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Abstract— In recent years, there has been an increasing
interest within the robotics community in investigating whether
Radio Frequency Identification (RFID) technology can be uti-
lized to solve localization and mapping problems in the context
of mobile robots. We present a novel sensor model which can
be utilized for localizing RFID tags and for tracking a mobile
agent moving through an RFID-equipped environment. The
proposed probabilistic sensor model characterizes the received
signal strength indication (RSSI) information as well as the
tag detection events to achieve a higher modeling accuracy
compared to state-of-the-art models which deal with one of
these aspects only. We furthermore propose a method that is
able to bootstrap such a sensor model in a fully unsupervised
fashion. Real-world experiments demonstrate the effectiveness
of our approach also in comparison to existing techniques.

I. INTRODUCTION

Radio Frequency Identification (RFID) technology has

become popular in areas such as supply chain management

and inventory control, primarily because information can be

attached to real-world products cheaply and can be retrieved

without requiring physical contact. Recently, also robotics

researchers have started to explore potential applications

of the technology, focusing on the tasks of localization,

mapping, and activity recognition. An RFID system consists

of one or several RFID antennas and tags distributed in the

environment. The antenna sends out electromagnetic waves

and the passive RFID tags, consisting of a chip and a small

antenna, use either load modulation or backscattering to send

back their unique ID to the receiver. Ultra-high frequency

(UHF) systems, one of which is also used in this work, has

a reading range of up to a few meters.

According to scenarios envisioned for the near future,

virtually every retail product could be equipped with an

RFID tag. In addition to the semantic information about a

given environment or situation [1], [2], such a setup also

provides a rich source of spatial information, which can

be utilized (a) to infer the location of the tags within the

environment, (b) to localize the sensor relative to them, or

(c) to solve both tasks jointly. A major precondition for

solving all these tasks is the availability of an accurate sensor

model p(z | x) that characterizes the relationship between

locations x and measurements z. The contribution of this

paper is two-fold: First, we present a novel sensor model

that utilizes the received signal strength indication (RSSI)

as well as tag detection events to achieve superior accuracy

compared to state-of-the-art models that cover one of the
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(a) Mean of the logarithmic signal strength.
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(b) Standard deviation of the logarithmic signal strength.
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(c) Tag detection probability.

Fig. 1: The proposed sensor model combines information about the expected
received signal strength, (a) and (b), and about the probability of detecting
a tag (c).

two aspects only (see Fig. 1 for an illustration). We use

this sensor model for localizing RFID tags and for tracking

a shopping cart equipped with two RFID antennas. As a

second contribution, we describe how our sensor model can

be learned in an fully unsupervised fashion. We also compare

our model with a sensor model that has been shown to

be effective for WiFi localization and we point out how

this model can be further improved in the context of RFID

localization and present experimental results. Real-world

experiments in an office environment and a supermarket

demonstrate that our system is able to robustly estimate the

position of the tags and to track a shopping cart moving

through an RFID-equipped supermarket.

The paper is organized as follows. After discussing related

work in the field of RFID localization as well as in the

related field of WiFi localization, Sec. III then introduces

the proposed sensor model. In Section IV we explain how

to learn the model in an unsupervised fashion and Sec. V

and VI contain a description about how this sensor model is

utilized for localizing RFID tags and for tracking a shopping

cart. Finally, Sec. VII presents real-world experiments that

were performed in an office environment and a supermarket.



II. RELATED WORK

There is a variety of approaches to RFID-based local-

ization, which can be characterized by the type of sensor

information used as well as by the general approach to

modeling this information. Some of the earlier systems only

provided information about the ID of the detected tag while

later systems also provide information about the received

signal strength. Hence, some localization techniques utilize

sensor models that are based only on tag detection events

[3], [4], [5], [6], [7]. For some RFID readers that do not

provide RSSI (signal strength) directly, this information can

be emulated by means of different attenuation levels or

power levels of the antenna [8], [9], [10]. Sensor models for

localizing tags are usually designed to be sensor centric [3],

[6], [7], [9]. A different design, that can be used for localizing

a mobile agent, is to lay out the sensor model relative to the

environment [5], [11], [12], [13].

Hähnel et al. [3] utilized a piecewise constant tag detection

sensor model to first localize the tags and then use the tag

map to localize a mobile antenna. Schneegans et al. [5] com-

pared histograms of tag detections with previously recorded

histograms at different locations. Kleiner et al. [4] used

a combination of pedestrian odometry and tag detections

to perform graph-based RFID SLAM in a large outdoor

environment. Kanda et al. [10] deployed RFID readers in a

science museum and tracked people with attached RFID tags.

Vorst et al. [14] showed how to learn a tag detection sensor

model in a semi-autonomous fashion. Some approaches in

the context of WiFi localization model the expected signal

strength at different locations by using a discrete grid [11],

or Gaussian process regression [12], [13].

Several approaches have addressed exclusively the tag

localization problem. Ni et al. [8] compared the (emulated)

signal strengths of tags at unknown locations with signal

strengths received from reference tags at known locations.

Alippi et al. [9] used several rotating antennas. Ehrenberg et

al. [6] used an HF RFID system to localize books on a shelf.

Liu et al. [7] used a tag detection model that is able to

estimate the 3D position of the tag.

In contrast to the above-mentioned approaches, we model

both phenomena—tag detection events as well as signal

strength. The increased accuracy of the model allows us to

address (a) localization of a mobile sensor relative to given

tag locations and (b) mapping of tag locations when these

are unknown. Furthermore, we show how to simultaneously

learn the sensor model and estimate the position of the

RFID tags in an unsupervised fashion. We present real-

world experiments in an office environment as well as in

a supermarket environment and compare our approach with

state-of-the-art methods.

III. THE SENSOR MODEL

The techniques for localizing RFID tags as well as for

tracking a mobile antenna both rely on a sensor model

p(z | x, ℓg) which specifies the likelihood of obtaining a

measurement z given the pose x = (x, y, θ) of the antenna

and the location ℓg = (xg, yg) of the detected tag with unique
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Fig. 2: Two instances of the inverse sensor model that describes the
likelihood of relative offsets between antenna and tag given a certain
level of received signal strength (RSSI). We plot (a) RSSI=log(2000) and
(b) RSSI=log(500). The antenna is located at (0, 0) and oriented towards
the positive x-axis.

ID g. In our case, an observation z = (g, s) carries two pieces

of information, namely that we have detected the tag g in

the first place, and secondly that we received its signal with

a signal strength s. Indeed, the event of detecting a tag is

informative in itself, and this fact forms the basis for many of

the previously proposed probabilistic sensor models for tag

localization [3], [6], [7], [14]. Note also that the other class of

existing sensor models, which consider signal strength only,

implicitly condition on the tag detection event since a signal

strength measurement can be obtained in this way only. We

make the distinction between both sources of information

explicit by denoting with d the binary variable that encodes

the detection of a certain tag. Hence, the sensor model can

be formalized as

p(z | x, ℓg) = p(s, d | x, ℓg)

= p(s | d,x, ℓg) · p(d | x, ℓg). (1)

In the most general form, these two conditional distribu-

tions are intractable to learn in practice since, for example,

p(d | x, ℓg) specifies a tag detection probability for every

possible combination of antenna pose x and tag location ℓg .

Therefore, we make the common assumption that only the

relative location δ(x, ℓg) of a tag with respect to the antenna

is relevant (see [3], [6], [7], [14]). This assumption certainly

is a strong one, since the propagation of an RFID signal is

also influenced by location-dependent factors, such as the

materials the tags are attached to, the orientation of the tags

relative to the antenna, or obstacles that reflect or absorb

electro magnetic waves. The gain in efficiency, however, is

large in comparison to other simplifications that could be

made. As we will show in the experimental evaluation, the

accuracy of a location-dependent sensor model for RFID tags

is slightly higher than of our model, but that gain comes at

a high computational cost already for small environments.

Committing ourselves to sensor-centric sensor modeling,

which considers relative tag positions only as outlined above,

we get

p(z | x, ℓg) = p(s | d, δ(x, ℓg)) · p(d | δ(x, ℓg)) . (2)

In words, this models the likelihood of an observation as

the likelihood of receiving signal strength s at position

δ(x, ℓg) relative to the antenna multiplied by the probability

of detecting a tag at this relative position.



Fig. 3: Ground truth tag locations (black) and tag locations estimated (green
/ gray) with the initial sensor model (top), and with the learned models at
bootstrapping iterations 2 (middle) and 25 (bottom).

Location-dependent sensor models, that characterize the

distribution of signal strength relative to the environment

rather than to the sensor (see [11], [12], [13]), can be

understood as a different approximation that stays more

faithful to the true signal strength distribution. Instead of

conditioning the signal strength on the relative tag position,

they learn a separate signal strength distribution pg(s | x)
for each tag individually, which is conditioned only on

the antenna location. The resulting signal strength maps

implicitly contain all environment-specific factors. On the

downside, they do not model the location of the tag explicitly

and, thus, cannot be used to estimate the location of the tags

directly.

IV. LEARNING THE MODEL FROM DATA

We first describe how the components of (2) can be learned

in a semi-autonomous way and then extend this procedure

to an unsupervised bootstrapping method.

A. Semi-Autonomous Learning

Vorst et al. [14] proposed a method for learning a tag

detection sensor model in a semi-autonomous fashion, which

we will adopt and extend towards also learning the signal

strength distribution. Building on this, we show how to

learn both models in an fully autonomous way. The semi-

autonomous way of learning a tag detection model is to

assume a list of tag positions given as well as the trajectory

of a mobile antenna moving through the environment. At

every tag detection event, we transform the positions of tags

into the antenna’s local coordinate system and register the

tag detection at the tags relative position as a positive event

while registering the non-detected tags as negative events. We

then discretize the space relative to the antenna according

to a two-dimensional grid and count for every grid cell

(x, y) the positive events n+
x,y and the negative events n−

x,y .

Given these counts, the maximum likelihood estimator of

the tag detection probability is px,y = n+
x,y/

(

n+
x,y + n−

x,y

)

.

Likewise, we maintain a second grid that contains statistics

about the average received logarithmic signal strength µx,y

and the empirical variance σx,y for each grid cell. Under

the assumption that the logarithmic signal strengths within

each grid cell are normally distributed, we can estimate the

likelihood of an observation z = (g, s) at the antenna relative

position δ(xt, ℓg) = (x, y) as

p(z | x, ℓg) = p(s | d, δ(x, ℓg)) · p(d | δ(x, ℓg)) (3)

∝ 1

σx,y

√
2π

exp

(

− (log(s) − µx,y)2

2σ2
x,y

)

· px,y .

B. Bootstrapping the Sensor Model

So far, learning the sensor models required knowledge

about the true tag positions, which might be tedious or

impossible to acquire. We can sidestep this, by bootstrapping

the sensor models. We start with a basic, yet plausible tag

detection model similar to the one proposed by Hähnel et

al. [3] and iterate the following steps:

1) Use the current model to estimate the tag locations (as

described in the next section) and

2) learn a new sensor model based on the estimated tag

locations (as described above).

In the experimental section, we present results that indicate

that alternating tag location estimation and sensor model

learning converges in terms of tag location error and the

similarity of the bootstrapped sensor model to a model

learned in a semi-autonomous way. Fig. 1 shows an example

for a sensor model learned this way in an office environment.

Fig. 2 visualizes two instances of the corresponding inverse

sensor model, that is, the likelihood of relative poses given

a certain level of received signal strength. This model has

been calculated analytically from the three components of

the sensor model depicted in Fig. 1. The improvement of the

estimated tag locations during the bootstrapping procedure is

illustrated in Fig. 3.

Based on this bootstrapping procedure, we can learn both

the sensor model and the tag locations in a fully unsupervised

fashion. This greatly simplifies sensor modeling in practice,

compared to the manual acquisition of calibration data. In

contrast to the semi-autonomous method, it does not require

knowledge about the true tag positions.

V. MAPPING TAGS FROM KNOWN SENSOR POSES

For localizing RFID tags, we move a mobile antenna

through the environment and integrate the measurements

iteratively so that the estimates of tag locations improve

gradually over time. We assume that the antenna is localized,

e.g., applying laser-based FastSLAM [15], so that we have

accurate estimates of the positions at which observations

have been made.

Formally, we are given a sequence of tag readings z1:t =
{(gi, si)}t

i=1 denoting the unique ID g of the detected tag

and the received signal strength s, as well as a sequence

of antenna poses x1:t = {(xi, yi, θi)}t
i=1, denoting the

antenna’s position and orientation at which these observa-

tions have been made. We are interested in the posterior

p(ℓg | x1:t, z1:t) of the tag location ℓg = (xg, yg) given the



(a) Initial filter state. (b) After second filter update. (c) After 5th filter update. (d) After 30th filter update.

Fig. 4: Localizing RFID tags in an office corridor: The green circle indicates the estimated tag location and the black circle the pose of the shopping cart.

information up to time t. Using Bayes’ rule and assuming

independence between measurements, we get the recursive

update formula

p(ℓg |x1:t, z1:t)

= η · p(zt | δ(xt, ℓg)) · p(ℓg | x1:t−1, z1:t−1), (4)

where p(zt | δ(xt, ℓg)) is the sensor model described in the

previous section and η is a normalization factor (see also [3]).

To estimate this posterior sequentially as new data arrives,

we apply a particle filter for each tag and use its unique ID

for data association. Each filter is initialized with a uniform

particle distribution bounded by the maximum reading range

of the antenna and centered around the antenna’s position

during the first encounter of the tag [visualized in Fig. 4 (a)].

We resample whenever the so-called number of effective

particles neff =
(
∑

i w2
i

)

−1
falls below a threshold κ,

which we set to half the number of particles of the filter.

Here, wi denotes the weight of particle i. Following Liu

and West [16], we disturb the individual particle locations

by resampling them from a normal distribution with mean

ap[i] + (1 − a)p and variance h2
V. Here, p and V are the

mean and covariance matrix of the particle set and a = 3γ−1
2γ

and h2 = 1 − a2 only depend on a discount factor γ,

which we set to 0.95. This procedure causes the particle-

based estimates of the tag locations to converge to the true

locations even for crudely initialized estimates within a few

filter iterations, as can be seen in Fig. 4.

VI. LOCALIZING A MOBILE AGENT

Given that we know the locations of the RFID tags, we

can use the very same sensor model to track a mobile agent

equipped with an RFID antenna. We apply Monte Carlo

Localization (MCL) [17], which utilizes a particle filter to

maintain the posterior over the agent’s location

bel(xt+1) = η p(zt+1 | δ(xt+1, ℓg))

·
∫

p(xt+1 | xt) · bel(xt)dxt . (5)

While the sensor model p(z | δ(x, ℓg)) remains the same,

the crucial part here is the motion model p(xt+1 | xt), from

which we sample the next particle distribution. As we are

tracking a shopping cart, which does not provide odometry

information, we used a velocity based motion model that tries

to capture the typical motion patterns of people pushing the

cart. For this, each particle p[i] is constrained in a seven-

dimensional space

p[i] = (x, ẋ,m) = (x, y, θ, ẋ, ẏ, θ̇,m) , (6)

that consists of the current pose x = (x, y, θ) of the cart,

its velocity ẋ—parameterized by the translational velocity

ẋ in direction of the cart, a lateral drift velocity ẏ, and a

rotational velocity θ̇—and a discrete motion state m, which

can be one of the following seven states: standing, moving

forwards (backwards), turning left forwards (backwards), or

turning right forwards (backwards).

The transition from one particle state p
[i]
t to the state

p
[i]
t+1 at the next point in time is modeled as follows:

first, we sample a new motion state mt+1 according to a

state transition probability p(mt+1 | mt). If the motion

state changed, we sample new velocities ẋt+1 from three

motion state specific normal distributions N (µm,ẋ, σm,ẋ),
N (µm,ẏ, σm,ẏ), N (µm,θ̇, σm,θ̇) that capture the velocity

distributions of the particular state. If the sampled motion

state is the same as in the time step before, we do not

sample new velocities, but keep the velocities of the previous

point in time. Once the new velocities are determined, we

deterministically compute the new pose of a particle based

on the velocities and the time passed during one filter update

step. As during tag localization, we resample whenever the

number of effective particles is less than half of the particle

set size. To account for physical constraints imposed by walls

and other obstacles, we set the weight of a particle close to

zero, whenever it enters an occupancy grid cell that is likely

to be occupied. The transition probabilities and the velocity

distributions of the motion model were learned from recorded

trajectories with hand-labeled motion states.

VII. EXPERIMENTAL EVALUATION

To evaluate our approach, we equipped a shopping cart

with a SICK RFI 641 UHF RFID reader with two antennas

mounted perpendicular to each side of the cart (see Fig. 6).

The reader also reports which antenna detected the tag, and

we know their positions relative to the center of the cart.

As the antennas are identical in construction we assume the

same sensor model for both. The reader is configured to run

in continuous mode, reporting a tag as soon as it is detected.

The typical tag detection rate of the system is about 10 Hz.

We used passive UHF tags (“DogBone” by UPM Raflatac).

In order to acquire a ground truth trajectory and an occu-

pancy grid of the environment we additionally equipped the

cart with a SICK LMS 291 laser scanner and processed the

data with the GMapping algorithm [15], which is an efficient

laser-based realization of the FastSLAM approach. In the

remainder of this section we present experimental results

about the tag localization approach and the localization of

a mobile agent.
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(c) Divergence of the tag detection models.

Fig. 5: The bootstrapping process: (a) The process converges in terms of the average tag location error. The error bars depict the 2σ confidence interval.
(b) and (c) show that the bootstrapping procedure also converges in terms of sensor model similarity to a semi-autonomously learned model.

A. Localizing the RFID Tags

We distributed 28 RFID tags in an office corridor as

depicted by the black circles in Fig. 3. Neighboring tags

had an average distance of about two meters. We knew the

true locations of the tags and therefore could evaluate the

accuracy of tag localization quantitatively. We bootstrapped

the sensor model by moving the shopping cart up and

down the corridor several times—performing 360◦ turns at

several locations. This took about 4 minutes and resulted in

roughly 4100 tag detections. Fig. 5 (a) shows the evolution

of the average error of the estimated tag locations after each

iteration of the bootstrapping process. As can be seen, the

error converges to a final value of about 29 cm. We also give

the estimation results for (a) the signal strength-based model

alone and (b) the tag detection-based model alone evaluated

on the same trajectory. The proposed combined sensor model

is significantly better than either the signal strength-based

model or the tag detection-based one alone.

If we learn the sensor model semi-autonomously based

on the true tag locations, we achieve a localization accu-

racy of about 27 cm. This indicates, that the bootstrapping

process yields a sensor model that is comparable to a semi-

autonomously learned sensor model. This was also confirmed

by visually comparing the individual components of the two

models. To confirm this finding quantitatively, we calculated

the average symmetric Kullback-Leibler divergence between

all grid cells of the two models after each bootstrapping

iteration. The results illustrated in Figs. 5 (b) and (c) show

that the bootstrapping process also converges in terms of

model similarity to a semi-autonomously learned model.

B. Localizing a Mobile Agent

We distributed about 350 tags along the shelves in a

supermarket at an average distance of approximately one

meter. Then we bootstrapped the sensor models and the tag

Fig. 6: We equipped a shopping cart with an RFID reader and a laser range
scanner and deployed about 350 passive UHF tags in a supermarket.

Fig. 7: Comparison of the estimated trajectory (black) and the ground truth
trajectory (red / gray) on one of the supermarket log files.

positions by using data from six log files, which we collected

by moving the shopping cart through the environment. The

log files contained 34 200 tag detections and lasted about 74

minutes in total. We used the agent localization technique

described above and defined as the localization result the

trajectory of the most likely particle. An example of an esti-

mated trajectory and its corresponding ground truth trajectory

is depicted in Fig. 7 as well as in the accompanying video.

To evaluate the accuracy of the localization technique

quantitatively, we localized the agent on seven different log

files which lasted 24 minutes in total and contained 13 400

tag detections. We repeatedly localized the cart for each log

file ten times and averaged the measured error values. The

error was quantified in terms of the average position error

and the average orientation error. Results are given in Fig. 8.

Using only the tag detection model can be considered

equivalent to the approach by Vorst et al. [14]. For further

comparison, we implemented a model similar to the one

presented by Ferris et al. [13], which used Gaussian process

regression [18] to model the signal strength distributions

of WLAN access points in 2D space. We used Gaussian

process regression for modeling the log-signal strength of

the RFID tags in the supermarket. We observed that the esti-

mation of the cart’s orientation can be significantly improved

[Fig. 8 (b)], if the antenna’s orientation is taken into account,

and hence the signal strength is mapped in pose space

rather than in 2D. The proposed combined sensor model

outperforms both of its components—the tag detection model

and the signal strength model—and performs comparable to

the signal strength map. Both methods can be executed online

for 2 500 particles, but the proposed model needs only 2.6

minutes on average to process all log files, while the signal
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Fig. 8: Evaluating several sensor models for agent localization: the proposed combined model, and its two components alone. For comparison, we show
the results of a signal strength map, similar to the model by Ferris et al. [13], mapping the signal strength either in pose space (“pose”) or in 2D (“point”).

strength map, which uses Gaussian process regression instead

of a grid, requires 13.4 minutes, as can be seen in Fig. 8 (c).

In both tasks—localization and mapping—the signal

strength model alone was consistently less accurate than

the tag detection model. This is an unexpected finding,

since the received signal strength should intuitively be more

informative than a simple detection event. Close inspection

of the recorded data reveals, however, that the relationship

between signal-strength and sensor location is more noisy

than it is the case for tag detections. Thus, the particle filter

as a sophisticated way of integrating information over time, is

able to recover the (real-valued) pose information accurately

from the stream of (binary) tag detection events.

VIII. FUTURE WORK

There are several directions for future work. Our results

showed that considering signal strength information along

with tag detection events lead to an improved sensor centric

model. Therefore, it would be interesting to see if the

accuracy of signal strength maps could be improved in just

the same way by combining them with “tag detection maps”.

Another direction would be to extend the model to a 3D

sensor model. Moreover, the assumption made that the tag

map remains static could be alleviated—a technique for

mapping “nomadic” tags (static tags which change locations

from time to time) was presented in [7].

IX. CONCLUSIONS

In this paper, we presented a novel combined sensor

model that utilizes both (a) the received signal strength and

(b) tag detections of RFID systems for robot localization and

mapping of tags. We also presented a technique to learn such

a model in an unsupervised way. This greatly simplifies the

task of sensor modeling in practice compared to the manual

acquisition of calibration data. For comparison, we imple-

mented a sensor model that has been shown to be effective

for WiFi localization. We furthermore described how this

model can be improved in the context of RFID localization.

As our experiments in several real-world settings showed, our

approach achieves the computational efficiency of existing

sensor-centric models and an accuracy of a state-of-the-art

approach that learns a location-dependent model for each tag.
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