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Abstract— The setup of tilting a 2D laser range finder up and
down is a widespread strategy to acquire 3D point clouds. This
setup requires that the scene is static while the robot takes
a 3D scan. If an object moves through the scene during the
measurement process and one does not take into account these
movements, the resulting model will get distorted. This paper
presents an approach to reconstruct the 3D model of a moving
rigid object from the inconsistent set of 2D measurements
by the help of a camera. Our approach utilizes optical flow
in the camera images to estimate the motion in the image
plane and point-line constraints to compensate the missing
information about the motion in depth. We combine multiple
sweeps and/or views into to a single consistent model using a
point-to-plane ICP approach and optimize single sweeps by
smoothing the resulting trajectory. Experiments obtained in
real outdoor scenarios with moving cars demonstrate that our
approach yields accurate models.

I. INTRODUCTION

Compared to stereo cameras, laser range finders have
become popular devices for the acquisition of 3D point
clouds in large-scale scenarios because of their ability to
obtain accurate long-range measurements [1]. A widely used
and cost-effective setup is to mount a 2D range scanner on a
tilting actuator. By nodding the laser scanner this approach is
able to generate accurate models of static scenes. However, if
an object moves during an entire sweep, which with typical
configurations takes one second or even more, the individual
measurements will not be consistent (see Figure 1a). In
this paper, we present an approach that utilizes the optical
flow calculated from images grabbed during the point cloud
acquisition and combines it with the laser measurements to
estimate the movement of the corresponding object. Accord-
ing to the estimated movement, it then calculates an accurate
model of this object (see Figures 1b and 1c).

The key idea of our approach is to estimate and perform
a compensation for the motion of the moving object. To
achieve this, we employ a video camera that we calibrate to
the nodding laser range finder. As the camera operates at a
higher framerate compared to the 3D point cloud acquisition
(10 Hz vs. 1 Hz), our approach estimates the motion of
the object in the image plane from frame to frame using
optical flow [2] and employs this information to reproject
the individual 2D laser range scanlines according to the
movement of the object. This, however, requires that we
estimate the depth of the individual image pixels after the
motion. To achieve this, we assume that the perceived object
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Fig. 1. (a) Top view of a bulk point cloud recorded during 15 sweeps of a
nodding 2D laser range finder of a car moving along the trajectory indicated
by red arrows. (b) The car used as moving object. (c) The colored point
cloud model reconstructed from the distorted point cloud above.

is rigid. If, at one instant of time, we know a partial model of
the rigid body, the optical flow provides point-line constraints
for the pose of this model at another instant of time. As a
minimum model we have a non-degenerated single scanline
(recorded in one rotation of the mirror deflecting the laser),
which we assume to be recorded instantaneously. Tracking
the pose of this model and adding more scanlines over time
allows for reconstructing the model of the rigid object.

Pose tracking with optical flow naturally accumulates
errors (drift), especially in the viewing direction of the
camera. Therefore, as soon as we record a new sweep of
the object, we use the model from this sweep as a reference
and register the old model to it using an ICP approach. This
restricts drift to the time window between two sweeps. The
model recorded during one sweep is dense in the direction
of the rotation of the mirror of the laser range finder, but
sparse in the nodding direction. Due to this sparseness, the
alignment of sweeps is not an easy task. We estimate the
underlying surface of the existing (possibly denser) model
by estimating its normals and register the points of the newly
recorded sweep by minimizing their point-to-plane distances
to this surface. To reduce drift, we furthermore constrain the
motion of the object to the ground plane.

Furthermore, we improve the tracking result by smoothing
it with the alignment determined by ICP. This allows us to



reduce the influence of the drift on the quality of the model
estimated by our approach. Afterwards, we use the smooth
trajectory to recalculate the point cloud of the current sweep
before integrating it into the model.

II. RELATED WORK

The typical methods to obtain 3D data with laser range
finders can be roughly divided into two categories. The first
operates with laser range finders that are rigidly connected
to a moving platform, such as a robot [3]. These methods
require a precise estimate of the position of the robot to
obtain an accurate model. The second category actively
actuates the laser range finder either by nodding or rotating
it [4], where the laser range finder itself may have a single
or multiple beams. Note that there are also exceptions. For
example, Zibedee by Bosse et al. [5] employs a spring-
mounted laser range finder which is passively actuated due
to the vibrations induced by driving over non-flat surfaces.
Obviously, the data of such a 3D scanning device can be used
for various tasks including object reconstruction or mapping
an environment.

In addition to the categories mentioned above, dedicated
approaches for model acquisition have been proposed. A
popular approach to obtain the model is to use a robot for
moving the sensor around the object [6], [7]. Krainin et
al. [8] suggested a method that uses a robotic arm to grasp
the object and to move it in front of a depth camera. In
contrast to our approach, these methods either obtain a model
of a non-moving object or move the object by themselves,
whereas our approach considers the data of a continuously
nodding 2D laser range finder to obtain a 3D model of a
rigid object, which is moving along an unknown trajectory.

Blais et al. [9] present an approach that explicitly takes
into account that the scanned object moves. Their approach
iteratively refines the model but relies on a Lissajous pattern
to obtain the range data. Weise et al. [10] propose an
approach to correct the distortion for active illumination
stereo in short time frames. Instead of obtaining a model
of an object by scanning a single object from multiple
views, Ruhnke et al. [11] exploit the presence of multiple
instances of the objects in the scene to obtain complete 3D
models. Their approach applies spectral clustering to merge
the individual instances into one object model.

A related problem in computer vision is 3D reconstruction
from a moving camera in the presence of independently
moving objects [12]. While a static scene would come down
to a structure-from-motion problem, a moving rigid object
requires segmentation of the object and estimation of the
relative rigid motion.

Our approach combines the data of a laser range finder
with vision. This combination has been applied successfully
for other applications, such as extending the range for terrain
classification [13] or increasing the resolution of the range
data [14]. Held et al. [15] apply upsampling to the sparse
range data of a Velodyne scanner. They show that the denser
range data leads to better velocity estimates for tracking a
moving object. In contrast to our approach, their method
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Fig. 2. (a) The calibration pattern in the camera data and (b) in the remission
data of the laser range finder.
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Fig. 3. (a) The ideal model of the calibration pattern. The red dots indicate
the corners of the pattern. (b) The error function used to detect the rigid
in-plane transformation. Darker areas indicate lower error.

receives a full 3D scan with 10 Hz, whereas we receive such
a scan at only 1 Hz and scanline-by-scanline. We exploit that
the camera operates at a much higher frame rate than our
nodding 2D laser range finder and track the object in the
image space to account for the distortion.

III. CALIBRATION AND SYNCHRONIZATION

A. Calibration

For calibrating the tilting laser range scanner and the cam-
era we employ the calibration pattern depicted in Figure 2. To
have a distinct pattern that can be well observed by both the
laser range finder and the camera, the bright areas consist of
highly reflective material conducting a scattering of the laser
beam. This results in low remission values (black patches in
Figure 2b) and makes it possible to detect the corresponding
areas in the 3D scan. For calibration, we nod the laser range
finder at a very slow velocity and record multiple sweeps to
obtain high resolution scans.

To establish a camera projection matrix P, which maps the
3D points to image points, we are interested in finding the
set of corresponding patch corners in image and 3D space. In
the image we compute the intersections of the lines detected
from the edges of the patches. In 3D space, we first fit a
plane through the points pi with low remission values (black
patches in Figure 2b) using a RANSAC approach. Given this
plane we then interpolate corners of the patches by fitting an
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Fig. 4. (a) Calibration object used to determine the time shift between the
laser range finder and the camera. Green dots indicate points of the object
detected by the laser range finder due to their remission value. The white
arrows indicate the direction of movement. (b) Synchronized laser range
finder and camera data of a moving object.

ideal model (see Figure 3a) of the calibration pattern to the
data. To this end, we define an error function E(·) (see Figure
3b) for the point locations. To determine the pose (Rα, t) of
the pattern on the previously extracted plane we minimize

arg min
α,t

N∑
i=1

E (Rαpi + t) (1)

using gradient descent, where Rα is a 2D rotation matrix
with angle α and t is a 2D translation.

Once we know the corresponding locations of the corners
in 3D space and the image, we establish a homography [16].
Since the calibration object is planar, we take multiple
rotated views of the pattern to uniquely determine the internal
parameters of the camera and the projection matrix P.

B. Synchronization

To determine the time shift between the laser range finder
and the tilt actuator, we exploit that objects must have the
same coordinates within subsequent upward and downward
sweeps. Hence, we determine the angle between the ground
planes in two subsequent sweeps and iteratively shift the
timestamps of the tilt actuator until this angle approaches
zero.

By moving another calibration object at high velocities
from left to right, we calibrate the time shift between the
laser and the camera. The surface of this object (depicted
in Figure 4a) consists of the same reflective material as the
calibration pattern described before. For the synchronization,
we do not nod the laser range finder. We detect the pattern in
the laser range finder data by its low remission values and
project the points to image space (depicted as green dots
in Figure 4). Along the line (shown in white) extrapolated
from these points, we search for nearby pixels with the
color of the calibration object to determine its location in
the image. For a given scanline, we then seek for a camera
frame close in time which best matches the position of the
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Fig. 5. Illustration of a twist ξ. The motion corresponds to a rotation around
the axis ω (red) and a translation along v (blue) resulting in the screw
motion from p1 to p3 (green).

object. We store the difference in time between the scanline
and the image and fit a normal distribution to a histogram
over all values. We then use the mean of this distribution to
shift the camera timestamps to match the laser range finder
timestamps. Figure 4b shows a typical result.

IV. MODEL RECONSTRUCTION

A. Point-Line Correspondences from Optical Flow

To compensate the motion, we assume that a partial model
is known at one instant of time. In the beginning, this is the
first scanline of the laser range finder. Let xi denote the
3D points of this model. With the projection matrix P from
the previous section, these points can be projected into the
camera image. We denote the points in the image plane by
x̃i. We use large displacement optical flow [2] to compute
the displacements ∆̃i of x̃i to the next camera frame. The
displaced image location x̃′i = x̃i + ∆̃i restricts x′i to the
projection ray of x̃′i.

3D lines can be represented implicitly by so-called Plücker
lines [17]. Let L′i = (m′i,n

′
i) be the Plücker line with a unit

vector n′ and a moment m′ that corresponds to the projection
ray x̃′i. The Plücker line representation then yields directly
the distance of an arbitrary 3D point x to L′i via [18]:

d(L′i,x) = ‖x× n′i −m′i‖ . (2)

Based on these point-line constraints, we estimate the six
degrees of freedom of the rigid body motion to move the
3D points to their new position at the time when the current
camera image was taken.

B. Pose Estimation

For a given set of non-occluded points xi we seek for a
rigid body transformation T = (R | t) with a rotation R
and a translation t that minimizes d(L′i,x

′
i). For the purpose

of pose estimation, the twist representation [19] of T is well
suited. As illustrated in Figure 5, a twist is a screw motion
around a rotation axis ω and a translation v. Such a twist
can be represented as a vector ξ = (ω1, ω2, ω3, v1, v2, v3) or
in matrix form

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ξ̂ =

(
ω̂ v
0> 0

)
. (3)

Multiplying ξ̂ by a factor θ allows for an arbitrary scaling of
the motion [20]. We can map a scaled twist to a transforma-
tion matrix and back by taking the exponential or logarithm:

T = exp(θξ̂) , ξ̂ =
1

θ
log(T) , (4)



which can be computed efficiently by the Rodrigues for-
mula [19]. Here, we set θ = 1 and seek for a twist that
minimizes the distance d(L′i,x

′
i):

arg min
ξ

∑
i

∥∥∥∥π(exp(ξ̂)

(
xi
1

))
× n′i −m′i

∥∥∥∥2

, (5)

where π(·) denotes the projection from homogeneous to
Euclidean coordinates. To reduce drift, we restrict the motion
to the ground plane, which we detect using RANSAC, by
aligning the z-axis of the reference frame to the ground
normal and by setting

ω1 = 0, ω2 = 0, and v3 = 0. (6)

Eq. (5) states a non-linear least squares problem, which we
solve with the Gauss-Newton method, i.e., we iteratively
linearize exp(ξ̂) ≈ I + ξ̂. Hence, Eq. (5) becomes a linear
system in each iteration:

arg min
ξ

∑
i

‖((I + ω̂) xi + v)× n′i −m′i‖
2
. (7)

We map the twist corresponding to the solution of this linear
system to the corresponding transformation matrix and apply
it to the 3D points to perform the next iteration.

C. Treatment of Outliers
Both the estimation of the optical flow and the pose of

the object are affected by residual errors. Hence, repeatedly
estimating a new pose given the previous result leads to an
accumulation of errors, i.e., a drift in the position and the
orientation of the object. Close to the object boundary, this
can result in model points that need to be projected to a
background pixel, where the optical flow does not correspond
to the motion of the model. Figure 6a illustrates such a case.
Another cause for such outliers can be local errors of the
optical flow. To be robust to such outliers, we apply robust
statistics and replace the squared error norm in Eq. (5) by a
truncated Huber norm [21]. This is equivalent to iteratively
reweighted least squares. Using the Gauss-Newton method,
we iteratively solve the linear system of Eq. (7). Let us
denote this system as

arg min
ξ

∑
i

‖Aiξ − bi‖2 . (8)

If the correspondence 〈xi, x̃′i〉 is an outlier, the residual
ri(ξ) = ‖Aiξ − bi‖ of this point is large. To reduce its
influence on the solution ξ, we introduce the weight

wi(ξ) =

{
0 if ‖ri(ξ)‖ > τ

1
‖ri(ξ)‖+ε otherwise

, (9)

which corresponds to replacing the quadratic norm by the
truncated Huber norm with truncation at τ . The parameter
ε limits the weights of points with low residual and, conse-
quently, the condition number of the system matrix. We start
with wi = 1 and then solve Eq. (8) by computing

arg min
ξk

∑
i

wi(ξk−1)‖Aiξk − bi‖2 (10)

in each iteration k. Figure 6b shows the result of enabling
iteratively weighted least squares.
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Fig. 6. (a) Illustration of the pose estimation drift during the reconstruction
of the first six sweeps of a car moving to the right. The area in red shows
the optical flow while the points indicate the projection of the model and its
estimated pose. The drift leads to outliers (indicated by the white arrows).
(b) Applying Eq. (9) weakens the influence of the outliers.
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Fig. 7. Illustration of model merging with the first two sweeps of a moving
car. (a) Initial misalignment of the first two sweeps. The first sweep is shown
in red and the second one in blue. (b) The model after aligning the first two
sweeps with our approach. One can also see that the sweeps are dense in
the direction of mirror rotation and sparse in the direction of nodding.

D. Model Merging

Applying the pose estimation process described above
allows us to track the object and build its model by accumu-
lating points. As already mentioned, this method produces
drift. To keep the error of the drift bounded, we build a
new model for each sweep. As the pose of the most recently
recorded model is most certain, we align the formerly tracked
model with the most recent one. Afterwards, we merge the
models to an accumulated one, which is then aligned and
merged with the next sweep in the same manner.

Let Γ be the accumulated model and let Λ be the model
of the most recent sweep. We want to register both models
in a common coordinate frame. To this end, we consider
the tracking result provided by optical flow as an initial
guess for registering both models with an ICP approach (see
Figure 7a). We, however, have to take into account that the
range data is sparse and that the scanlines hit the object at
different height levels. Applying the commonly used point-
to-point metric would align the dense scanlines and yield
sub-optimal results. Thus, we instead consider a point-to-
plane metric. Consequently, we have to estimate the normal
vectors. Since the quality of the estimate of a normal vector
depends on the density of the underlying point cloud, we
compute the normal vectors on the accumulated model Γ,
which is in general denser than the newly recorded model Λ.

To estimate the normal vector ni of a point pi ∈ Γ, we
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Fig. 8. The trajectory optimization. Image (a) shows the pose estimates
between two specific poses y1 and yn. Blue circles indicate the estimated
poses directly after a laser sweep was completed. Red lines indicate pose
updates due to optical flow pose estimation while blue lines indicate pose
updates due to an ICP alignment. (b) Corresponding optimized trajectory.

first find the neighbors within a certain radius. We compute
the normal vector ni as the Eigenvector corresponding to
the smallest Eigenvalue of the covariance matrix of these
neighboring points. Additionally, we determine the sign of
the surface normal such that it points towards the camera. We
furthermore assume that the surfaces of the captured objects
are convex. This allows us to detect occlusions when the
object is moving by identifying points whose normals do
no longer point in the direction of the camera. Specifically,
we mark points as occluded if the angle between the vector
from the point to the camera and the normal exceeds 60◦.
We do not consider occluded points in the pose estimation
step. A representation of the tangential plane to a point pi
with normal ni is

nix− d0 = 0, (11)

where d0 = nipi. Furthermore, |nix − d0| represents the
distance of a point x to this plane. We iteratively seek for
the nearest neighbors qi ∈ Λ to pi bounded by a maximum
distance dmax and align Λ to Γ by minimizing

arg min
TA

∑
i

|ni (TAqi)− d0|2 . (12)

Representing TA as a twist (see Eq. (4)) allows us to apply
the constraint of Eq. (6), namely that the object moves on
the ground plane. Again, we find the solution of Eq. (12)
using the Gauss-Newton method analogously to the pose
estimation problem described before. Figure 7b depicts the
outcome of our registration approach.

We found that the robustness of the alignment of the
sparse clouds heavily depends on the parameter dmax . In
contrast to other ICP implementations, our approach starts
with dmax = 10 cm in each iteration and only increases dmax

if the number of neighbors found is insufficient (less than
one-third of the size of Λ).

E. Trajectory Optimization

As mentioned above, the pose of the reconstructed object
is more accurate after we registered our existing model Γ
and the point cloud Λ of the current sweep. The alignment
step corresponds to a correction of the error accumulated
by chaining up the pose estimates (T1, . . . ,Tn−1) from
optical flow. Figure 8a illustrates such a chain along with
the ICP alignment that yields the transformation matrix TA.
To account for the pose estimation errors made during the
construction of Λ, we perform a smoothing of the trajectory
to obtain the maximum likelihood estimate for the trajectory
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Fig. 9. Pictures and point clouds of the different objects: (a) Audi TT,
(b) Van, (c) Polo.
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Fig. 10. RMS errors of the different datasets from Figure 11 compared to
the different ground truths from Figure 9. As visible, the RMS to the correct
ground truth is always the smallest and therefore allows for a classification.

of the object. Let (y1, . . . ,yn) be the poses of the moving
object while Λ is acquired. Additionally, let e(yi,yj ,T) be
an error function which computes the difference between
a given estimated transformation T and the expected value
given the current state of the poses yi and yj . We determine
y′1,...,n by solving

argmin
y1,...,n

‖e(y1,yn,TA)‖2
Ψ +

n−1∑
i=1

‖e(yi,yi+1,Ti)‖2
Σi

, (13)

where ‖·‖2Σ is the squared Mahalanobis distance weighted by
the covariance matrix Σ. Here, Ψ and Σi allow us to balance
the influence of the measurements. Again, we solve Eq. (13)
with Gauss-Newton as implemented in g2o [22]. This leads
to a smoothed trajectory y′1,...,n (see Figure 8b) that we use
to rebuild the model acquired during the most recent sweep.

V. RESULTS

We evaluate our approach on several real-world data sets
in which three different cars are moving through the scene.
A Hokuyo UTM-30LX laser rotating with 40 Hz mounted
on a servo that is tilting from -50◦ to +30◦ provided the 3D
range measurements. Additionally, we recorded the image
data of one camera of a Point Grey Bumblebee2 stereo
camera running at 10 Hz and a resolution of 1024× 768
pixels. We use the implementation from Brox and Malik [2]
for computing the optical flow.

For a quantitative evaluation, we acquired dense point
clouds of the still standing vehicles depicted in Figure 9 by
manually steering a robot around the vehicle. We applied
sparse surface adjustment [23] to join the views and to
obtain ground truth models. To assess the quality of our
model reconstruction from a moving vehicle, we constrain
the models to the ground plane and align the reconstruction
to the ground truth with the previously introduced point-to-
plane ICP approach. As an initialization we align the four
contact points of the wheels. For each model point we then
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Fig. 11. Illustration of the different datasets. The top row shows the trajectory of the moving object estimated by our approach along with a top view of
the bulk point cloud. The bottom row illustrates the models reconstructed by our approach.

find the nearest neighbor in the ground truth and compute
the root mean squared error (RMS). We not only compute
the RMS of a vehicle compared to itself but also to the other
models. The results are shown in Figure 10.

For the evaluation we recorded three different motion
scenes of different lengths (from 3 to 30 seconds) for each
vehicle, as illustrated in Figure 11. The trajectories include
linear motions towards the camera, from left-to-right and
right-to-left, stops, curves and circles. For each vehicle, in
case of a circle, we are able to reconstruct a 360◦ model.
The RMS with respect to the corresponding ground truth
model typically lies between 3 cm and 9 cm. As visible from
Figure 10, in all cases (even with only 3 sweeps), the RMS
of the reconstructed models suffices to distinguish between
different vehicles without the use of further features. This
indicates that we can use our approach to classify moving
objects based on their 3D shape instead of relying on the
visual appearance alone.

VI. CONCLUSION

In this paper, we propose a method to reconstruct models
of moving rigid objects captured by a nodding laser range
finder and a video camera. To this end, our approach
considers optical flow to track the object in the camera
frame and to correct the distortion in the range data induced
by the motion of the object. The results from different
motion scenes of vehicles indicate that our approach allows
us to obtain accurate reconstructions. Our evaluation shows
that reconstruction errors lie in the range of 3 cm to 9 cm.
Furthermore, one could use our approach to classify the
moving object based on corresponding, previously recorded
3D models.

There are several options for future work. Potential exten-
sions regard a real-time implementation or the relaxation of
the ground plane or rigidity assumption.
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