spatial map representation that stores cross-sensing information
from audio, visual, and language modalities. AVLMaps are constructed from
image and audio observations by computing dense features from multimodal
foundation models trained on Internet-scale data [15,11]. An AVLMap enables
indexing of landmark locations using multimodal queries, such as textual descrip-
tions, images, or audio snippets, facilitating language-based goal-driven naviga-
tion without model fine-tuning, e.g., “go in between the sound of the breaking
glass and {the image of a refrigerator}” as in Fig. 1. By including audio infor-
mation, AVLMaps allow robots to accurately disambiguate goal locations using
sound cues in scenarios with multiple similar objects, e.g., “go to the table where
you heard someone coughing”, when there are multiple tables in the scene.
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Fig. 1. AVLMaps provide an open-vocabulary 3D map representation for storing
cross-modal information from audio, visual, and language cues. When combined with
large language models, AVLMaps consume multimodal prompts from audio, vision and
language to solve zero-shot spatial goal navigation by effectively leveraging complemen-
tary information sources to disambiguate goals.

2 Related Work

The combination of traditional SLAM techniques and advancements in vision-
based semantic understanding has resulted in the enhancement of 3D maps with
semantic information. Previous approaches focused on abstracting the map at
the object level [17]. However, these methods are limited to predefined seman-
tic classes. Recent works have demonstrated the integration of visual-language
features into occupancy maps, allowing open-vocabulary object indexing with
natural language and freeing the maps from fixed semantic categories [12,5].
However, these approaches focus solely on visual perception, disregarding com-
plementary information sources like acoustic signals.

Recent advances in simulation applications [23] have fueled research on mul-
timodal navigation in two main directions: (i) vision-and-language navigation
(VLN) [1] where an agent needs to follow a natural language instruction to-
wards the goal with visual input, and (ii) audio-visual navigation (AVN) [7]
in which an agent should navigate to the sound source based on information
from a binaural sensor and vision. Despite different degrees of success in both
directions [10,8], less attention has been paid to solving the navigation prob-
lem involving vision, language, and audio at the same time. The most relevant
concept to our knowledge is from AVLEN [19], which extends the AVN with a
further query step, introducing a language instruction that helps with navigating
to the sound source. In addition, most of the existing methods on AVN focus on
approaching the sound without understanding its semantics.

Recent trends have shown that pre-trained models [21,3] serve as power-
ful tools for robotic tasks including object detection and segmentation [9,14],
robot manipulation [16,18], and navigation [6,12]. Most related to our work
are approaches like VLMaps [12], NLMap [6], and ConceptFusion [13], all of
which combine pre-trained visual-language models with a 3D reconstruction of
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Fig. 2. System overview. AVLMaps are constructed from RGB-D, audio, and odom-
etry inputs, converting raw data into visual localization features, visual-language fea-
tures, and audio-language features. During inference time, each module’s output is
unified with cross-modal reasoning, allowing users to query spatial location with mul-
timodal information.

the scene, enabling landmark indexing with natural language and downstream
language-based planning tasks.

In contrast to previous methods, AVLMaps integrate audio, visual, and lan-
guage cues into a 3D map, enabling the agent to navigate to various multimodal
goals and effectively disambiguate them, enabling a robot to navigate to multi-
modal goals specified with either goal image or natural language like “go to the
sound of baby crying”, “go to the table” or multimodal prompts such as “go to
the {image of a table} where the sound of the microwave was heard”.

3 Method
We aim to create an audio-visual-language map that can directly localize ob-
jects, areas, audio, and visual goals using natural language or target images. We
propose AVLMaps by combining 3D reconstruction libraries with pre-trained
visual-language and audio-language models. We also suggest a cross-modal rea-
soning approach to disambiguate locations referring to targets from different
modalities. Fig. 2 shows the system pipeline.

3.1 Building an Audio Visual Language Map

Given an RGB-D video stream with an audio track and odometry information,
we utilize four modules to build a multimodal feature database as AVLMaps.

Our Visual Localization Module follows a hierarchical scheme to localize
a query image in the map. It involves computing global NetVLAD features [2]
and local SuperPoint descriptors for images [22], finding a candidate reference
image through nearest neighbor search, establishing key point correspondences
using SuperGLUE [22], obtaining 3D-2D correspondences, and estimating the
query camera pose relative to the reference camera using the Perspective-n-Point
method.

Our Object Localization Module uses an open-vocabulary segmentation
method (e.g., LSeg [15]) to generate pixel-level features from the RGB image and
associates them with back-projected depth pixels in 3D reconstruction. During
inference, it encodes a target text query [21], computes the cosine similarity
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Fig. 3. As in 3a, the key idea of cross-modal reasoning is converting the pre-
dictions from different modalities into heatmaps, and then fusing them with
element-wise multiplication, effectively using complementary multimodal infor-
mation to resolve ambiguous prompts. 3b shows the prompts to GPT-3 to gener-
ate executable code for multimodal goal navigation (prompt in gray, input task
commands in green, and generated outputs are highlighted).

scores between all point-wise and language features, and selects the top-scoring
points in the map as the indexing result.

The Area Localization Module builds a sparse topological CLIP feature
map to recognize coarse visual concepts like “kitchen area”. During inference,
given a language concept, we compute the language features with the CLIP
language encoder [21] and image-to-language cosine similarity scores to predict
the location with confidence values.

The Audio Localization Module partitions the audio clip from the audio
stream input into several segments using silence detection and computes audio-
lingual features for each segment with AudioCLIP [11]. During inference, given
a language description, it computes matching scores between the language and
all audio segments. The odometry associated with the top-scoring segment is the
predicted location.

3.2 Cross-Modality Reasoning

A key advantage of our method is its capability to disambiguate goals with ad-
ditional information, even from different modalities. Given a specific query, each
module introduced in the previous section returns predicted spatial locations
on the map in the form of 3D voxel heatmaps. A heatmap can be denoted as
H ∈ [0, 1]H̄×W̄×Z̄ , where H̄, W̄ and Z̄ represent the size of the voxel map and
the value in each element represents the probability of being the target position.
p = (x, y, z)T , {x, y, z ∈ Z | 1 ≤ x ≤ H̄, 1 ≤ y ≤ W̄ , 1 ≤ z ≤ Z̄} is a voxel
position in the map H.

Visual Localization Heatmap. In the visual localization module, the pre-
dicted global camera location is denoted as pv = (xv, yv, zv)T . In the heatmap
Hv, we define the probability at pv as 1.0, and the probability linearly decays



Audio Visual Language Maps for Robot Navigation 5

around this location according to the distance on the top-down map:

Hv(p) = max(1.0− ε · distxy(p,pv), 0) (1)

distxy(p,q) =
√

(px − qx)2 + (py − qy)2 (2)

where ε is the decay rate, and distxy(p,q) denotes the distance between 3D
vectors p and q on the xy-plane.

Object Localization Heatmap. The object localization results are a list
of points, denoted as {poi = (xoi, yoi, zoi) | i = 1, . . . , N} where N is the total
number of points for the target object. We define the probabilities for all these
locations as 1.0 in heatmap Ho, and the probability linearly decays around these
locations based on the Euclidean distance:

dmin(p) = min{dist(p,poi) | i = 1, . . . , N} (3)

Ho(p) = max(1.0− ε · dmin(p), 0) (4)

where dmin(p) denotes the minimal distance between p and all object points
{poi | i = 1, . . . , N}, dist(p,q) denotes the Euclidean distance between p and
q.

Area Localization Heatmap. The area localization results are a list of
position-confidence pairs, denoted as {(pai, sai) | i = 1, . . . ,M} where M is the
total number of frames in the input RGB-D stream. The scores sai are normalized
between 0 and 1. We define the probability for each point pai on the heatmap
Ha as its score sai, and the probability linearly decays around the point on the
xy-plane direction:

Ha(p) = max(max{sai − ε · distxy(p,pai) | i = 1, . . . ,M}, 0) (5)

where the max operator for the curly brackets means taking the highest proba-
bility when a location is inside the affected regions for several pai.

Audio Localization Heatmap. The audio localization results are similar
to those of the area localization module. The position-score pairs are denoted as
{(psi, ssi) | i = 1, . . . ,K} where K is the total number of sound segments in the
input video stream. The heatmap Hs is defined as:

Hs(p) = max(max{ssi − ε · distxy(p,psi) | i = 1, . . . ,K}, 0) (6)

Cross-Modal Reasoning. The main idea of cross-modal reasoning is shown
in Fig. 3a. We treat the predictions from four modules as four modalities. When
there are several queries referring to different modalities, we compute the re-
spective heatmaps first and then perform element-wise multiplication assuming
conditional independence among all heatmaps:

Htarget = H1 �H2 � . . .�HL (7)

where � is the element-wise multiplication operator, and L is the total number
of referred modalities. We extract the position on the target heatmap Htarget

that has the highest probability as the predicted location.
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When we compute the heatmaps, we design that there is always a primary
heatmap while others are auxiliary ones. To illustrate this, consider the query
“navigate to the chair near the sound of crying”. In this case, the target object
we intend to approach is “the chair”, so its corresponding heatmap is designated
as the primary heatmap, while the heatmap for “the sound of crying” serves as
an auxiliary heatmap. Conversely, when the query is “navigate to the sound of
crying near the chair”, the roles will be reversed in the results. We set the decay
rate for the primary heatmap higher (e.g., 0.1 in this work) since we want to
know the exact location of the target while tuning the decay rate for the auxiliary
heatmap lower (e.g., 0.01) as having a broader effect area to narrow down major
targets is desirable.
3.3 Multimodal Goal Navigation from Language
In the setting of multimodal goal navigation from language, the agent is given
language descriptions of targets from different modalities (e.g., sound, image,
and object) and is required to plan paths to them. While most of the previous
navigation methods focus mainly on a specific type of goal, we unify these tasks
with the help of large language models (LLMs). Specifically, we use an LLM
to interpret the natural language commands and synthesize API calls combined
with simple logic structures in the form of executable python code [16,12,18].
For heatmap generation, we implement interfaces get_major_map(obj=None,
sound=None, img=None) and get_map(obj=None, sound=None, img=None).
They take the object name, sound name, or image as input and output heatmaps
indicating the locations of targets. The get_major_map generates heatmaps
with higher decay rate while get_map with lower decay rate. To support the
image prompt, we add an image path in the language query like “the image
img_path.png” and use LLMs to call the image loading API. Some examples of
prompts and queries are shown below (prompt in gray, input task commands in
green, and generated outputs are highlighted):

4 Experiments
This section presents our experiments conducted in both simulation and real-
world environments. We begin by describing the simulation setup in Sec. 4.1.
Next, we show the results of our experiments on multimodal goal navigation in
Sec. 4.2. In addition, we present the results of our experiments on cross-modal
goal indexing and navigation in Sec. 4.3 and Sec. 4.4. Finally, we discuss the
details of our real-world experiments in Sec. 4.5.

4.1 Simulation Setup

Exerimental setup. We use the Habitat simulator [23] with the Matterport3D
dataset [4] for the evaluation of multimodal navigation tasks. For mapping pur-
poses, we manually collect RGB-D video streams in the simulator across ten
different scenes and add random audio tracks to the videos to simulate the au-
dio sensing modality. All audio comes from the validation fold (Fold-1) of the
ESC-50 dataset [20]. In navigation tasks, the robot has four actions to take: for-
ward 0.1 meters, left/right 5 degrees, and stop. In sequential goal setting,
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the robot is required to navigate to a sequence of goals and take the stop action
when it reaches each subgoal. The subgoal is considered successfully reached
when the stop position is less than one meter away from the ground truth posi-
tion.

Tasks collection. In multimodal goal navigation tasks in Sec. 4.2, we con-
sider three kinds of goals: image goals, object goals, and sound goals. For image
goals, we randomly sample positions and orientations on the top-down map
and render images as targets. For object goals, we access the metadata (e.g.,
bounding boxes and semantics) from the Matterport3D dataset and sample a
list of categories in each scene as queries. For sound goals, we randomly sample
sound classes of audio merged with the mapping videos as targets, treating the
video frame positions as the ground truth. In cross-modal goal indexing tasks in
Sec. 4.3, we collect three types of datasets:

– Visual-Object cross-modal indexing We manually select image-object
pairs on the top-down map for localizing “an object X near the image Y”.

– Area-Object cross-modal indexingWe access the region and object meta-
data (e.g., bounding boxes and semantics) from the Matterport3D dataset to
automatically generate a list of object-region pairs. This dataset is for local-
izing “an object X in the area of Y”.

– Object-Sound cross-modal indexing We manually insert several sounds
of the same kind into a scene and select for each sound location a nearby
object for disambiguation. The query is “a sound X near the object Y”.

In cross-modal goal navigation in Sec. 4.4, we randomly sample starting pose
in 10 scenes and treat the visual-object and object-sound cross-modal goals in
Sec. 4.3 as navigation goals.

4.2 Multimodal Goal Navigation

Sound goal navigation.We first test AVLMaps in sound goal navigation tasks.
We collect 200 sequences of sound goals in 10 different scenes. In each sequence,
there are 4 sound categories that require the robot to reach. The results are shown
in Table 1. We generate AudioCLIP [11] features with our audio localization
module and match all audio with the target sound category in the embedding
space, similar to a text-to-audio retrieval setup. Then the agent plans a path to
the audio position. We tested different ranges of sound categories inserted into
the map. The full list of sound categories in each major class can be found in
the link4. The results show that our agent manages to recognize sound goals and
navigate with a 77.5% success rate.

Visual and object goals navigation. We then test AVLMaps with visual
and object goal navigation tasks. The agent is given an image and two object
categories in the language in one sequence of tasks and asked to navigate to

4https://github.com/karolpiczak/ESC-50

https://github.com/karolpiczak/ESC-50
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the image goal and two object goals in sequence. In 200 sequences of tasks in 10
scenes, the success rate is reported in Table 2. The results show that our method
enables the agent to navigate to goals from different modalities.

Table 1. The success rate (%) of sound goal navigation with AVLMaps.

Tasks
No. Subgoals in a Row Independent

1 2 3 4 Subgoals

Domestic Sound 59.5 33.0 15.5 7.0 62.5
+ Human Sound 69.5 47.0 36.5 23.0 72.38
+ Animal Sound 74.5 58.5 45.5 33.0 77.5

Table 2. The success rate (%) of multimodal goal navigation with AVLMaps.
The agent is required to navigate to one visual goal and two object goals in
sequence.

Tasks
No. Subgoals in a Row Independent

1 2 3 Subgoals

AVLMaps (Ours) 71.5 40.5 25.0 47.4

4.3 Cross-Modal Goal Indexing

Area-Object goal indexing. In this setup, we use an area description to disam-
biguate the object goal. We collected 100 indexing tasks in 10 scenes. Each task
consists of an object category and a region category (e.g., “living room”, “kitchen”,
“dining room”, “bathroom” etc.). The agent needs to predict the correct object
location which is inside the region. The top-1 recall with different distance toler-
ance is reported in Table 3. We can notice that VLMaps [12] struggles to find the
goal in the correct region because VLMaps integrates visual-language features
from the encoder fine-tuned on the instance segmentation dataset, improving
its segmentation performance on common objects while dropping its ability to
recognize more general concepts like regions. In contrast, our area localization
module integrates pre-trained CLIP features into the map without fine-tuning,
enabling it to recognize general concepts including regions, and thus the indexing
results are improved.

Object-Sound goal indexing. In this setting, we use object goals to dis-
ambiguate sound goals. We collected 119 indexing tasks, each of which consist of
a sound category and a nearby object category. Each sound category in a scene
can be heard at more than 1 location, introducing ambiguity to the localiza-
tion scenario. The recall is reported in Table 4. With the combination of object
and audio localization modules, our method largely increases the recall rate for
localizing the correct sound goal position in ambiguous scenarios.

Visual-Object goal indexing. In visual-object goal indexing tasks, visual
clues are used to resolve ambiguity. Given an object category and an image, our
method can localize the correct object near the image position with over 60% of
recall for 0.5 meters distance tolerance, as is shown in Table 5.
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Table 3. The recall (%) of area-object cross-modal indexing.

Method Recall@1 (%) Average
min. distance (m)<0.5m <1m <1.5m <2m

baseline (VLMaps) 5.56 7.78 13.33 17.78 8.22
+ ConceptFusion 12.22 13.33 16.67 21.11 7.60
+ CLIP sparse map (Ours) 15.56 24.44 31.11 35.56 6.17
+ GT region map 37.78 44.44 55.56 61.11 2.62

Table 4. The recall (%) of object-sound cross-modal indexing.

Method
Recall@1 (%)

Average min.
distance (m)<0.5m <1m <1.5m <2m

baseline (wav2clip [24]) 8.40 10.08 10.92 14.29 8.52
baseline (AudioCLIP [11]) 26.05 35.29 36.97 42.01 5.04
VLMaps + wav2clip 24.37 30.25 33.61 38.66 6.27
VLMaps + AudioCLIP (Ours) 53.78 65.55 67.23 70.59 2.74

4.4 Multimodal Ambiguous Goal Navigation
We collected 119 sequences of ambiguous goal navigation tasks. In each task,
the agent is required to navigate to an ambiguous sound goal (e.g., “the sound
X near object Y”) and an ambiguous object goal (e.g., “the object X near sound
Y”) sequentially. We consider two single-modality baselines: VLMaps [12] and
AudioCLIP [11] and one multimodal baseline. The multimodal baseline uses
VLMaps as the object localization module, wav2clip [24] as the audio localization
module and the same visual localization module as our method. The results are
shown in Table 6. We observe that AVLMaps navigate to cross-modal goals
with 24.2% higher success rate to ambiguous sound goals and with 2.1% higher
success rate to ambiguous object goals compared to the alternative multimodal
baseline.

4.5 Real World Experiment

Environment setup. We control a mobile robot to record RGB-D videos in
a room with multiple ambiguous goals such as tables, chairs, and paper boxes.
Then we artificially add sounds to the RGB-D video when the robot moves to
certain locations. After collecting the data, we run the AVLMaps mapping offline.
For navigation tasks, we provide the AVLMap and the language instruction as
input. The robot parses the instruction (Sec. 3.3) and executes the generated
python code for goal indexing and planning. We use the ROS navigation package
for global and local planning.

Multimodal Spatial Goal Reasoning and Navigation with Natural
Language. We design 20 language-based multimodal navigation tasks, asking
the robot to navigate to sounds, images, and objects. We report an overall success
rate of 50%. We also design an evaluation consisting of ten multimodal spatial
goals. The agent needs to reason across objects, sounds, images, and spatial
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Table 5. The recall (%) of visual-object cross-modal indexing.

Method Recall@1 (%) Average
min. distance (m)<0.5m <1m <1.5m <2m

VLMaps w/o vis loc 7.55 9.43 11.32 11.94 11.22
VLMaps w/ vis loc (Ours) 62.26 66.67 70.44 72.32 3.11

Table 6. The success rate (%) of multimodal ambiguous goal navigation.

Method
No. Subgoals in a Row Sound Object

1 2 Goals Goals

VLMaps [12] - - - 27.1
AudioCLIP [11] - - 16.9 -
VLMaps + wav2clip 22.0 12.7 22.0 53.4
VLMaps + AudioCLIP (Ours) 46.2 28.6 46.2 55.5
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Fig. 4. Visualization of heatmaps in AVLMaps for multimodal goal reasoning for
ambiguous object goals. From left to right: scene overview (objects/sounds/images
locations), close-up view of ambiguous objects, predicted heatmap for the object target,
predicted heatmap for the audio/visual target, and the predicted heatmap for the
multimodal goal. The heatmap is shown in the JET color scheme.
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concepts. An example is “navigate in between the backpack near the sound of
glass breaking and {the image of a fridge}”. In the end, six out of ten tasks were
successfully finished. Fig. 4 shows the cross-modal reasoning results in real-world
environments. More results can be found on our Website.

5 Conclusion
In this paper, we presented AVLMaps, a unified 3D spatial map representation
that effectively incorporates cross-modal information from audio, visual, and
language cues. By leveraging multimodal prompts, AVLMaps enable zero-shot
spatial goal navigation and improve target indexing accuracy compared to base-
lines, particularly in cases with ambiguous goals. However, AVLMaps do have
limitations. They are sensitive to audio noise and assume a static environment
throughout their lifespan. Future work will explore integrating lifelong learning
capabilities into the agent to further automate multimodal spatial learning.
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