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Abstract

We consider the problem of efficiently finding an object with a mobile robot in an initially unknown, structured environment.

The overall goal is to allow the robot to improve upon a standard exploration technique by utilizing background knowledge from

previously seen, similar environments. We present two conceptually different approaches. Whereas the first method, which is the

focus of this article, is a reactive search technique that decides where to search next only based on local information about the

objects in the robot’s vicinity, the second algorithm is a more global and inference-based approach that explicitly reasons about the

location of the target object given all observations made so far. While the model underlying the first approach can be learned from

data of optimal search paths, we learn the model of the second method from object arrangements of example environments. Our

application scenario is the search for a product in a supermarket. We present simulation and real-world experiments in which we

compare our strategies to alternative methods and also to the performance of humans.
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1. Introduction

Consider the situation where you want to find a product in

a supermarket that you have never been to before. Certainly,

you will not just wander around randomly through the market

nor will you systematically visit each so far unvisited aisle in

the market until you find the product. Your search will rather

be guided by the current observations and the expectations you

have about how objects in supermarkets are usually arranged.

Over time, you might even have developed some heuristics that

proved to be useful for quickly finding a certain product, like

“if you want to find yogurt, follow the aisle with the cooling

shelves.”

The search for a product in an unknown supermarket is a

problem that everyone is familiar with and it therefore is an

illustrative instance of the kind of search problems we want to

tackle with the techniques presented in this article. Even for hu-

mans [1] this task is not an easy one and we will therefore also

compare our search techniques to the performance of human

participants that took part in a field study conducted in a real

supermarket [2]. However, the supermarket is just an example

scenario. Searching for objects or places in offices or domes-

tic environments is conceptually similar. All we assume is that

the environment is structured and the object arrangements ex-

hibit some spatial dependencies such that a generalization to an

unknown yet similarly structured environment is possible. We

regard this as a rather weak assumption that holds for a huge va-

riety of man-made environments. We thus strive for a general
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way to model, learn, and utilize background knowledge such

that a mobile robot is able to find an object more efficiently

than it would have been possible without such domain-specific

knowledge. For this, we present and evaluate two approaches

and provide alternative views on the search problem.

The first approach is a reactive search technique that only

depends on local information about the objects in the robot’s

vicinity when deciding where to search next. This approach

emphasizes the sequential nature of the search process, which

is a sequential decision making process. Being in a certain

state we must choose among a set of available actions. In this

setting, background knowledge can be encoded as a state-to-

action mapping, a policy, that tells us what to do in a certain

situation. In the supermarket scenario, a state includes the cur-

rently observed objects in direction of the different aisles and

the available actions correspond to the aisle we may choose to

visit next. To learn this state-to-action mapping, we draw on

ideas from imitation learning [3]. In particular, we want to im-

itate a simulated robot that exhibits an optimal search behavior

by approaching the target object on the shortest path. In each

visited state of a demonstrated example path, the robot takes

a certain action and discards the other available actions in this

state. Thereby, it provides positive and negative examples of

state-action pairs to be taken or not, respectively. These ex-

amples can be used to learn a classifier for state-action pairs,

which yields a classifier-based policy representation [4]. This

might either be a multi-class classifier that directly outputs the

action to be taken in a given state, or it might be a binary clas-

sifier that labels each available action in a state as promising

or non-promising (if there is a tie, we may choose randomly

among the promising actions). The latter has been empirically

shown [4] to yield policies that perform better than the ones that
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are represented by multi-class classifiers. We use decision trees

as binary classifiers which result in compact policy representa-

tions that resemble search heuristics like the above-mentioned

heuristic for finding yogurt.

The second approach treats the search problem as an infer-

ence problem. This is motivated by the observation that we

are constantly reasoning about the location of the object while

searching for it. This reasoning process will be influenced by

the thus far observed objects and structure of the environment

as well as our expectations about usual object arrangements in

such environments. In the supermarket scenario this means, for

example, that if we are searching for beer and in one aisle we

observe milk we may conclude that the beer is probably not in

the same aisle. In this setting, background knowledge is en-

coded as expectations about how objects co-occur. However,

co-occurrence of objects can only be defined with regard to a

spatial context – like objects being “in the same aisle”, or one

object being “in the neighboring aisle” of the other. Each par-

ticular spatial context induces a different local co-occurrence

model. In general, there is no single best spatial context and ob-

ject arrangements in real-world environments are too complex

to be faithfully represented by any of these rather basic models

alone. Nevertheless, each local model captures useful statistical

properties of such object arrangements. Based on these consid-

erations and motivated by the idea of combining an ensemble

of base classifiers to form a more robust classifier, we proceed

as follows: we use a diverse set of local co-occurrence models,

each considering a different spatial relation, and fuse their out-

comes as features in a maximum entropy model (MaxEnt) [5, 6]

which in our case models the discrete distribution over all pos-

sible locations of the target object. The robot then essentially

moves to the location which most likely contains the target ob-

ject. Each time new information becomes available, e.g., newly

detected objects or newly discovered parts of the environment,

the robot recomputes the distribution.

These two approaches have quite different properties. The

first approach uses only local information, as it depends only

on the objects in the vicinity of the robot, while the second

takes into account all observations made so far. Furthermore,

the underlying model of the first approach is learned by observ-

ing optimal search behavior, while the model of the second is

learned from object arrangements of similarly structured exam-

ple environments.

This article is organized as follows. After discussing re-

lated work, Section 3 introduces the representation of the

supermarket environments utilized by the first approach, the

decision-tree strategy. Section 4 describes how the search

heuristics of this strategy have been learned from data of op-

timal search paths. Section 5 then describes several alternative

search strategies, including variants of the decision-tree strat-

egy, the inference-based approach, and an exploration strategy

that serves as a baseline approach. Finally, in Section 6 we

present the results of an experimental evaluation including sim-

ulation and real-world experiments. The results demonstrate

that our proposed techniques yield significantly shorter search

paths than a search strategy that does not take domain-specific

information into account.

2. Related Work

There exists considerable theoretical work on general search

problems in the fields of robotics and artificial intelligence [7]

as well as operations research [8]. Finding an optimal search

path in a graph that either minimizes the expected time to de-

tection [9] or the expected search costs [10] is known to be NP-

hard. Besides complexity considerations in theoretical work,

some prior work evaluated proposed search strategies in sim-

ulation. The approach presented in [11], for example, used a

computationally involved dynamic programming technique for

planning an optimal search path to find multiple stationary tar-

gets. In [12], a framework was proposed that additionally al-

lows to reason about the possible absence of the target in the

search area. In contrast to these works, we additionally assume

that the environment is initially unknown. Most of these ap-

proaches allow to incorporate background knowledge as a prior

distribution over the target location. But this distribution is

assumed to be given in advance and then updated during the

search based on simple presence or absence detections. Our

work additionally aims at modeling such a distribution based

on object co-occurrences, or by implicitly incorporating back-

ground knowledge as search heuristics.

Thus, a further related problem is how to model expecta-

tions about object arrangements in indoor environments. In

prior work this has been realized by modeling different types of

places in terms of object counts and inter-object distances [13],

by utilizing object co-occurrence statistics [14], by utilizing a

full 3D constellation model [15], or by using a manually de-

signed ontology about indoor environments [16, 17]. Of these

works, only [14], and to some extent [17], also considered the

search problem and used their model for improving search effi-

ciency.

To the best of our knowledge, modeling background knowl-

edge about indoor environments for improving search effi-

ciency has received far less attention in the literature so far.

In [14], known object locations in a given global map were

used for efficiently finding another object at an unknown lo-

cation. A Markov random field based on statistics of object

co-occurrences was used to infer a likelihood map and to plan

a search path that minimizes the expected search path length.

Again, this is a work that assumed that the structure of the en-

vironment, and some of the objects therein, are known. In [18],

the application scenario was to efficiently find the entrance hall

in a hotel. A relational navigation policy was learned which

utilized information about the type of rooms and corridors that

are directly connected to the robot’s current location. The work

presented in [17] aimed at improving the task planning of a mo-

bile robot by relying on semantic information about its domain.

In particular, they defined an ontology about typical home-like

environments and generated plans to find unseen objects or type

of rooms, e.g. a bedroom.

3. Modeling the Environment

A supermarket m ∈ M contains a set of shelves Sm ⊂ S and

a graph Gm = (V, E), as illustrated in Fig. 1. Each shelf s ∈ S
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Figure 1: Example map of a real supermarket environment. In our approach,

maps contain shelf locations (black boxes) and the products within the shelves.

The underlying structure is a graph. The task of the robot is to efficiently find a

certain product.

is associated with a location ℓs = (xs, ys) and an orientation θs.

The relation inMarket ⊂ S ×M associates each shelf with its

corresponding market. Furthermore, we define a set of shelf

types T = {Normal, Cooling, Freezer, Counter, Grocery}

and each shelf is associated with exactly one type as defined

by the relation type ⊂ S × T . Each shelf contains at least

one product and the same product might be placed in several

shelves, as defined by the relation inShelf ⊂ P × S. The rela-

tion categOf ⊂ P × C, associates each product with a product

category.

For the experiments carried out in this paper, we used a set of

196 products at the granularity of small categories like “sugar”,

“pizza”, “apples”, “tea”, etc. We furthermore used 20 prod-

uct categories with a coarser granularity like “breakfast”, “dairy

products”, “vegetables & fruits”, etc.

The nodes V of a graph Gm = (V, E) model the decision

points in the supermarket and the directed edges define the

reachability between decision points. While the reachability

could have been modeled with undirected edges, the visibility

of the shelves also depends on the current node (the robot’s cur-

rent location) and therefore is defined over directed edges. We

use two variants of a visibility relation that defines the shelves

that are visible when looking into the direction of a certain edge.

The first one is a long range variant shelfVisL ⊂ E × S and

the second is a short range variant shelfVisS ⊆ shelfVisL.

This is motivated by the fact that, although certain information,

like the type of a shelf, can be determined reliably over long

distances, some information can only be determined when one

is in close vicinity to a shelf, like for example the products con-

tained within a shelf. Three example situations illustrating the

short range visibility are depicted in Fig. 2. On the basis of the

two visibility relations we define several other visibility rela-

tions, like the visible products

prodVis = {(e, p) | shelfVisS(e, s), inShelf(p, s)}, (1)

Figure 2: Three example situations for illustrating the short range visibility.

Whereas gray shelves are visible, white shelves are not visible. The location of

the robot is indicated by the black node and its orientation is indicated by the

arrow.

and the visible product categories

categVis = {(e, c) | prodVis(e, p), categOf(p, c)}. (2)

The visibility of shelf types is modeled in such a way that we

can distinguish whether the shelf type is seen in the direct vicin-

ity, or being observed at a further distance:

typeVisS = {(e, t) | shelfVisS(e, s), type(s, t)} (3)

typeVisL = {(e, t) | shelfVisL(e, s), type(s, t)}. (4)

The proposed search strategy utilizes the information associ-

ated with each edge to decide which edge to follow. In the next

section we describe how we learn such a strategy from data by

observing optimal search paths.

4. Learning Search Heuristics

We are interested in learning a reactive search strategy that

depends only on local information in order to find a certain tar-

get product. We therefore classify the outgoing edges of the cur-

rent node by a decision tree into promising and non-promising

directions based on the information associated with each edge.

For learning such a decision tree, we first need to define appro-

priate edge attributes and then generate training data by observ-

ing optimal search paths in a training set of supermarkets. To

evaluate the strategy, we apply it to a previously unseen market.

4.1. Defining Edge Attributes

One obvious piece of information, by which the search

should be guided, is which products and product categories are

visible at a certain edge. If we are searching for coffee and

an aisle contains tea, or in general breakfast products, then this

edge is certainly a promising candidate. But the decision should

also be influenced by additional factors. If we know that an

edge has been visited already, we can reject it in order to avoid

loops. Also the type of an edge might be of interest, such as if

an edge belongs to an aisle that follows a wall (wall aisle), be-

cause some products, like milk, are only located in such aisles.

Likewise, we define main aisles as aisles that follow a main di-

rection in a market and from which many narrow side aisles
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branch off. Next, it is informative if the robot is approaching

certain landmarks in the supermarket, like the entrance, the exit,

or the back of the market. Vegetables, for example, are always

located near the entrance in our markets. Thus, each optimal

search path for finding apples would mostly contain edges that

are approaching the entrance. Likewise, frozen food is usually

in the back of the market and wine and non-food are near the

exit of the market.

We also use statistics about the expected relative product po-

sition between the entrance and the exit based on the layout of

all training markets. The relative position of a shelf s with re-

spect to the location ℓen of the entrance node and the location ℓex

of the exit node of the corresponding market is defined as

relPos(s) =
‖ℓs − ℓen‖

‖ℓs − ℓen‖ + ‖ℓs − ℓex‖
. (5)

The expected relative position of a product is then defined as the

average of these values for all shelves that contain this product

in the training markets Mt

S p = {s | inShelf(p, s), inMarket(s,m),m ∈ Mt} (6)

expRelPos(p) =
∣

∣

∣S p

∣

∣

∣

−1
∑

s∈S p

relPos(s). (7)

We define a binary edge attribute (No. 222 in Table 1) that in-

dicates if the robot would be approaching the expected relative

position of the target product by following that edge.

Furthermore, we calculate the average Euclidean distance

prodDist(pi, p j) for each pair (pi, p j) of products based on their

locations in the training markets. If we denote by Pi, j the visible

products that are associated with an outgoing edge ei, j from the

current node vi to a possible successor node v j, then the average

product distance of this edge to the target product pt is defined

as

avgProdDist(ei, j, pt) =
∣

∣

∣Pi, j

∣

∣

∣

−1
∑

p∈Pi, j

prodDist(pt, p). (8)

We define an indicator attribute (attribute No. 223) that is set

to true if an edge has the lowest average product distance of

all outgoing edges of the current node, and thus can be consid-

ered to be the most promising edge with respect to the expected

product distances. Likewise, we define an attribute that uses the

path distance on the graph between products instead of the Eu-

clidean distance (attribute No. 224). As it is not easy to decide

beforehand whether the path distance or the Euclidean distance

is a more reliable indicator for product distances we use both at-

tributes and let the learning algorithm decide which one to use

during the induction of the tree. A complete list of all attributes

can be seen in Table 1.

4.2. Generating Training Data

We use a fixed set of 15 target products. These are the same

products that human participants had to find in a field study con-

ducted in the very same supermarket in which we will evaluate

our strategy. We learn a separate decision tree for each of these

15 target products.

Table 1: The attributes that are used to characterize an edge. All attributes are

binary. In the experimental evaluation we test different combinations of subsets

(a–d) of these attributes.

Subset Att. No. Description

a 1 Edge already visited

a 2–197 Product pi ∈ P visible

a 198–217 Product of category ci ∈ C visible

a 218 Shelf of type Normal visible (short range)

a 219 Shelf of type Cooling visible (short range)

a 220 Shelf of type Freezer visible (short range)

a 221 Shelf of type Counter visible (short range)

b 222 Leads to expected relative position

b 223 Has smallest avg. Euclidean distance to product

b 224 Has smallest avg. path distance to product

c 225 Current node belongs to a main aisle

c 226 Next node belongs to a main aisle

c 227 Next node belongs to a wall aisle

c 228–230 Leads to the entrance, exit, or back of the market

d 231 Shelf of type Cooling visible (long range)

d 232 Shelf of type Freezer visible (long range)

d 233 Shelf of type Grocery visible (long range)

We determine for each node in a training supermarket the

shortest path to a given target product. Each node of an op-

timal path corresponds to a local decision for taking a certain

outgoing edge (the one that leads to the next node of the op-

timal path) and for rejecting all other outgoing edges of that

node. In this way, each optimal search path contributes a set

of positive and negative examples of edges to be taken or not,

respectively. Fig. 3 illustrates the basic idea. The positive and

negative examples of all paths for all starting positions in all

training supermarkets then constitute the training data for learn-

ing the decision tree for a given target product.

As there might exist more than one optimal path from a start-

ing location to the target location, we search for more than just

a single shortest path to generate training data. Additionally, as

the decision points are placed manually, there might be small

differences between nearly optimal paths. For this reason, we

also generate training data from paths, which are not longer

than a given small threshold when compared to the actual short-

est path.

4.3. Decision Tree Learning and Pruning

We use the well known ID3 algorithm [19] to learn a de-

cision tree. For convenience, we restate the basic idea of the

algorithm. The tree is constructed top-down and each node is

associated with a set of positive ep and negative en examples

and a set A of yet untested attributes. At each node an attribute

a ∈ A is chosen that maximizes the information gain

G(a) = I
(∣

∣

∣ep

∣

∣

∣ , |en|
)

−
∑

v∈a

∣

∣

∣ep(v)

∣

∣

∣ +
∣

∣

∣en(v)

∣

∣

∣

∣

∣

∣ep

∣

∣

∣ + |en|
I
(∣

∣

∣ep(v)

∣

∣

∣ ,
∣

∣

∣en(v)

∣

∣

∣

)

(9)

where

I(p, n) = −
p

p + n
log2

p

p + n
−

n

p + n
log2

n

p + n
(10)

denotes the information entropy and ep(v) and en(v) are the set of

positive and negative examples, respectively, where attribute a
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(a) Shortest path between starting location and goal location. (b) Local decision at one of the nodes along the path.

Figure 3: (a) For generating training data, we compute the shortest path from every possible starting location in the market for a given goal location of a target

product. One such path is depicted above. (b) Each node of an optimal path corresponds to a local decision for taking a certain outgoing edge (black solid arrow)

and for rejecting all other outgoing edges of that node (gray dashed arrows). In this way, each optimal search path contributes a set of positive and negative examples

of edges to be taken or not, respectively.

has the value v. If the examples of a node belong to one class

only, the node becomes a leaf node with the respective class. If

no other attributes are left, the class of a leaf node is defined by

the majority vote of the associated examples.

A technique to avoid overfitting in decision tree learning is

to prune the learned tree. In the experimental section we will

therefore also investigate the influence of two pruning tech-

niques, namely a simple restriction on the maximum depth of

the tree (max-depth-pruning, MDP) and reduced error pruning

(REP) [20]. In MDP, every subtree that has its root node at

a given depth of the original tree will be collapsed into a leaf

node. For REP, we need to divide the training data set into an

induction set, which is used during induction of the decision

tree, and a pruning set, which is used to evaluate which part of

the tree should be pruned. REP then replaces any subtree with

a leaf node if this does not lead to a higher classification error

on the pruning data set.

The learned decision tree is then used to guide the search

for the target product by classifying each outgoing edge of the

robot’s current location into promising and non-promising di-

rections. It may happen that more than one edge will be classi-

fied as promising. In this case, we choose randomly among the

different candidates. If there are no promising edges, we ran-

domly choose among the unvisited edges. If all outgoing edges

have been visited already, the robot moves on the shortest path

to the nearest known node, which has at least one unvisited out-

going edge.

5. Alternative Search Strategies

Besides discussing some variants of our proposed strategy

based on decision trees, we describe two other search strategies

– including the inference-based approach – that we evaluate in

comparison to the decision tree strategy. The results will be

presented in the next section.

5.1. Exploration Strategy

As a baseline approach, we use an exploration strategy that

selects randomly among the unvisited edges at the current node.

If all outgoing edges of a node have been visited already, an

edge will be chosen that leads to the nearest node with at least

one unvisited edge. This strategy rapidly explores unvisited

areas and avoids searching the known parts of the environ-

ment. This is akin to the frontier-based exploration strategy [21]

known in mobile robot exploration. If a search technique does

not perform better than the exploration technique, it obviously

is not able to utilize domain-specific information, which is the

ambition of our strategy.

The exploration strategy as a baseline approach allows us to

relate the performance of the search strategies to an expected

upper bound on the search path length, defined by the average

search path length of the exploration strategy, and to a strict

lower bound defined by the shortest path.

5.2. Variants of the Decision Tree Strategy

In total, we evaluate five variants of the decision tree strategy.

The first four variants differ by the set of attributes they are al-

lowed to use. We start from a simple variant, which uses only

subset “a” of the attributes (see Table 1), while the three subse-

quent variants can use increasingly more attributes (including

subsets “b”, “c”, and “d”). The resulting decision trees are not

pruned in any way and therefore might be prone to overfitting.

We therefore also investigate the influence of two pruning tech-

niques. We tried several alternatives by restricting the maxi-

mum depth of the trees to different levels (MDP) or by applying

reduced error pruning (REP), or a combination of both to any

of the four attribute subset variants. We found the best variant

to be a combination of both pruning techniques applied to a tree

that uses the full set of attributes. We first applied MDP using a

maximum depth of four and then additionally applied REP. To

do so, the training data set was split into an induction set (75%
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(b) Decision tree for finding UHT milk.

Figure 4: Two examples of pruned decision trees that have been learned from optimal search paths in the training supermarkets. The trees use the attribute variant

(a–d, pruned) mentioned in Table 2.

of the data) and a pruning set (25% of the data). Two examples

of learned and pruned decision trees can be seen in Fig. 4.

5.3. MaxEnt Search Strategy

As already mentioned, we also consider an additional search

strategy which is conceptually rather contrary to the decision

tree search strategy. Due to lack of space, we can only briefly

explain this method here and refer the interested reader to [22]

for a more detailed description.

Instead of making decisions reactively based only upon lo-

cally available information, this second strategy will take all

observations made throughout the search into account when de-

ciding where to search next. This will make it necessary to

maintain and update a global map of the structure of the en-

vironment and the locations of the seen products throughout

the search process. The strategy decomposes the action selec-

tion problem during the search into two parts. First, the strategy

computes a discrete belief P(x | z) over possible locations x ∈ X

of the target object oq that the robot is searching for, given the

observations z made so far. Subsequently, the belief distribution

is used to select the next location the robot should visit.

Possible product locations x ∈ X correspond to the super-

market shelves in our scenario. The observations z describe

how the locations of observed products are related to the ob-

served shelves in the market, e.g., if they are in “the same aisle”

or in “the neighboring aisle” of a shelf x ∈ X. To be more

specific, an observation z in our model corresponds to a tuple

z = (xl, r j, Ai, ak) that states that an object with the attribute key

Ai and attribute value ak has been observed at a location that is

related to the shelf location xl by the spatial relation r j. Thus,

a single newly detected object introduces several basic obser-

vations z. By z we denote all observations made so far and

z|xl,r j,Ai
denotes the subset of observations that are constraint to

have values xl, r j, and Ai. The object attributes should not be

mistaken for the edge attributes mentioned above. They rather

describe general properties of the products, like if they are edi-

ble, if they need to be cooled, etc. (see Fig. 5 for an illustration

of the underlying idea).

At its heart, the model is based on background knowledge

about the co-occurrence of objects and object attributes in dif-

ferent spatial contexts (defined by spatial relations r j). This

background knowledge is expressed by discrete conditional

probability distributions P(Ai = ak | oq, r j) that specify the

probability of the following event: given that object oq exists

at some location, then there will exist another object with at-

tribute Ai = ak at any location that is related to the location of

oq by the spatial relation r j. For example, we might ask that

under the assumption that the “coffee” that we are searching for

is in shelf x, what is the probability that we observe a “breakfast

product” in the “same aisle” as shelf x. Additionally, we need

to model P(Ai = ak | ¬oq, r j) that we will see the attribute in a

related location, given the object is not present. These probabil-

ities can be estimated directly from the layouts of the training

supermarkets.

To use this background knowledge for computing the desired

final distribution P(x | z), we follow a two step process. The

basic idea is to use an ensemble of local co-occurrence models,

each considering only a certain aspect of the observations, and

then to fuse the local models in a combined model over all pos-

sible locations. This is motivated by the assumption that the dis-

tribution of objects in real-world environments is too complex

to be faithfully captured by just a single model and it therefore

would be beneficial to combine a diverse set of more simple

models. These local models compute the binary probability

LAi,r j
(x | z) that the object exists at a certain location x ver-

sus that it does not exist at this location LAi,r j
(¬x | z). Each

local model considers only a certain attribute Ai of those obser-

vations z|x,r j,Ai
that are related to x by the relation r j. Now let

a(z) denote the set of attribute values that occur in the observa-

tions z. Then we model the local models as binary naive Bayes

6
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Figure 5: Illustration of the basic idea for inferring the product location in

the MaxEnt search strategy: Possible locations (x1, x2) of the product which

the robot is searching for are linked to locations of already seen products

(object1, object2) by different spatial relations (r1 = “same aisle”, r2 = ”neigh-

boring aisle”, etc.). Products are described by four different attribute keys

(A1 = “Category (fine)”, etc.).

classifiers as follows:

LAi,r j
(x | z)

=
P(x)
∏

z ∈ z|x,r j,Ai
P(z | x)

∑

x′∈{x,¬x} P(x′)
∏

z ∈ z|x,r j,Ai
P(z | x′)

(11)

=

∏

a ∈ a(z|x,r j,Ai
) P(Ai = a | oq, r j)

∑

o′∈{oq,¬oq}

∏

a ∈ a(z|x,r j,Ai
) P(Ai = a | o′, r j)

. (12)

In (12) we dropped the prior P(x), which we assume to be uni-

form. The log-likelihood of these local models will be used as

features fAi,r j
in a maximum entropy model (MaxEnt) [5, 6]

P(x | z) =
exp
(

∑

Ai,r j
λAi,r j

fAi,r j
(x, z)

)

∑

x′ exp
(

∑

Ai,r j
λAi,r j

fAi,r j
(x′, z)

) , (13)

with feature weights λAi,r j
and defined over all possible loca-

tions x ∈ X of the target object. In [22] we additionally eval-

uated different mappings between the output LAi,r j
of the local

models and the features fAi,r j
.

The feature weights λAi,r j
can be learned in a supervised way

by maximizing the likelihood of a training data set using gra-

dient ascent. This is a convex optimization problem and the

feature weights will therefore approach a global optimum. A

single training example consists of a supermarket layout, the

target object oq, and the correct “label” x ∈ X, which corre-

sponds to the shelf that contains the target product. We have

four supermarkets and 141 products that are available in all four

markets. This yields 4 × 141 training examples. Because we

train a single set of weights, the learned weights reflect the gen-

eral importance of each local model – independent of a specific

target product or market.

Based on this distribution P(x | z) over possible product loca-

tions and by considering the distance necessary to reach a loca-

tion the robot computes a utility for each node of the graph and

moves to the node with the highest utility. As soon as new infor-

mation is available, such as newly detected shelves or products,

the belief and the utilities will be re-evaluated.

6. Experimental Evaluation

In the following, we present several experimental evalua-

tions. The first experiment is aimed at comparing the perfor-

mance of the different search strategies in comparison to the

performance of humans searching in a real supermarket envi-

ronment. The second experiment is aimed at a more thorough

evaluation of the search strategies, though we do not have data

from human participants for this setting. And finally, we present

the results obtained by real-world experiments in which a robot

autonomously searched for a product using the presented deci-

sion tree strategy.

The supermarket data, including the layouts and the prod-

uct placement, was collected in real supermarkets. Three of

the supermarkets were used as a training set for learning the

underlying models (decision trees, local models) of the search

strategies and the fourth supermarket was used for evaluation

of the strategies.

6.1. Evaluation in Comparison to Humans

A field study involving 38 human participants was conducted

in a real supermarket [2]. The participants had to find 15 prod-

ucts in a given order and we used the same 15 products as target

products in our simulated search. As the supermarket in which

the study took place was the same market that we used as a

model for our evaluation market, we can compare the path dis-

tances of the human participants to the path distances traveled

by the robot in the simulated environment. In order to assure

that we have a metrically comparable model of the real market,

we first built an occupancy grid map of the supermarket using

a laser-based FastSLAM implementation [23] and then placed

the shelves according to the grid-map, as can be seen in Fig. 1.

The product placement in our virtual markets also resembles

the product locations in the real markets. The participants were

tracked using a RFID-based localization technique [24] and the

resulting trajectories were then mapped upon the graph for a

fair comparison with the path distances of the simulated robot.

The human participants had to find the 15 products in a given

order (see Fig. 6), and so the location of a found target prod-

uct was the starting location for the search for the next target

product. Therefore, each target product was associated with a

certain starting location and we evaluated the simulated search

strategies for the same 15 pairs of starting location and target

product.

As a performance measure we consider the length of a com-

plete search path, that is the path length of a search for all 15

products. We simulated a thousand search trials for the explo-

ration strategy and the decision tree strategies. The MaxEnt

search strategy is deterministic. We only have a sample size

of 26 complete search trials of the human participants, because

some search sub-trials (for a single product) have been canceled

if the search took too long or the participants gave up. This in-

troduces a slight bias to the comparison for the benefit of the hu-

man participants, because the simulated search trials were not

canceled if they took “too long”. Nevertheless, we think that

the available data of the human search paths still constitutes a

usable basis for a comparison.
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Figure 6: In the first experiment the simulated robot and the human participants

had to find 15 products in a given order. They start at the entrance of the market

in the lower left corner. The product locations are connected to their respec-

tive target nodes on the graph. If the robot enters a target node of the current

product, the product is found and the robot will search for the next one.

In Table 2 we present the mean and standard deviation of the

search path lengths. We performed a one-tailed paired t-test1

for the sampled strategies and found all improvements indicated

by the means to be significant at the 0.01 level, except for the

difference between the decision trees with attribute combina-

tions (a) and (a–c).

The exploration strategy yielded search paths that are on av-

erage 7.9 times longer than the optimal path. This can be im-

proved to a ratio of 4.8 when the search was guided by our pro-

posed strategy based on the pruned decision trees. If we used

unpruned decision trees then the best ratio we achieved was 5.8.

This seems to suggest that the unpruned decision trees overfit

the data of the three training supermarkets. The MaxEnt strat-

egy achieved the best result with a ratio of 1.4. However, by

using the MaxEnt strategy the robot built up a global map dur-

ing the search that also included the locations of all products

seen so far. Thus, if a target product has been seen previously

while searching for another product, the product could later be

approached directly on the shortest path. As the other strategies

lack the ability to memorize the global locations of previously

seen products, we also considered a modified version of the

MaxEnt strategy (the “restart” version in Table 2) in which the

map was cleared when a product has been found. Thus, when

searching for the next product on the list, the robot could not

utilize information about the market stemming from the search

sub-trial for the previous product. This resulted in a ratio of

3.7, which is still better than the decision tree strategy, though it

now performs worse than the human participants who achieved

a ratio of 2.3. However, one might argue that humans certainly

do build up some kind of global map of the market during the

search and thus are able to utilize information from previous

1If the sample sizes differed, we used the sample size of the smaller sample.

We also applied Welch’s t-test, which is applicable for unequal sample sizes and

unequal variances, and got the same results regarding the statistical significance

at the 0.01 level.

Table 2: Mean and standard deviation (SD) of the overall search path lengths

for different search strategies. For further comparison we list the length of the

optimal path and the path length ratio defined as the average path length of a

strategy divided by the length of the optimal path.

Strategy

Search Path Length

Ratio Samples
Mean (km) SD (km)

Exploration 1.959 0.297 7.9 1000

Dec. Tree (a–d, pruned) 1.176 0.211 4.8 1000

Dec. Tree (a) 1.609 0.263 6.5 1000

Dec. Tree (a–b) 1.425 0.193 5.8 1000

Dec. Tree (a–c) 1.620 0.257 6.6 1000

Dec. Tree (a–d) 1.717 0.238 7.0 1000

MaxEnt (single run) 0.342 – 1.4 –

MaxEnt (restarts) 0.911 – 3.7 –

Human Participants 0.565 0.110 2.3 26

Optimal Path 0.247 – 1.0 –

search sub-trials when searching for the next product. Clearly,

this information is less accurate and more sketchy than the map

utilized in the “single run” version of the MaxEnt strategy that

memorizes the exact location of all seen products.

Though the proposed strategies did not achieve the same per-

formance as humans, the results clearly indicate that the utiliza-

tion of background knowledge by our proposed strategies leads

to significantly shorter search paths when compared to an un-

informed search strategy. The exploration strategy performed

significantly worse than our approaches, because it is not able

to take domain-specific background knowledge into account,

which is the advantage of our proposed techniques.

6.2. Evaluation with Varying Starting Locations

The setting presented in the previous section was restricted

to a single starting location for each target product. This was

motivated by the desired comparison to the performance of the

human participants, for which we had to replicate the conditions

of the field study.

For a more thorough evaluation of the search strategies, we

started the search for the target products from several differ-

ent locations. We randomly chose 20 starting locations in the

market (see Fig. 7). Each of the 15 products from the previ-

ous experiment had to be searched for from each starting loca-

tion, yielding 300 independent search trials per strategy. For the

MaxEnt strategy, the map was cleared between the individual

search trials. As in the previous experiment, we considered the

total search path length of all individual search trials as a per-

formance measure for the search strategies. We repeated each

experiment a thousand times and list the average total search

path length and its standard deviation in Table 3.

Beside the exploration strategy we evaluated the variant of

our decision tree strategy that performed the best in the previ-

ous experiment. Though the improvement over the exploration

strategy was now less pronounced than in the previous setting, it

still yields significantly2 shorter search paths, as can be seen in

2We performed one-tailed paired t-tests with p < 0.01 for the sampled
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Figure 7: For the second experiment we randomly chose 20 starting locations

(filled nodes) for the search trials. The target locations of the products remain

the same as in the previous experiment (see Fig. 6).

Table 3. The MaxEnt strategy yields a significant improvement

over the decision tree strategy, which is now more pronounced

than in the previous experiment. To summarize, this second ex-

periment confirms our finding of the first experiment, that it is

beneficial to integrate domain-specific background knowledge

when searching for an object.

6.3. Searching with a Real Robot

As a proof of concept we let a mobile robot autonomously

search for a product in a real supermarket. We used a Pioneer

3DX equipped with a SICK LMS 291 laser range scanner and

a SICK RFI 641 RFID reader (Fig. 8). The target product was

marked with a passive UHF RFID tag and the robot stopped

searching as soon as it had detected the corresponding RFID

tag of the product. For navigation purposes the robot mapped its

environment in a local occupancy grid-map with a side length

of 16 meters. The local map was successively re-centered at

the robots location if the robot moved more than one meter. We

used a virtual sensor for detecting the relevant edge attributes

and the location of the decision points in the reference frame

of the local map. Extracting this information directly from sen-

sor data is a problem in its own that we consider to be beyond

the scope of this article which focuses on high-level decision

making.

In the first experiment the robot started at the entrance of the

market and had to find yogurt by utilizing the decision tree de-

picted in Fig. 4 (a). In Fig. 9 we depict a sequence of snapshots3

of this search run. The small image in the upper right corner

shows the path taken by the robot as well as the current loca-

tion of the robot and the local map with respect to a map of the

strategies. The result of the MaxEnt strategy also differs significantly (p < 0.01)

from the results of the sampled strategies.
3Note that some parts of the real market have been rearranged while we have

been working on this article. This accounts for the differences in the market

layout of Figs. 9–11 when compared to the previously shown figures in this

article.

Table 3: Mean and standard deviation (SD) of the overall search path lengths

for different search strategies. For further comparison we list the length of the

optimal path and the path length ratio defined as the average path length of a

strategy divided by the length of the optimal path.

Strategy

Search Path Length

Ratio Samples
Mean (km) SD (km)

Exploration 32.2 1.30 6.2 1000

Dec. Tree (a–d, pruned) 27.0 0.96 5.2 1000

MaxEnt 17.4 – 3.3 –

Optimal Path 5.2 – 1.0 –

whole market. The rest of the image shows a detail of the map

with the current decision point and the possible successor nodes

with their respective edges. The successor nodes of which the

robot may choose randomly are marked by a black dot. These

nodes either belong to edges that were classified as promising

or to unvisited edges if no edge was classified as promising. As

can be seen in Fig. 9 (first and second picture) the robot first

proceeded straight down the main aisle, because at each de-

cision point there was only one promising edge in front of the

robot: an unvisited edge in a main aisle with a cooling shelf vis-

ible in its direction. At the end of the main aisle the robot then

selected the only unvisited edge, which led to the node to the

robot’s left side. After a few more meters it finally detected the

product’s RFID tag and successfully ended the search (Fig. 9,

third picture).

In the second experiment the robot started in a side aisle lo-

cated nearly in the center of the market. At the beginning, it had

two promising choices for leaving the side aisle and entering a

main aisle and randomly chose to enter the lower main aisle.

Arriving there (Fig. 10, first picture) it encountered only one

promising direction: a node to its left side, which lies in a main

aisle with a cooling shelf visible at its end. It then proceeded

down the main aisle – encountering two similar situations – un-

til it was left with a choice of two non-promising but unvisited

edges at the end of the main aisle (Fig. 10, second picture). It

randomly chose to turn right and successfully ended the search

Figure 8: We equipped a Pioneer 3DX with a SICK laser range scanner and a

SICK RFID reader with two antennas. The robot autonomously searched for a

product in a supermarket using our proposed search strategy.
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Figure 9: In the first search run the robot started at the entrance of the market.

after detecting the RFID tag of the product after a few meters

(Fig. 10, third picture).

As in the previous experiment, the robot made an optimal de-

cision at each decision point. Of course, this will not always be

the case. For example, in a replication of the second experiment

the robot chose to proceed to the upper node when it once again

was confronted with the situation depicted in the second pic-

ture of Fig. 10 in which it had to choose randomly among two

nodes. This resulted in the longer search path shown in Fig. 11.

In general, it is inevitable that the robot makes a suboptimal

decision at some point during the search. The purpose of our

proposed technique is to learn heuristics that support the robot

in making the right decision such that on average the product is

found faster than with an uninformed search strategy. We be-

lieve that the results obtained both in simulation and real-world

experiments highlight the potential of this idea.

7. Conclusions

We presented two approaches for efficiently finding an ob-

ject in an unknown environment. The first approach, which

was the focus of this article, is a reactive search technique

that only depends on local information about the objects in

Figure 10: The next search run began in a side aisle in the center of the market.

the robot’s vicinity when deciding where to search next. This

strategy is based on search heuristics that can be learned from

data of optimal search paths. As a proof of concept, we pre-

sented real-world experiments in which a mobile robot searched

autonomously for a product using the proposed decision tree

strategy. We furthermore presented a second, inference-based

search strategy, that explicitly reasons about the location of the

target object given all observations made so far. It thereby takes

more global information into account. The underlying model

of this MaxEnt search strategy can be learned from object ar-

rangements of similarly structured example environments.

The MaxEnt strategy achieved shorter search paths than the

decision tree strategy. But this advantage comes at additional

cost as it needs to maintain and update a global map and per-

form inference by taking into account all previously seen prod-

ucts. This has important practical ramifications. The decision

tree strategy can be implemented using a shifting local grid-

map as we have demonstrated in the real-world experiments.

Thus, the mapping overhead is constant in the size of the search

area – the only exception being the decision point graph, which

is needed for backtracking to a node with an unvisited edge if

all outgoing edges of the current node have been visited already.
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Figure 11: In a replication of the second search run the robot chose the upper

node in the situation depicted in the second picture of Fig. 10, which resulted

in a longer search path.

However, this graph only needs to be topologically correct and

the computational overhead during the search can be consid-

ered negligible compared to the maintenance of the local grid-

map. The MaxEnt strategy, on the other hand, needs to resort

to a computationally much more demanding online SLAM ap-

proach for maintaining a consistent global map that preserves

the spatial relations between all detected objects. On the down-

side the mapping overhead now grows linearly with the size of

the search area. The upside is that more informed decisions can

be made which eventually leads to shorter search paths.

To summarize, in this article we presented two general

approaches for modeling, learning, and utilizing background

knowledge about indoor environments such that a mobile robot

is able to find an object in an initially unknown environment

more efficiently than would have been possible without such

domain-specific knowledge. The choice between these two ap-

proaches constitutes a trade-off between the complexity of the

underlying model and the resulting search efficiency. Exten-

sive experiments showed that both strategies significantly out-

perform an exploration strategy. This demonstrates the benefits

of utilizing background knowledge when searching for objects

in unknown environments.
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