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Abstract— In recent years, the problem of inferring and
utilizing semantic information has gained considerable interest
within the mobile robotics community. In this paper we focus
on the problem of how to utilize the local semantic information
of objects in a map to solve a navigation task more efficiently.
In particular, we consider a wayfinding task and choose a
supermarket environment as an example domain. We present an
approach allowing a mobile robot to efficiently find the location
of a target product in an unknown supermarket and to guide the
search by heuristic rules based on information about the objects
in the vicinity of the robot. The wayfinding strategy is learned
from data by observing optimal search paths in a training set
of supermarkets and then applied and evaluated in a previously
unseen supermarket. We evaluate different search strategies and
also give a comparison to the performance of humans in a real
market. Our results demonstrate, that the learned wayfinding
heuristics yield significantly shorter search paths than a standard
search technique.

Index Terms— Navigation, Wayfinding, Object Maps

I. INTRODUCTION

In recent years, the problem of inferring and utilizing

semantic information in the context of mobile robot navigation

has gained substantial interest [2, 3, 7, 9, 11, 14, 15]. This is

motivated by the observation that mobile robots can benefit

from semantic information in various ways, and especially to

more efficiently carry out their tasks. For example, semantic

maps are envisioned to be more amenable or communicable

to humans, which can be an important property in the fields of

service robotics and human-robot interaction [15]. Addition-

ally, they allow robots to reason about their environment and

can be considered as a major step towards bridging the gap

between perception and action.

In this paper we focus on the problem of how to exploit the

semantic information in a local map and about the vicinity

of the robot to accomplish a wayfinding task more efficiently,

than it would have been possible without such information.

As an application domain, we consider typical supermarket

environments and propose an approach to efficiently find the

location of a target product in a previously unseen supermar-

ket. The search is guided by heuristic rules that depend only

on local information that is immediately accessible from the

robot’s current location, such as the visible products or the

type of shelves. We chose a supermarket as it is an excellent

example of an environment densely populated with many

different objects that are arranged in a meaningful way and

that exhibit strong spatial dependencies.

We believe that the knowledge utilized during the search

for a product can be expressed as a set of heuristic rules

Fig. 1: Example map of a real supermarket environment. In our approach,
maps contain shelf locations, shelf types, and product locations. The under-
lying structure is a graph. The task of the robot is to efficiently find a target
product and to guide the search by utilizing the local information given by
its current location and the products in its direct vicinity.

and that these rules can be learned from data by observing

optimal search behavior. We realize this by learning a decision

tree that classifies the outgoing edges of the robot’s current

location into promising and non-promising directions. The

main problem then is to define the relevant edge attributes

that are informative enough to guide the search efficiently to

the target product.

The definition of the edge attributes is the only domain-

specific part of our wayfinding strategy, and our approach is

therefore also applicable to different application scenarios, like

finding an object in an office or finding buildings or points of

interest in a city. As an example, imagine you are in need

for medical treatment and you are driving through a city in

search for a doctor’s practice. At a distance you can see the

bright sign of a pharmacy. In this situation, it would certainly

be helpful to know that doctors often share the same house

with a pharmacy store.

Even for humans, the task of efficiently finding a product

in a market is not an easy one and presumably human

wayfinding [13] is also guided by a set of domain-specific

heuristic rules, like “if the goal is to find milk, follow the

wall”. We will therefore also compare our technique to the

performance of human participants that took part in a field

study conducted in a real supermarket [6].
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This paper is organized as follows. After discussing re-

lated work, Section III introduces our representation of the

supermarket environments. Section IV then describes how the

search strategy has been learned from data of optimal search

paths. In Section V we present the results of an experimental

evaluation of various search strategies. We demonstrate that

our proposed technique yields significantly shorter search

paths than a search strategy that does not take domain-specific

information into account.

II. RELATED WORK

Cocora et al. [2] investigated the related problem of how

to efficiently find the entrance hall in a hotel. They learned a

relational navigation policy that utilizes the information about

the type of rooms and corridors that are directly connected to

the robot’s current location. Kollar et al. [7] utilized a Markov

random field based on statistics of object cooccurrences to

reason about the location of a query object when given the

locations of other objects in a global map. They subsequently

used the inferred likelihood map to plan a search path such

that the expected path length is minimized. In contrast to their

work, we need to explore the environment and cannot rely

upon a priori known locations of certain landmark objects.

Galindo et al. [3] focused on the problem of how a robot can

improve its task planning by relying on semantic information

about its domain. In particular, they defined an ontology

about typical home-like environments and generated plans

to find unseen objects or type of rooms, e.g. a bedroom.

Kulyukin et al. [8] built a wayfinding assistant for the visually

impaired, which can guide persons to a goal location in a

supermarket based on RFID measurements. However, for path

planning they rely on a given map of the environment and

known goal locations.

Learning a wayfinding strategy by observing optimal search

paths can also be regarded as a form of learning from

demonstration and several authors applied imitation learning

techniques to navigation problems. Silver et al. [12], for

example, used an imitation learning technique to improve

outdoor path planning based on overhead terrain data. They

learned a cost-function from example paths provided by an

imperfect domain-expert. Ziebart et al. [16] learned routing

preferences of drivers by formulating the problem as an inverse

reinforcement problem. They relied on road segment features

like speed limits, road type, number of lanes, etc.

The problem addressed in this paper is distinguished from

the above mentioned work in the sense that we are facing an

environment that is densely populated with a large number

of different objects, which are arranged in a meaningful way

that can be exploited in order to guide the search for a specific

object.

III. MODELLING THE ENVIRONMENT

A supermarket m ∈ M contains a set of shelves Sm and

a route graph Gm = (V,E). Each shelf s ∈ Sm is associated

with a location ℓs = (xs, ys) and an orientation θs. The

relation INMARKET ⊂ S × M associates each shelf with

its corresponding market. Furthermore, we define a set of

Fig. 2: Three example situations for illustrating the short range visibility. Gray
shelves are visible, white shelves are not visible. The location of the robot is
indicated by the black node and its orientation is indicated by the arrow.

shelf types T = {NORMAL, COOLING, FREEZER, COUNTER,

GROCERY} and each shelf is associated with exactly one type

as defined by the relation TYPE ⊂ S ×T . Each shelf contains

at least one product and the same product might be placed in

several shelves, as defined by the relation INSHELF ⊂ P ×S.

For this, we define a set of 196 products at the granularity of

small categories like “sugar”, “pizza, “apple”, “tea”, etc. The

relation CATEGOF ⊂ P × C, associates each product with a

product category. For this, we define a set C of 20 product

categories with a coarser granularity like “breakfast”, “dairy

products”, “vegetables & fruits”, etc.

The nodes V of a route graph Gm = (V,E) model the

decision points in the supermarket and the directed edges

define the reachability between decision points. While the

reachability could have been modeled with undirected edges,

the visibility of the shelves also depends on the current node

(the robot’s current location) and therefore is defined over

directed edges. We use two variants of a visibility relation

that defines the shelves that are visible when looking into the

direction of a certain edge. The first one is a long range variant

SHELFVISL ⊂ E × S and the second is a short range variant

SHELFVISS ⊆ SHELFVISL. This is motivated by the fact that

although certain information, like the type of a shelf, can be

determined reliably over long distances, some information can

only be determined when one is in close vicinity to a shelf,

like for example the products contained within a shelf. Three

example situations illustrating the short range visibility are

depicted in Fig. 2. On the basis of the two visibility relations

we define several other visibility relations, like the visible

products

PRODVIS = {(e, p) | SHELFVISS(e, s), INSHELF(p, s)}, (1)

and the visible product categories

CATEGVIS = {(e, c) | PRODVIS(e, p), CATEGOF(p, c)}. (2)

The visibility of shelf types is modeled in such a way, that

we can distinguish whether the shelf type is seen in the direct

vicinity, or being observed at a further distance:

TYPEVISS = {(e, t) | SHELFVISS(e, s), TYPE(s, t)} (3)

TYPEVISL = {(e, t) | SHELFVISL(e, s), TYPE(s, t)}. (4)

The proposed wayfinding strategy utilizes the information

associated with each edge to decide which edge to follow. In
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the next section we describe how we learn such a strategy

from data by observing optimal search paths.

IV. LEARNING THE WAYFINDING STRATEGY

We are interested in learning a reactive wayfinding strategy

that depends only on local information in order to find a

certain target product. We therefore classify the outgoing edges

of the current node by a decision tree into promising and

non-promising directions based on the information associated

with each edge. For learning such a decision tree, we first

need to define appropriate edge attributes and then generate

training data by observing optimal search paths in a training

set of supermarkets. To evaluate the strategy, we apply it to a

previously unseen market.

A. Defining Edge Attributes

One obvious information, by which the search should be

guided, is which products and product categories are visible

at a certain edge. If we are searching for coffee and an aisle

contains tea, or in general breakfast products, then this edge

is certainly a promising candidate. But the decision should

also be influenced by additional factors. If we know that the

edge has been visited already, we could reject it in order to

avoid loops. Also the type of an edge might be of interest,

such if an edge belongs to an aisle that follows a wall (wall

aisle), because some products, like milk, are only located in

such aisles. Likewise, we define main aisles as aisles that

follow a main direction in a market and from which many

narrow side aisles branch off. Next, it is informative if the

robot is approaching certain landmarks in the supermarket, like

the entrance, the exit, or the back of the market. Vegetables,

for example, are always located near the entrance in our

markets. Thus, each optimal search path for finding apples

would mostly contain edges that are approaching the entrance.

Likewise, frozen food is usually in the back of the market and

wine and non-food are near the exit of the market.

We also use statistics about the expected relative product

position between the entrance and the exit based on the data

of all training markets. The relative position of a shelf s

with respect to the location ℓen of the entrance node and the

location ℓex of the exit node of the corresponding market is

defined as

relPos(s) =
‖ℓs − ℓen‖

‖ℓs − ℓen‖ + ‖ℓs − ℓex‖
(5)

The expected relative position of a product is then defined as

the average of these values for all shelves that contain this

product in the training markets Mt

Sp = {s | INSHELF(p, s), INMARKET(s,m),m ∈ Mt} (6)

expRelPos(p) = |Sp|
−1

∑

s∈Sp

relPos(s). (7)

We define a binary edge attribute (No. 222 in Table I) that

indicates if the robot would be approaching the expected

relative position of the target product by following that edge.

Furthermore, we calculate the average Euclidean distance

prodDist(pi, pj) for each pair (pi, pj) of products based on

TABLE I: The attributes that are used to characterize an edge. All attributes
are binary. In the experimental evaluation we test different combinations of
subsets (a–d) of these attributes.

Att. Subset Att. No. Description

a 1 Edge already visited
a 2–197 Product pi ∈ P visible
a 198–217 Product of category ci ∈ C visible
a 218 Shelf of type NORMAL visible (short range)
a 219 Shelf of type COOLING visible (short range)
a 220 Shelf of type FREEZER visible (short range)
a 221 Shelf of type COUNTER visible (short range)
b 222 Leads to expected relative position
b 223 Has smallest avrg. Euclidean dist. to product
b 224 Has smallest avrg. path dist. to product
c 225 Current node belongs to a main aisle
c 226 Next node belongs to a main aisle
c 227 Next node belongs to a wall aisle
c 228–230 Leads to entrance, exit, or back of the market
d 231 Shelf of type COOLING visible (long range)
d 232 Shelf of type FREEZER visible (long range)
d 233 Shelf of type GROCERY visible (long range)

their locations in the training markets. If we denote by Pi,j

the visible products that are associated with an outgoing edge

ei,j from the current node vi to a possible successor node vj ,

then the average product distance of this edge to the target

product pt is defined as

avrgProdDist(ei,j , pt) = |Pi,j |
−1

∑

p∈Pi,j

prodDist(pt, p) (8)

We define an indicator attribute (attribute No. 223) that is set

to true if an edge has the lowest average product distance

of all outgoing edges of the current node, and thus can be

considered to be the most promising edge with respect to the

expected product distances. Likewise, we define an attribute

that uses the path distance on the route graph between products

instead of the Euclidean distance (attribute No. 224). As it is

not easy to decide beforehand whether the path distance or

the Euclidean distance is a more reliable indicator for product

distances we use both attributes and let the learning algorithm

decide which one to use during the induction of the tree. A

complete list of all attributes can be seen in Table I.

B. Generating Training Data

We use a fixed set of 15 target products. These are the

same products that human participants had to find in a field

study conducted in the very same supermarket in which we

will evaluate our strategy. We learn a separate decision tree

for each of these 15 target products.

We determine for each node in a training supermarket the

shortest path to a given target product. Each node of the

optimal path corresponds to a local decision for taking a

certain outgoing edge (the one that leads to the next node

of the optimal path) and for rejecting all other outgoing edges

of that node. This way, each optimal search path contributes

a set of positive and negative examples of edges to be taken

or not, respectively. The positive and negative examples of all

paths for all starting positions in all training supermarkets then

constitute the training data for learning the decision tree for a

given target product.
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As there might exist more than one optimal path from a

starting location to the target location, we search for more

than just a single shortest path to generate training data.

Additionally, as the decision points are placed manually, there

might be small differences between nearly optimal paths. From

a topological point of view, these paths would still qualify as

optimal paths. We therefore accept all paths as optimal, which

are no longer than a given small threshold when compared to

the actual shortest path.

C. Decision Tree Learning and Pruning

We use the well known ID3 algorithm [10] to learn a

decision tree. For convenience, we restate the basic idea of the

algorithm. The tree is constructed top-down and each node is

associated with a set of positive ep and negative en examples

and a set A of yet untested attributes. At each node an attribute

a ∈ A is chosen that maximizes the information gain

G(a) = I(|ep| , |en|)−
∑

v∈a

∣

∣ep(v)

∣

∣ +
∣

∣en(v)

∣

∣

|ep| + |en|
I(

∣

∣ep(v)

∣

∣ ,
∣

∣en(v)

∣

∣)

(9)

where

I(p, n) = −
p

p + n
log2

p

p + n
−

n

p + n
log2

n

p + n
(10)

denotes the information entropy and ep(v) and en(v) are the set

of positive and negative examples, respectively, where attribute

a has the value v. If the examples of a node belong to one

class only, the node becomes a leaf node with the respective

class. If no other attributes are left, the class of a leaf node is

defined by the majority vote of the associated examples.

A technique to avoid overfitting in decision tree learning

is to prune the learned tree. In the experimental section we

will therefore also investigate the influence of two pruning

techniques, namely a simple restriction on the maximum

depth of the tree (max-depth-pruning, MDP) and reduced error

pruning (REP) [1]. In MDP every subtree that has its root node

at a given depth of the original tree will be collapsed into a leaf

node. For REP we need to divide the training data set into an

induction set, which is used during induction of the decision

tree, and a pruning set, which is used to evaluate which part

of the tree should be pruned. REP then replaces any subtree

with a leaf node if this does not lead to a higher classification

error on the pruning data set.

The learned decision tree is then used to guide the search

for the target product by classifying each outgoing edge of

the robot’s current location into promising and non-promising

directions. It may happen that more than one edge will be

classified as a promising direction. In this case, we choose

randomly among the promising candidates.

V. EXPERIMENTAL EVALUATION

The supermarket data was collected in real supermarkets.

Three of the supermarkets were used as a training set for

learning the decision trees and the fourth for evaluating the

search strategies. We first introduce two random strategies –

a random walk and a random exploration strategy – and

then discuss some variants of our proposed strategy based on

decision trees. Next, we explain how the the data of the field

study with human participants has been assessed and finally

provide quantitative results of a comparison of all of these

strategies.

A. Random Walk and Random Exploration Strategies

We consider two random strategies of which the first one

is a plain random walk. The random walk strategy serves as

a lower bound in the comparison – any reasonable strategy

should do better than a random walk. The second strategy

is a random exploration strategy that can be considered as

an improved random walk which avoids already visited edges

by randomly selecting only among the unvisited edges. If all

outgoing edges of a node have been visited already, an edge

will be chosen that leads to the nearest node with at least one

unvisited edge. If a search technique does not perform better

than a random exploration technique, it obviously is not able

to utilize domain-specific information, which is the ambition

of our strategy.

B. Variants of the Decision Tree Strategy

In total, we evaluate five variants of our proposed strategy

based on decision trees. The first four variants differ by the

set of attributes they are allowed to use. We start from a

simple variant, which uses only subset ‘a’ of the attributes

(see Table I), while the three subsequent variants can use

increasingly more attributes (including subsets ‘b’, ‘c’, and

‘d’). The resulting decision trees are not pruned in any way

and therefore might be prone to overfitting. We therefore

also investigate the influence of two pruning techniques. We

tried several alternatives by restricting the maximum depth of

the trees to different levels (MDP) or by applying reduced

error pruning (REP) or a combination of both to any of the

four attribute variants. We found the best variant to be a

combination of both pruning techniques applied to a tree that

uses the full set of attributes. We first applied MDP using a

maximum depth of four and then additionally applied REP.

To do so, the training data set was split into an induction set

(75% of the data) and a pruning set (25% of the data). Two

examples of learned and pruned decision trees can be seen in

Fig. 3.

C. Field Study with Human Participants

A field study involving 38 human participants was con-

ducted in a real supermarket [6]. The participants had to find

the same 15 products that we used as target products. As

the supermarket in which the study took place is the same

market that we used as a model for our evaluation market,

we can directly compare the path distances of the human

participants to the path distances traveled by the robot in

the simulated environment. In order to assure that we have a

metrically comparable model of the real market, we first built

an occupancy grid map of the supermarket using a laser-based

FastSLAM implementation [4] and then placed the shelves

according to the grid map, as can be seen in Fig. 1. The

product placement in our virtual market also resembles the
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not promising
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(b) Decision tree for finding UHT milk.

Fig. 3: Two examples of pruned decision trees that have been learned from optimal search paths in the training supermarkets. The trees use the attribute
variant (a,b,c,d,pruned) mentioned in Table II.

product locations in the real market. The participants were

tracked using a RFID-based localization technique [5] and the

resulting trajectories were than mapped upon the route graph

for a fair comparison with the path distances of the simulated

robot.

D. Evaluation of the Different Strategies

The human participants had to find the 15 products in a

given order, and so the location of a found target product

will be the starting location for the search for the next target

product. Therefore, each target product is associated with

a certain starting location and we evaluate the simulated

wayfinding strategies for the same 15 pairs of starting location

and target product.

As a performance measure we consider the length of a

complete search path, that is the path length of a search

for all 15 products. We simulated 5000 search trials for the

random strategies and 1000 search trials for strategies based

on the decision trees. We only have a sample size of 26

complete searches of the human participants, because some

search sub-trials (for a single product) have been cancelled

if the search took too long or the participants gave up. This

introduces a slight bias to the comparison for the benefit of

the human participants, because the simulated search trials

were not cancelled if they took “too long”. Nevertheless, we

think that the available data of the human search paths still

constitutes a usable basis for a comparison.

In Table II we plot the mean and standard deviation of the

search path lengths. We performed a one-tailed paired t-test1

and found all improvements indicated by the means to be

significant at the 0.01 level, except for the difference between

the decision trees with attribute combinations (a) and (a,b,c).

1If the sample sizes differed, we used the sample size of the smaller
sample. We also applied Welch’s t-test, which is applicable for unequal sample
sizes and unequal variances, and got the same results regarding the statistical
significance at the 0.01 level.

TABLE II: Mean and standard deviation (SD) of the overall search path
lengths for different search strategies. For further comparison we list the length
of the optimal path and the path length ratio defined as the average path length
of a strategy divided by the length of the optimal path.

Strategy
Search Path Length

Ratio Samples
Mean SD
(km) (km)

Random Walk 7.559 2.290 30.6 5000
Random Exploration 1.953 0.299 7.9 5000

Dec. Tree (a) 1.609 0.263 6.5 1000
Dec. Tree (a,b) 1.425 0.193 5.8 1000
Dec. Tree (a,b,c) 1.620 0.257 6.6 1000
Dec. Tree (a,b,c,d) 1.717 0.238 7.0 1000

Dec. Tree (a,b,c,d,pruned) 1.176 0.211 4.8 1000

Human Participants 0.565 0.110 2.3 26

(Optimal Path) (0.247) – 1.0 –

As expected, the random walk yields extremely long search

paths that are on average 30.6 times longer than the optimal

path. The random exploration strategy already yields much

better search paths that are on average 7.9 times longer than

the optimal path. This can be further improved to a ratio of

5.8 when the search is guided by our proposed strategy based

on the unpruned decision trees. We get even better results,

reducing the ratio to 4.8, when we use pruned decision trees.

This seems to suggest that the unpruned decision trees overfit

the data of the three training supermarkets. Humans achieved

the best results with a ratio of 2.3.

Though we did not achieve the same performance as

humans, the results clearly indicate, that the utilization of

wayfinding heuristics in the form of decision trees leads to

significantly shorter search paths when compared to unin-

formed wayfinding strategies. The random exploration strategy

performed significantly worse than our approach, because it is

not able to take domain-specific background knowledge into

account, which is the advantage of our proposed technique.
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VI. CONCLUSIONS

We proposed a wayfinding strategy which is guided by

heuristic rules and that is able to find a product in a su-

permarket significantly faster than a standard search strategy.

We furthermore showed how such heuristics can be learned

from data by observing optimal search behavior in a training

set of supermarkets. We then applied and evaluated these

heuristics in a previously unseen supermarket. Additionally,

we compared our technique to the performance of human

participants that took part in a field study in a real supermarket.

The results of our experiments demonstrated that our tech-

nique yields search paths that are on average 4.8 times longer

than the optimal path, while an exploration strategy only

achieves a ratio of 7.9 times the optimal path length. The

exploration strategy is an example of a standard uninformed

search strategy which is not able to exploit domain-specific

background knowledge. The significantly shorter path lengths

of our strategy highlights the benefits of utilizing the semantics

of the robot’s local environment when searching for the target

object.

The proposed strategy depends only on local information,

which is directly accessible from the robot’s current location,

such as the visible products, product categories, shelf types,

etc. Thus, no book-keeping efforts are necessary except for

a recognition of previously traversed edges. This makes the

proposed strategy not only effective, but also very efficient.
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