
Dominik Joho

Learning and Utilizing
Spatial Object Relations

for Service Robots

Learning and Utilizing
Spatial Object Relations
for Service Robots

Dominik Joho

Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften
Technische Fakultät, Albert-Ludwigs-Universität Freiburg

Dekan Prof. Dr. Yiannos Manoli
Erstgutachter Prof. Dr. Wolfram Burgard

Albert-Ludwigs-Universität Freiburg
Zweitgutachter Prof. Dr. Bernhard Nebel

Albert-Ludwigs-Universität Freiburg
Tag der Disputation 10. Dezember 2013

Abstract

Service robots that operate in domestic environments and assist in the daily housework are
still beyond reach when considering the current state of the art. Hence, they pose many inte-
resting technical challenges that currently motivate a considerable amount of basic research
in mobile robotics. One of these challenges is the question how service robots could attain
the required level of autonomy and reliability to be truly useful. Ideally, if a service robot
is deployed in a domestic environment it should require only a short setup time and as few
user interactions as possible. When tidying up, it should know where the objects usually
belong to. If the robot should set the table, it needs to know which objects are required,
where to find them, and how they should be arranged on the table. It is apparent that most
of these tasks involve knowledge about the spatial context of objects and how objects are
usually arranged in such environments. It would be desirable to have a flexible approach in
which the robot adapts to the specifics of its environment by observing it. It thereby could
learn the usual object arrangements. Hence, as a basic requirement for achieving a high
level of autonomy, service robots need to represent, learn, and utilize knowledge about the
relevant spatial relations between objects in man-made environments. If robots are able to
utilize representations that take into account the interdependencies between objects in such
environments then this would enable them to more efficiently carry out their tasks or to ad-
dress completely new tasks. For example, robots could more efficiently search for objects,
or a robot could reason about missing or misplaced objects in a room or on a table.

In this thesis, we propose several techniques for learning and utilizing spatial object rela-
tions. First, we consider the problem of localizing objects. As future household objects and
retail products might be equipped with an RFID tag, we first present a technique to localize
RFID tags. Further, we show that same technique can also be applied to the complementary
situation in which we want to localize a mobile robot based on a known map of RFID tag
locations. Given that we can localize objects, we move on to address the question of how
a robot can efficiently search for objects in an unknown environment. For this, we present
two techniques that both aim at speeding up the search process by taking advantage of back-
ground knowledge about usual object arrangements acquired in previously seen, similarly
structured environments. Specifically, we are interested in efficiently finding a product in an
unknown supermarket. The main idea is to exploit knowledge about the co-occurrence of

vi

objects to focus on searching the promising regions first and to postpone the non-promising
regions. While both approaches utilize learning techniques to leverage the information of
previously seen environments, they both rely on predefined spatial relations, like an object
being “in the same aisle” as another object. This motivates the final part of this thesis, in
which we aim at learning stable spatial relations between objects. More specifically, we
wish to learn spatially coherent object constellations in an unsupervised manner from com-
plex multi-object scenes. As an application scenario, we consider tabletop scenes in which
the object constellations correspond to place covers. For this, we propose a novel hierarchi-
cal nonparametric Bayesian model that represents a prior distribution over scene structures
in terms of object constellations. For posterior inference in this model, we present an effi-
cient Markov chain Monte Carlo (MCMC) sampler. By basing our model on the Dirichlet
process and the beta-Bernoulli process, the number of object constellations in our model
is not fixed. This has practical benefits in the context of lifelong learning, as the robot is
able to recognize and integrate previously unseen object constellations into its model in an
open-ended fashion and within a single coherent probabilistic framework.

Zusammenfassung

Serviceroboter, die bei der täglichen Hausarbeit helfen, die das Geschirr abwaschen, ein-
kaufen, aufräumen und den Tisch decken, sind noch weit jenseits der heutigen technischen
Möglichkeiten. Sie stellen damit aber auch eine interessante technische Herausforderung
dar und motivieren derzeit einen guten Anteil der Grundlagenforschung in der mobilen Ro-
botik. Eine jener Herausforderungen ist die Frage, wie Serviceroboter das notwendige Maß
an Autonomie und Verlässlichkeit erreichen können, um wirklich nützlich zu sein. Idealer-
weise sollte ein Roboter, sobald er in einer neuen Umgebung eingesetzt wird, eine mög-
lichst geringe Einrichtezeit benötigen und dabei auf so wenig Benutzerinteraktionen wie
möglich angewiesen sein. Das heißt, um das Geschirr zu waschen, sollte er das Geschirr
und die Küche selbständig finden. Um aufzuräumen, muss er wissen, wohin die Gegen-
stände gehören. Um den Tisch zu decken, muss er wissen, welche Gegenstände benötigt
werden, wo sie zu finden sind, und wie sie auf dem Tisch zu arrangieren sind.

Es ist offensichtlich, dass die meisten dieser Aufgaben Vorwissen über den räumlichen
Kontext von Objekten erfordert. Zum Beispiel muss klar sein, wie Objekte in solchen Um-
gebungen normalerweise arrangiert sind. Der Benutzer könnte dem Roboter in einer Ein-
arbeitungsphase dieses Wissen vermitteln, oder der Roboter wird mit einprogrammierten
Vorwissen ausgeliefert, das es ihm z. B. ermöglicht, einen Tisch zu decken. Beide Mög-
lichkeiten erscheinen jedoch unbefriedigend. Während eine Einarbeitungsphase zeitinten-
siv sein kann, ist einprogrammiertes Vorwissen unflexibel, wenn es sich nicht an die Wün-
sche des Nutzers anpassen lässt. Es wäre daher erstrebenswert, einen flexibleren Ansatz zu
verfolgen, bei dem der Roboter sich an die Spezifika seiner Umgebung selbst anpasst. Da-
durch wäre es ihm möglich, die Objektarrangements und relevanten Objektrelationen selbst
durch Beobachtung seiner Umgebung zu lernen.

Als Grundvoraussetzung um wirklich nützlich zu sein und einen hohen Grad an Autono-
mie zu erreichen, sollte ein Serviceroboter daher Vorwissen über die relevanten räumlichen
Objektrelationen repräsentieren, erlernen und einsetzen können. Wenn Roboter in der Lage
wären, auf Repräsentationen zurückzugreifen, welche die wechselseitigen Abhängigkeiten
zwischen Objekten berücksichtigen, würde sie dies dazu befähigen, ihre Aufgaben effizien-
ter auszuführen, oder komplett neuartige Aufgaben zu erledigen. Beispielsweise könnte ein
Roboter effizienter nach Objekten suchen, indem er sich zunächst auf die vielversprechen-

viii

den Regionen konzentriert. Ob eine Region dabei als vielversprechend angesehen wird,
sollte hauptsächlich davon abhängen, welche anderen Gegenstände dort bereits erkannt
wurden, sowie der Wahrscheinlichkeit, dass der gesuchte Gegenstand zusammen mit diesen
Gegenständen auftritt. Zudem könnte ein Roboter mittels solcher Repräsentationen fehlen-
de oder deplatzierte Objekte in einem Raum oder auf einem Tisch erkennen. So könnte der
Roboter über die Zeit eine Repräsentation der Gedecke auf einem Frühstückstisch gelernt
haben. Dies würde es ihm ermöglichen, die Struktur eines teilweise gedeckten Tisches zu
analysieren, die fehlenden Objekte zu identifizieren und dem Menschen beim Decken des
Tisches zu assistieren.

In der vorliegenden Dissertation präsentieren wir verschiedene Techniken als erste Schrit-
te in Richtung des langfristigen Ziels der Realisierung eines autonomen Serviceroboters.
Zunächst sollte der Roboter in der Lage sein, Objekte zu erkennen. Da zukünftige Haus-
haltsgegenstände und Produkte bereits mit einem RFID-Etikett versehen sein könnten,
schlagen wir eine Methode zur Lokalisierung dieser Objekte auf Basis der RFID-Technik
vor. Um die Position der RFID-Etiketten zu bestimmen, verwenden wir eine RFID-Antenne,
die auf einer mobilen Sensorplattform oder einem mobilen Roboter montiert ist. Mittels die-
ser Antenne kann die eindeutige ID der RFID-Etiketten ausgelesen werden. Zudem wird
dabei jeweils die Signalstärke gemessen, mit der diese Information empfangen wurde. Der
von uns vorgeschlagene Ansatz ist in der Lage, diese Messungen zu einer Wahrschein-
lichkeitsverteilung über die Position eines Etiketts zu integrieren. Zudem ist unser An-
satz für die komplementäre Situation einsetzbar, in der die Positionen der RFID-Etiketten
bekannt sind und auf Basis der Messungen die Trajektorie des Roboters geschätzt wer-
den soll. In beiden Situationen ist unser Ansatz jedoch auf ein probabilistisches Sensor-
modell angewiesen, das einen Bezug zwischen der Roboter- und Etikettposition und der
erhaltenen Messung herstellt. Ein Hauptbeitrag unseres Ansatzes ist daher ein neuartiges
probabilistisches Sensormodell für die RFID-basierte Lokalisierung, das im Gegensatz zu
früheren Ansätzen sowohl die empfangene Signalstärke berücksichtigt, als auch die De-
tektionswahrscheinlichkeit modelliert. In unseren Experimenten zeigen wir, dass dies eine
genauere Positionsschätzung erlaubt, als dies durch ein Sensormodell möglich wäre, das
nur die Signalstärke oder nur Detektionsereignisse berücksichtigt. Der zusätzlich zu veran-
schlagende Berechnungsaufwand, der benötigt wird, um beide Modalitäten zu berücksich-
tigen, ist vernachlässigbar. Das von uns vorgeschlagene Sensormodell fällt in die Kategorie
der antennenzentrischen Sensormodelle, welche die erwarteten Messungen in einem Be-
zugssystem relativ zur Antenne modellieren. Die Kalibrierung solcher Modelle kann recht
aufwendig sein. Es müssen Referenzmessungen an verschiedenen antennenrelativen Posi-

ix

tionen vorgenommen werden. Dazu kann einerseits die Antenne fix gehalten werden und
von einem RFID-Etikett an verschiedenen relativen Positionen Messungen vorgenommen
werden. Andererseits könnte man verschiedene Etiketten in der Umgebung verteilen und
eine lokalisierte Antenne durch diese Umgebung bewegen. Da sowohl Antennenposition
als auch Etikettpositionen bekannt sind, können die Messungen in ein antennenzentrisches
Bezugssystem zurückgerechnet werden. Ein großer Nachteil beider Methoden ist jedoch,
dass die Positionen der RFID-Etiketten bekannt sein müssen. Wir stellen deshalb ein Ver-
fahren vor, das diese Kalibrierungsphase dahingehend vereinfacht, dass im Vorfeld keine
Etikettpositionen ermittelt werden müssen. Dies wird durch ein iteratives Verfahren er-
reicht, das sowohl das Sensormodell als auch die Etikettpositionen schätzt. In Experimenten
zeigen wir, dass das so gelernte Sensormodell gegen ein nicht-iterativ gelerntes Sensormo-
dell konvergiert (bis auf einen gewissen empirischen Fehler). Dabei ist das nicht-iterative
Verfahren weiterhin auf bekannte Etikettpositionen angewiesen. Zudem zeigen unsere Er-
gebnisse, dass die im iterativen Verfahren simultan geschätzten Etikettpositionen gegen
die tatsächlichen Positionen konvergieren (bis auf einen gewissen empirischen Fehler). Wir
möchten betonen, dass das iterative Verfahren nur notwendig ist, sofern die Annahme fallen
gelassen werden soll, dass die Etikettpositionen bekannt seien. Wir werden unser Verfah-
ren und Varianten davon quantitativ in einem Büro und einem Supermarkt evaluieren. Dies
schließt einen Vergleich mit aus der Literatur bekannten Methoden ein. Dazu implementie-
ren wir eine WiFi-basierte Lokalisierungsmethode, die eine 2D-Signalstärkekarte mittels
Gauß-Prozess-Regression schätzt. Zudem adaptieren wir das Modell, sodass die Signal-
stärke auch im Posenraum kartiert werden kann. Dies ist besonders für die RFID-basierte
Lokalisierung relevant, da die empfangene Signalstärke in erheblichen Maß von der Orien-
tierung der Antenne abhängt.

Im Folgenden wollen wir nun annehmen, dass der Roboter in der Lage ist, Objekte zu
lokalisieren. Wir wenden uns dann der Frage zu, wie er Hintergrundwissen über gebräuch-
liche Objektarrangements ausnutzen kann, um seine Aufgaben effizienter auszuführen, ins-
besondere, wenn er Objekte in einer unbekannten Umgebung sucht. Zur Motivation ver-
anschaulichen wir uns die Situation, dass wir ein bestimmtes Produkt in einem unbekann-
ten Supermarkt suchen. Sicher würden wir nicht einfach zufällig durch den Markt gehen,
aber genauso wenig würden wir systematisch jeden einzelnen Gang ablaufen bis wir das
Produkt finden. Vielmehr würden wir unser Suchverhalten von unseren aktuellen Beobach-
tungen abhängig machen, sowie von unserem Vorwissen darüber, wie Objekte in solchen
Umgebungen üblicherweise angeordnet sind. Dieses Vorwissen basiert auf unseren Erfah-
rungen in anderen Supermärkten, in denen uns gewisse stabile räumliche Abhängigkeiten

x

zwischen Produktgruppen aufgefallen sind. Die Aufgabe ist nun, dieses Wissen zunächst
in einer geeigneten Weise zu formalisieren, sodass ein Roboter dies ebenfalls auf Basis von
Daten echter Supermärkte erlernen kann. Zudem müssen wir eine Suchstrategie entwerfen,
die dieses Wissen für eine effiziente Suche ausnutzen kann.

Wir stellen dafür zwei alternative Ansätze vor. Unser erster Ansatz ist eine reaktive Such-
strategie, welche die Entscheidung, wo als nächstes gesucht werden soll, von den aktuell
direkt sichtbaren Objekten der näheren Umgebung abhängig macht. Als Suchheuristik ver-
wendet der Roboter dabei Entscheidungsbäume, welche die Alternativen an einer Wegga-
belung in einem Supermarkt in vielversprechende und weniger aussichtsreiche Richtun-
gen klassifiziert. Die Entscheidungsbäume werden auf Daten von optimalen Suchpfaden in
Trainingsmärkten gelernt. Im Gegensatz dazu verfolgt unsere zweite Suchstrategie einen
globaleren, inferenzbasierten Ansatz, der alle bisher gesehenen Objekte und Strukturen im
Supermarkt berücksichtigt. Auf Basis dieser Beobachtungen wird eine Verteilung über die
mögliche Position des Produkts berechnet. Der Roboter wählt dann einen Zielpunkt aus,
indem er die Distanz zu diesem Zielpunkt mit der Wahrscheinlichkeit abwägt, das Produkt
an diesem Ort zu finden. Er führt dann seine Suche fort, indem er sich auf dem kürzesten
Weg zu diesem Zielpunkt begibt. Sobald neue Informationen zur Verfügung stehen, d.h.
neue Produkte oder Strukturen gesehen werden, wird die Verteilung neu berechnet und ein
neuer Zielpunkt ausgewählt. Die Verteilung basiert auf einem Modell, das im Grunde die
Wahrscheinlichkeit berücksichtigt, dass zwei Objekte in bestimmten räumlichen Kontexten
gemeinsam auftreten. Die Parameter dieses Modells können auf Basis von Karten von Su-
permärkten gelernt werden. Zwar unterscheiden sich beide Suchstrategien in ihren techni-
schen Details, sie werden jedoch beide auf einer Trainingsmenge von drei Märkten trainiert
und in einem vierten Supermarkt evaluiert. Die benötigten Daten wurden in vier echten Su-
permärkten erhoben und modellieren im Detail die Regalaufstellungen und die Platzierung
der Produkte. Die Effizienz beider Suchstrategien vergleichen wir quantitativ mit einer Ba-
sisstrategie, die den Markt erkundet bis das Produkt gefunden wird. Zudem präsentieren wir
einen Vergleich zum Abschneiden von Versuchspersonen die in einer Feldstudie in einem
echten Supermarkt nach den gleichen Produkten suchen mussten.

Die inferenzbasierte Suchstrategie nutzt Kookkurrenz-Statistiken über Objekte in ver-
schiedenen räumlichen Kontexten. Z. B. wird die Wahrscheinlichkeit betrachtet, dass das
gesuchte Produkt sich “im gleichen Regal” oder “in einem benachbarten Regal” befinden
könnte, wie ein anderes, während der Suche bereits gesehenes Produkt. Zwar können die
Parameter des Modells auf Basis von Karten von Supermärkten gelernt werden, die da-
bei betrachteten räumlichen Relationen sind jedoch vordefiniert und werden nicht gelernt.

xi

Deshalb wenden wir uns in unserem letzten Beitrag dieser Arbeit einem allgemeineren
Lernszenario zu, in dem wir den räumlichen Kontext von Objekten lernen wollen. Konkret
wollen wir unüberwacht räumlich stabile Objektkonstellationen in komplexen Alltagssze-
nen lernen. Als Anwendungsszenario betrachten wir Tischszenen in denen die relevanten
Objektkonstellationen den Gedecken entsprechen, die, z. B., aus den Objekten Teller, Mes-
ser und Kaffeetasse bestehen. Die Identifikation von relevanten Objektkonstellationen kann
als Parsen der Szene oder als Inferenz der unbekannten Szenenstruktur angesehen werden.
Für eine gegebene Szene existieren jedoch im Allgemeinen verschiedene mögliche Inter-
pretationen ihrer Struktur. Eine Szene kann als Ansammlung zufällig verteilter Objekte
angesehen werden, oder sie kann als ganzes als eine einzige, große Objektkonstellation in-
terpretiert werden. Für die Szene eines Frühstückstisches, der für drei Personen gedeckt
ist, würden wir es jedoch als viel wahrscheinlicher ansehen, dass drei sich wiederholende
Objektkonstellationen zu finden sind – eben die Gedecke. Wir werden den Begriff einer
“wahrscheinlicheren Szenenstruktur” präzisieren, indem wir eine a-priori-Verteilung über
Szenenstrukturen definieren. Diese Verteilung könnte dann zur Evaluation der Wahrschein-
lichkeiten der oben genannten alternativen Szenenbeschreibungen herangezogen werden.
Zudem kann diese Verteilung aktualisiert werden und somit eine a-posteriori-Verteilung
über Szenenstrukturen modellieren, die Informationen über bereits analysierte Szenen mit-
einbezieht. Wenn ein Roboter noch nie eine Frühstücksszene gesehen hat, könnte er die drei
genannten alternativen Szenenstrukturen als mehr oder weniger gleich wahrscheinlich an-
sehen. Hätte er jedoch bereits mehrere Szenen analysiert, in denen ähnliche Objektkonstel-
lationen auftreten, würde er eher mit unserer Intuition übereinstimmen, dass ein Frühstück-
stisch für drei Personen drei relevante Konstellationen enthält die gerade den Gedecken
entsprechen.

Konkret besteht unser Beitrag in der Definition eines neuen, hierarchischen, nicht-pa-
rametrischen Bayes’schen Modells für komplexe Szenen die aus mehreren Objekten auf-
gebaut sind. Ein grundlegender Baustein unseres Modells sind sogenannte Meta-Objekte,
die eine Verteilung über Objektkonstellationen definieren. Wir nehmen an, dass die Ob-
jektkonstellationen auf einem Tisch aus diesen Meta-Objekten gesampelt wurden. Meta-
Objekte sind als probabilistische, teilbasierte Modelle definiert und besitzen damit eine
interne Struktur. Ein “Teil” eines solchen Modells, beinhaltet (a) eine räumliche Vertei-
lung, welche die relative Position des Objekts festlegt, (b) eine kategoriale Verteilung,
welche den Typ des Objekts festlegt, das auf diese relative Position gestellt werden soll
(Teller, Tasse, etc.) und (c) eine Aktivierungswahrscheinlichkeit, welche festlegt, ob über-
haupt ein Objekt auf diese Position zu stellen ist. Ein Meta-Objekt in einer Frühstücksszene

xii

könnte z. B. aus vier Teilen bestehen: einem “zentralen Teil”, mit einer hohen Wahrschein-
lichkeit für Teller, einem “linken Teil”, mit einer hohen Wahrscheinlichkeit für Gabeln,
etc. Um eine Objektkonstellation aus diesem Modell zu sampeln, wird zunächst die Ak-
tivierung der Teile gesampelt. Für jeden aktivierten Teil sampeln wir die relative Position
und den Objekttyp. Dadurch generiert jeder Teil eines solchen Modells höchstens ein Ob-
jekt. Die Objektkonstellation wird dann in die Szene transformiert, indem wir aus einer
a-priori-Verteilung über Transformationen sampeln. Wir nehmen an, dass eine Szene aus
mehreren Objektkonstellationen bestehen kann. Zudem nehmen wir an, dass verschiedene
Kategorien von Konstellationen existieren, mit jeweils unterschiedlichen Parametrisierun-
gen für die Wahrscheinlichkeitsverteilungen ihrer Teile. So könnte eine bestimmte Meta-
Objektkategorie mit hoher Wahrscheinlichkeit eine Müslischale und einen Löffel sampeln,
während eine andere Kategorie eher Konstellationen mit Teller und Messer sampelt. Eine
Szene zu analysieren, heißt, diesen generativen Prozess umzukehren, indem die Anzahl der
Objektkonstellationen, deren jeweilige Kategorie und ihre zugehörige Transformation oder
Referenzrahmen inferiert werden. Zudem muss jedes Objekt zu einer bestimmten Meta-
Objektinstanz assoziiert werden, sowie zu einem bestimmten Teil dieser Instanz. So sollte
etwa ein Teller mit dem zentralen Teil eines Meta-Objekts assoziiert werden.

Bisher haben wir noch nicht die Anzahl an Kategorien von Meta-Objekten oder die An-
zahl der Teile pro Meta-Objekt-Kategorie in unserem Modell festgelegt. Es wäre wün-
schenswert, eine genaue Spezifikation dieser Zahlen zu vermeiden, und sie stattdessen
aus den Daten zu schätzen. Dies erreichen wir dadurch, dass unser Modell als nicht-para-
metrisches Bayes’sches Modell auf Basis des Dirichlet-Prozesses und des Beta-Bernoulli-
Prozesses definiert wird. Hiermit vermeiden wir sogar, eine Obergrenze für diese Zahlen
angeben zu müssen. Stattdessen entspricht dies der Annahme, dass es unendlich viele Ka-
tegorien von Meta-Objekten gibt, die jeweils unendlich viele Teile besitzen. Dies bedeutet,
dass nun die effektive Anzahl der Meta-Objekt-Kategorien und -Teile ebenfalls aus den
Daten inferiert wird. In unserem Modell können wir nun gewisse Hyperparameter setzen,
die unsere a-priori Vorstellungen über diese Zahlen widerspiegeln. Dies eröffnet die Mög-
lichkeit, aus den Daten die effektive Modellkomplexität zu inferieren, die sich somit der
Datenkomplexität anpassen kann. Dies hat für den Roboter auch praktische Konsequen-
zen für Szenarien des lebenslangen Lernens. Da die Anzahl der Objektkonstellationen in
unserem Modell variabel gehalten ist, kann der Roboter neue, bisher noch nie gesehene Ob-
jektkonstellationen als solche erkennen und in sein Modell integrieren – und dies innerhalb
eines einzigen, kohärenten probabilistischen Rahmens.

Acknowledgements

A doctoral thesis is the work of a single one, but it is well understood that such a project is
impossible without the guidance and support of colleagues and friends. I am indebted to a
few people and I want to take the opportunity to thank them here.

First of all, I want to thank Prof. Dr. Wolfram Burgard for giving me the opportunity to
work in his group. He gave me considerable freedom to pursue my own interests and I am
grateful for this and the trust that this implies. The mindset to approach technical problems
from a probabilistic point of view is considered by me to be the most important lesson that
I have learned in these years and I attribute this mainly to his influence.

I also want to thank Prof. Dr. Bernhard Nebel for acting as a second referee.

The stimulating and motivating atmosphere at the AIS lab certainly had a great influence
on this thesis. There are now so many people working in the lab that I refrain from naming
everyone individually. Each one contributed his or her share in creating this atmosphere
and every one deserves my gratitude for that. And at times, the AIS lab was more than
just a workplace. I especially remember our stay in Kōbe and Ōsaka during ICRA’09 as an
outstanding experience.

I really enjoyed the inspiring discussions with Dr. Gian Diego Tipaldi during our work
on the scene analysis paper. He supported me in trying out my own ideas, but he also took
care to point out to me the things that might not work – and this is perhaps one of the best
ways of supervising someone. Especially, he convinced me that my favorite toy from the
last paper would likely be of no use for the current problem. So I started looking for a new
toy. And I think this was a crucial step.

Further, I want to thank Dr. Christian Plagemann for the collaboration during our work
on the RFID paper. He helped me to understand the idea of Gaussian process regression and
he also kindly gave me access to his own implementation for Gaussian process regression.

I want to thank Dagmar Sonntag and Susanne Bourjaillat for administrative support, and
Michael Keser for technical support. I also thank Martin Senk for the collaboration during
his Bachelor’s thesis, especially, for the additional work he has done for the conference and
journal paper. Further, I thank Nikolas Engelhard for implementing the segmentation and
classification of the point clouds for the scene analysis paper.

I also collaborated with Christopher Kalff when we used the RFID localization technique

xiv

to track the participants in a field study that he conducted in a supermarket. In turn, he pro-
vided me with an evaluation of the resulting trajectories, which enabled me to compare
the performance of my search technique to the performance of the human subjects (unfor-
tunately, the humans won). I think, this was an interesting addition to one of my papers.
Sadly, it is too late now to thank him for this collaboration at this point.

I thank Dr. Barbara Frank, Dr. Zeno Gantner, Markus Kuderer, PD Dr. Cyrill Stachniss,
Dr. Gian Diego Tipaldi, and Dr. Thorsten Zitterell for reading parts of an earlier version of
this thesis.

Finally and most importantly, I want to thank my wife Karla Alcázar for the support and
love throughout these years. She always believed in me and this thesis would not have been
possible without her. And hats off to our son Julian, for his proficiency in destroying any
meaningful object arrangement in our very own domestic environment on a daily basis.

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under contract number SFB/TR 8

Spatial Cognition (R6-[SpaceGuide]).

Para Karla y Julian.

Contents

1 Introduction 1
1.1 Contributions . 8

1.1.1 RFID-based Localization and Mapping 8
1.1.2 Object Search in Unknown Environments 9
1.1.3 Scene Analysis . 9

1.2 Publications . 10
1.3 Collaborations . 11
1.4 Notation . 12

2 Basics 13
2.1 Basics of Probability Theory . 14
2.2 Monte Carlo Methods . 18

2.2.1 Importance Sampling . 18
2.2.2 Markov Chain Monte Carlo . 20
2.2.3 Monte Carlo Localization for Mobile Robots 22

2.3 Decision Tree Learning . 25
2.4 Maximum Entropy Models . 26
2.5 Bayesian Nonparametrics . 30

2.5.1 Dirichlet Process and Chinese Restaurant Process 30
2.5.1.1 Finite Gaussian Mixture Models 31
2.5.1.2 Dirichlet Process Gaussian Mixture Models 35
2.5.1.3 Definition of the Dirichlet Process 38
2.5.1.4 Stick-breaking Construction 38
2.5.1.5 Chinese Restaurant Process 40
2.5.1.6 Dirichlet Process Gaussian Mixture Models Revisited . . 41

2.5.2 Beta-Bernoulli Process and Indian Buffet Process 42
2.5.3 Hierarchical Processes . 46
2.5.4 Nested Processes . 48
2.5.5 Gaussian Process Regression . 50

xviii Contents

3 RFID-based Object Localization and Self-Localization 53
3.1 The Sensor Model . 54

3.2 Learning the Model from Data . 57

3.2.1 Semi-Autonomous Learning . 57

3.2.2 Bootstrapping the Sensor Model 57

3.3 Mapping Tags from Known Sensor Poses 58

3.4 Localizing a Mobile Agent . 60

3.5 Experimental Evaluation . 63

3.5.1 Localizing the RFID Tags . 64

3.5.2 Localizing a Mobile Agent . 64

3.6 Future Work . 68

3.7 Related Work . 68

3.8 Conclusions . 69

4 Searching for Objects 71
4.1 Reactive Search Strategy . 74

4.1.1 Modeling the Environment . 74

4.1.2 Learning Search Heuristics . 76

4.1.2.1 Defining Edge Attributes 76

4.1.2.2 Generating Training Data 78

4.1.2.3 Decision Tree Learning and Pruning 80

4.1.3 Variants of the Decision Tree Strategy 80

4.2 Inference-based Search Strategy . 81

4.2.1 Modeling the Evironment . 81

4.2.2 A Model for Inferring Object Locations 83

4.2.2.1 Application to the Supermarket Scenario 88

4.2.3 Selecting a Target Location . 90

4.3 Experimental Evaluation . 91

4.3.1 Evaluation in Comparison to Humans 92

4.3.2 Evaluation with Varying Starting Locations 95

4.3.3 Reactive Search Strategy – Searching with a Real Robot 97

4.3.4 Inference-based Search Strategy – Further Evaluations 101

4.4 Related Work . 103

4.5 Conclusions . 105

Contents xix

5 Unsupervised Learning of Object Constellations 107
5.1 Generative Scene Model . 110

5.1.1 Description of the Generative Process 110
5.1.2 Posterior Inference in the Model 114

5.1.2.1 Joint Distribution . 115
5.1.2.2 Death (Birth) Move . 117
5.1.2.3 Switch Move . 118
5.1.2.4 Shift Move . 119
5.1.2.5 Association Move (Existing Part) 119
5.1.2.6 Association Move (New Parts) 119
5.1.2.7 Birth Proposal . 120

5.2 Experiments . 121
5.2.1 Synthetic Data . 121
5.2.2 Real-world Data . 122

5.3 Related Work . 124
5.4 Conclusion . 127

6 Discussion 129
6.1 Outlook . 132

6.1.1 RFID-based Object Localization and Self-Localization 132
6.1.2 Searching for Objects . 133
6.1.3 Learning Object Constellations . 134

6.2 Concluding Remarks . 136

A Appendix 139
A.1 Posterior Predictive Distribtion w.r.t. a Normal-Wishart Prior 139
A.2 Derivations for the MaxEnt Model (Part 1) 140
A.3 Derivations for the MaxEnt Model (Part 2) 142

CHAPTER 1

Introduction

Service robots that operate in domestic environments and assist in the daily housework,
that wash the dishes, go shopping, tidy up, and set the table, are still beyond reach when
considering the current state of the art. Hence, they pose many interesting technical chal-
lenges that currently motivate a considerable amount of basic research in mobile robotics.
One of these challenges is the question how service robots could attain the required level
of autonomy and reliability to be truly useful. Ideally, if a service robot is deployed in a
domestic environment it should require only a short setup time and as few user interactions
as possible. That is, for washing the dishes it should find and recognize the plates and
the kitchen sink by itself instead of being manually instructed. When tidying up, it should
know where the objects usually belong to. If the robot should set the table, it needs to know
which objects are required, where to find them, and how they should be arranged on the
table.

It is apparent that most of these tasks involve knowledge about the spatial context of
objects and how objects are usually arranged in such environments. Hence, the user could
either go through a lengthy instruction phase in which he or she directly demonstrates these
tasks to the robot, or the robot could have pre-programmed knowledge about how to, for ex-
ample, set a table. Both options seem unsatisfactory as the first approach is time-consuming
and the latter ignores the preferences of the user. Therefore, it would be desirable to have
a more flexible approach in which the robot adapts to the specifics of its environment by
observing it. Thereby, it could learn the usual object arrangements and relevant spatial
relations between objects.

Thus, as a basic requirement for being truly useful and for achieving a high level of au-
tonomy, service robots need to represent, learn, and utilize knowledge about the relevant

2 Chapter 1 Introduction

spatial relations between objects in man-made environments. If robots are able to utilize
representations that take into account the interdependencies between objects in man-made
environments then this would enable them to more efficiently carry out their tasks or to
address completely new tasks that would have been impossible without such representa-
tions. For example, robots could more efficiently search for objects by first searching the
promising regions and postponing the non-promising regions. If a regions looks promising
or not will mainly depend on the objects the robots sees there as well as its prior knowledge
about how likely the sought object co-occurs with these objects. Further, a robot could
reason about missing or misplaced objects in a room or on a table. For example, over time
the robot might have learned a representation of the layout of covers on a breakfast table.
Based on this, it could parse a partially laid table, identify the missing objects, and aid the
human with setting the table.

In this thesis, we present several techniques as preliminary steps towards the long-term
goal of building autonomous service robots. First, a robot obviously must be able to detect
and localize the objects in the first place. As future household objects and retail products
might already be equipped with RFID tags, we therefore present a novel approach to RFID-
based localization and mapping. The location of RFID tags can be estimated by means of
an RFID antenna attached to a localized sensor platform or robot. While moving through
the environment, the robot collects measurements of the RFID tags that include the sig-
nal strength as well as the unique ID of a tag. The measurements are then integrated to
compute a distribution over the location of each RFID tag. Further, the approach can also
be used for the complementary situation in which we are given a map of RFID tag loca-
tions and the task is to estimate the trajectory of a robot moving through this environment.
Both of these tasks rely on a sensor model that relates the robot and tag locations to the
measurements. Hence, we propose a novel probabilistic sensor model that, in contrast to
previously published approaches, explicitly considers both tag detection events as well as
the received signal strength in a combined model. Our experiments show that this leads to
an improved localization accuracy when compared to sensor models that utilize either only
the signal strength or only tag detection events. The additional computational overhead for
considering both is negligible. Our proposed sensor model belongs to the class of antenna-
centric sensor models, which represent the expected measurements in an antenna-relative
frame of reference. The calibration phase for such models can be quite tedious. One needs
to obtain reference measurements at several antenna-relative positions. This can be done
by either keeping the antenna fixed and placing an RFID tag at different relative locations
while recording the sensor measurements. Another option is to attach several tags in the

3

Figure 1.1: A first contribution of this thesis is a technique for object localization. As future household objects
and retail products may already be equipped with RFID tags, we propose a novel approach to
RFID-based localization and mapping.

environment and to move a localized antenna through the environment. Given that the an-
tenna is localized and the tag locations are known, one can transform the tag locations for
each point in time into an antenna-centric reference frame for registering calibration mea-
surements at antenna-relative locations. However, a major drawback is that in either case
both the antenna location and the tag locations need to be known. Assuming knowledge
of the antenna location is usually not much of a problem, because the antenna is mounted
on a mobile robot which can be assumed to have other sensors for self-localization pur-
poses. Assuming knowledge of the precise RFID tag locations in the first place is much
more of an issue. We therefore propose a novel method to simplify this calibration phase
by getting rid of the dependence on known tag locations. For this, we propose an iterative
calibration procedure that simultaneously estimates not only the sensor model but also the
tag locations. Our experiments show that a sensor model learned in this way converges
(up to a certain empirical error) to a sensor model learned with a known RFID tag map.
Further, the accuracy of the RFID tag location estimates converge (up to a certain empirical

4 Chapter 1 Introduction

error) to the true tag locations. We like to point out that this iterative procedure is only
necessary if the sensor model should be learned without the reliance on a known RFID
tag map. We quantitatively evaluate our approach and variants thereof in an office and a
supermarket environment, also by comparing it to previously published sensor models. For
this, we implemented and adapted a WiFi-based localization method, which constructs a
2D signal strength map by using Gaussian process regression. We additionally extend this
approach by mapping the signal strength in pose space rather than in 2D. This is particular
relevant for RFID-based localization, as the received signal strength can be quite sensitive
to rotational changes of the antenna pose.

Given that the robot can localize objects, we move on to the question of how prior knowl-
edge about usual object arrangements can be utilized by the robot to more efficiently carry
out its tasks, particularly, when searching for objects in an unknown environment. As a mo-
tivation, consider the situation where you want to find a product in a supermarket where you
have never been to before. Certainly, you will not just wander around randomly through
the market nor will you systematically visit each so far unvisited aisle in the market until
you find the product. Your search will rather be guided by the current observations and
the expectations you have about how objects in supermarkets are usually arranged. You
will have gained this knowledge by having seen quite a few markets throughout your life
and noting certain strong spatial dependencies between certain groups of products. Thus,
the main challenge that we need to address here is to, first, formalize this knowledge in
a way such that it can be learned based on data of real supermarkets and, second, to de-
vise a search strategy that leverages this knowledge in an appropriate way to speed up the
search process. For this, we present two alternative search techniques. Our first approach
is a reactive search technique that decides where to search next based on the objects in the
robot’s direct vicinity. The robot utilizes search heuristics in form of decision trees which
classify the aisles at junctions into promising and non-promising directions and then con-
tinues to search in one of the promising directions. The decision trees are learned from
data generated from optimal search paths in a training set of supermarkets. In contrast to
the first approach, our second search technique is a more global, inference-based approach
that takes into account all objects seen so far as well as the thus far discovered structure
of the environment. Based on this, it first computes a distribution over the possible loca-
tions of the sought product. Then it selects a goal location by trading off the probability
of finding the product at a certain location against the required distance to reach this loca-
tion. It then continues its search by following the shortest path towards the selected goal
location. Whenever new information becomes available, i.e., newly observed objects or

5

Figure 1.2: As a second contribution of this thesis, we present two approaches for efficiently finding objects
in an unknown environment. Specifically, we investigate how background knowledge about usual
object arrangements can be represented and utilized to more efficiently search for an object in
an unknown environment. As an illustrative scenario we consider the search for a product in an
unknown supermarket.

newly discovered parts of the environment, the robot will recompute this distribution and
select a new goal location. The distribution is based on a model that, basically, takes into
account how objects co-occur in different spatial contexts. The parameters of the model
can be learned based on the layouts of supermarkets. While the technical details of these
search techniques differ, they both are learned on the same training set of three supermar-
kets and then evaluated in a fourth test supermarket. For this, we collected data from four
real supermarkets and modeled in detail the layout of the shelves and the placement of the
products. The efficiency of both search techniques is quantitatively compared to a baseline
approach that simply explores the environment until it finds the product, as well as to the
performance of human subjects that searched in a real supermarket.

The inference-based search technique basically relies on co-occurrence statistics of ob-
jects in different spatial contexts. For example, it considers the probability that the sought
object exists “in the same shelf” or “in a neighboring shelf” as other objects already ob-
served while searching. While the parameters of this model are learned based on the layouts

6 Chapter 1 Introduction

of supermarkets in a training set, the spatial relations utilized by this model are fixed and
manually defined. Thus, in our final contribution of this thesis, we move on to a more
ambitious learning scenario in which we wish to simultaneously learn both the spatial con-
text and the co-occurrence of objects within the learned spatial contexts. That is, we wish
to learn spatially coherent object constellations in complex multi-object scenes in an un-
supervised way. As an application scenario we considered tabletop scenes and the object
constellations are the covers consisting of, for example, a plate, a knife, and a mug. The
identification of the relevant object constellations can be seen as parsing a scene or inferring
the latent structure of a scene. However, for any given scene there exist multiple possible
scene structures. For example, in the scene depicted in Fig. 1.3 we could argue that it
simply contains twelve randomly placed objects. Alternatively, one might say that it con-
tains just a single object constellation consisting of twelve objects. However, based on our
prior knowledge of tabletop scenes, we would be tempted to say that it is much more likely
that this scene contains three recurrent object constellations each consisting of four objects,
namely a plate, a fork, a knife, and a mug. We will make this notion of “a more likely scene
structure” precise, by defining a prior distribution over scene structures. This prior can then
be used to evaluate the probability of each of the three above-mentioned alternative scene
structures. Further, this prior can be updated by conditioning it on previously parsed scenes
which results in a posterior predictive distribution over scenes. Thus, if the robot has never
observed any such scene, it may consider the three alternative scene interpretations as more
or less equally likely. However, if the robot has already parsed several scenes in which
similar object constellations with four objects appear, then it might agree with our intuition
that the scene most likely contains three object constellations with four objects each.

To be more specific, we define a novel hierarchical nonparametric Bayesian model for
multi-object scenes. A basic building block of our model are so-called meta-objects which
represent a distribution over object constellations. The actual object constellations on the
table are assumed to have been sampled from such meta-objects. More specifically, meta-
objects can be seen as probabilistic part-based models and they thus have an internal struc-
ture. Each part of a meta-object consists of (a) a spatial distribution that constrains the
relative location of an object with respect to a meta-object reference frame, (b) a type dis-
tribution that constrains which objects should be placed there (e.g., a mug or plate), and
(c) an activation probability that specifies the probability if an object should be placed at
this location at all. A meta-object for the constellations shown in Fig. 1.3 would consist
of four parts, e.g., a central part with a high probability for plates, a left part with a high
probability for forks, etc. For sampling a constellation from this model, we first sample the

7

Figure 1.3: As a third contribution of this thesis, we investigate how a robot can learn spatially coherent object
constellations in an unsupervised way by inferring the latent structure of everyday scenes. We
consider tabletop scenes, in which the relevant object constellations correspond to the individual
covers consisting of, for example, a plate, a knife, a fork, and a mug.

activation for each part. For each activated part, we then sample the relative location and
the object type to be placed at this relative location, e.g., a mug or a plate. Hence, each part
generates at most one object of a sampled object constellation. This object constellation
is then transformed into the scene by sampling from a prior over transformations. We as-
sume that a scene can contain multiple object constellations, such as the scene in the picture
shown above, which contains three object constellations that have been transformed to three
different places on the table. Further, we assume that there exist different types of object
constellations, which might have different parametrizations of their part distributions. For
example, one specific meta-object type might likely generate a constellation with a cereal
bowl and a spoon, while another type would more likely generate object constellations like
the ones mentioned above. Thus, parsing a scene corresponds to inverting this generative
process by inferring the number of object constellations in a scene, their types, and their
transformations or reference frames. Further, the objects on a table need to be associated to
a certain meta-object instance as well as to a certain part of this meta-object instance. For

8 Chapter 1 Introduction

example, the plate should be associated to the central part of its meta-object.
Please note, that we did not yet specify the number of meta-object types, the number of

parts per meta-object, or the number of object constellations on the table. Actually, it would
be desirable to avoid having to specify these numbers in advance and we would rather like to
place a prior over these numbers and infer them from data. This is achieved by formulating
our model as a nonparametric Bayesian model based on the Dirichlet process and the beta-
Bernoulli process. By doing so, we do not even have to specify an upper bound for these
numbers. Rather, we thereby assume that there exist infinitely many different meta-object
types, each having infinitely many parts. In effect, the number of meta-object types and
the number of meta-object parts are now subject to inference as well and we can set certain
hyper-parameters which express our prior belief with respect to these numbers. This allows
for a probabilistic treatment of the effective model complexity which thereby can adapt to
the data complexity. This also has practical benefits in the context of lifelong learning for
service robots. As the number of object constellations is not fixed in our model, the robot
is able to recognize and integrate previously unseen object constellations into its model in
an open-ended fashion and within a single coherent probabilistic framework.

1.1 Contributions

The work presented in this thesis contributes to mainly three areas in the context of mobile
robotics: (a) RFID-based localization and mapping, (b) object search in unknown environ-
ments, and (c) scene analysis. In particular, we like to highlight the following contributions.

1.1.1 RFID-based Localization and Mapping

• A novel probabilistic sensor model for RFID-based localization and mapping. In
contrast to previously published models, our model considers both signal strength
and tag detection events.

• A novel unsupervised procedure for simultaneously learning both the sensor model
and the tag locations in an iterative manner. This generalizes a supervised non-
iterative method for learning the sensor model which is only applicable when the
tag locations are known beforehand.

• For evaluation purposes, an adaption of a previously published sensor-centric RFID
sensor model.

1.1 Contributions 9

• For evaluation purposes, an adaption of a previously published WiFi-based sensor
model based on Gaussian process regression. The model is further extended to map
the signal strength in pose space rather than in 2D.

• An extensive evaluation of our method in an office and a supermarket environment.

1.1.2 Object Search in Unknown Environments

• A novel reactive search technique that utilizes search heuristics in form of decision
trees which classify the aisles at junctions into promising and non-promising direc-
tions. The robot then continues to search in one of the promising directions.

• A technique to learn these decision trees based on data generated from optimal search
paths in training environments.

• An inference-based search technique that maintains a distribution over the possible
location of the object. This distribution takes into account all objects seen so far and
the thus far discovered structure of the environment.

• A technique to learn the parameters of this model based on the layout of training
environments.

• An extensive evaluation of both techniques, including a comparison to a baseline
technique, that explores the supermarket until it finds the product, and to the perfor-
mance of human subjects that participated in a field study conducted in a real market.

1.1.3 Scene Analysis

• A novel probabilistic approach to reason about the latent structure of multi-object
scenes in terms of object constellations. For this, we propose a novel hierarchi-
cal nonparametric Bayesian model based on nested and hierarchical variants of the
Dirichlet process (or Chinese restaurant process) and the beta-Bernoulli process (or
Indian buffet process).

• A Markov chain Monte Carlo procedure to sample from the posterior distribution
over the latent scene structures when conditioned on the observed objects of the
scenes. This includes efficient MCMC moves that propose to change the correspon-
dence variables of several observed objects at a time. Further, we introduce a novel

10 Chapter 1 Introduction

top-down bottom-up proposal for the MCMC sampler that takes advantage of both
the observed data and the currently instantiated representations in the model.

• An evaluation of the proposed MCMC technique for obtaining samples from the
posterior distribution of our model when conditioned on tabletop scenes from both
synthetic and real-world data sets.

1.2 Publications

Parts of the work presented in this thesis have been previously published in the following
journal and conference publications. All publications were peer-reviewed except where
noted. For each publication, we point out the related chapter in this thesis.

Journal

• Dominik Joho, Martin Senk, and Wolfram Burgard. Learning search heuristics
for finding objects in structured environments. Robotics and Autonomous Systems
(RAS), 59(5):319–328, May 2011.
Related: Chap. 4

Conference

• Dominik Joho, Gian Diego Tipaldi, Nikolas Engelhard, Cyrill Stachniss, and Wol-
fram Burgard. Nonparametric Bayesian models for unsupervised scene analysis and
reconstruction. In Proc. of Robotics: Science and Systems (RSS), Sydney, Australia,
2012.
Related: Chap. 5

• Dominik Joho and Wolfram Burgard. Searching for objects: Combining multiple
cues to object locations using a maximum entropy model. In Proc. of the IEEE Int.
Conf. on Robotics and Automation (ICRA), pages 723–728, Anchorage, AK, USA,
May 2010.
Related: Chap. 4

• Dominik Joho, Christian Plagemann, and Wolfram Burgard. Modeling RFID signal
strength and tag detection for localization and mapping. In Proc. of the IEEE Int.
Conf. on Robotics and Automation (ICRA), pages 3160–3165, Kobe, Japan, May

1.3 Collaborations 11

2009.
Related: Chap. 3

• Dominik Joho, Martin Senk, and Wolfram Burgard. Learning wayfinding heuristics
based on local information of object maps. In Proc. of the Europ. Conf. on Mobile
Robots (ECMR), pages 117–122, Mlini/Dubrovnik, Croatia, September 2009.
Related: Chap. 4

Workshop

• Dominik Joho, Gian Diego Tipaldi, Nikolas Engelhard, Cyrill Stachniss, and Wol-
fram Burgard. Unsupervised scene analysis and reconstruction using nonparametric
Bayesian models. In Proc. of the Workshop on Robots in Clutter at Robotics: Sci-
ence and Systems (RSS), Sydney, Australia, 2012.
Related: Chap. 5

Extended Abstract (not peer-reviewed)

• Dominik Joho, Gian Diego Tipaldi, Nikolas Engelhard, Cyrill Stachniss, and Wol-
fram Burgard. Unsupervised scene analysis using semiparametric Bayesian models.
In Extended Abstracts of Spatial Cognition (SC), Kloster Seeon, Germany, 2012.
Related: Chap. 5

1.3 Collaborations

The search strategy based on decision trees is one of two search strategies presented in
Chap. 4 and was originally addressed in the co-supervised Bachelor’s thesis of Martin Senk
[63]. The same chapter presents results of a field study conducted with human participants
in a real supermarket. This field study was carried out by Christopher Kalff and colleagues
of the Center for Cognitive Science at the University of Freiburg. To track the participants
in the supermarket, Christopher Kalff and colleagues used our proposed RFID-based local-
ization system. The resulting trajectories and performance metrics were then used by us
for a comparison with our proposed search technique. In Chap. 5, the segmentation and
classification of the pointclouds of the tabletop scenes has been implemented by Nikolas
Engelhard.

12 Chapter 1 Introduction

1.4 Notation

In Tab. 1.1 we illustrate notational conventions used throughout this thesis. Please note that
there is an ambiguity whether a boldface x denotes (a) a vector, (b) the outcome x1, . . . , xn

of a collection of scalar random variables, or (c) the outcome x1, . . . ,xn of a collection of
vector-valued random variables. It should be clear from the context which case applies and
we will therefore not further resolve this issue.

Table 1.1: Some notational conventions used in this thesis.

Symbol Meaning

Algebra and Geometry

x scalar
x vector
xT transposed vector
X matrix
a ∝ b a is proportional to b

Probability Theory and Monte Carlo Methods

X random variable
X multiple random variables
x possible outcome of a random variable, e.g. X = x
x multiple outcomes of the corresponding random variables, e.g. X = x
x1:t sequence of outcomes, x1:t = x1, . . . , xt
p(x) probability mass function or probability density function
p(z | x) conditional probability of z given x
x ∼ Dist x is distributed according to Dist
δx(·) Dirac delta function centered at x
Ep(X) expectation (expected value) of random variable X wrt. the distribution p
H(p) entropy of the distribution p

Probability Distributions and Stochastic Processes

BP beta process
Bern Bernoulli distribution
BeP Bernoulli process
CRP Chinese restaurant process
Dir Dirichlet distribution
DP Dirichlet process
GP Gaussian process
IBP Indian buffet process
Mult multinomial distribution
N normal distribution (Gaussian distribution)
NW normal-Wishart distribution
Pois Poisson distribution

CHAPTER 2

Basics

We review some of the theoretical foundations underlying the techniques
presented in later chapters. We aim at giving a concise yet readable in-
troduction to the various topics and we provide pointers to the literature
for the interested reader who desires a more in-depth treatment of these
topics.

We start by reviewing the basics of probability theory, which is the foundation for many
of the topics to follow. We then proceed with an introduction to Monte Carlo methods,
including particle filtering and Markov chain Monte Carlo (MCMC) methods. Particle
filtering is a frequently used technique for mobile robot localization. It will be utilized in
Chap. 3 for estimating the trajectory of a sensor platform moving through an RFID-enabled
environment. MCMC techniques will be of importance in Chap. 5 for performing posterior
inference in a generative probabilistic model of tabletop scenes. We then describe decision
trees, that will be used as a way to learn and represent search heuristics in Chap. 4. Next,
we discuss maximum entropy models, which will be used in the same chapter for modeling
a distribution over the possible locations of an object the robot is searching for. Finally, we
have a section on Bayesian nonparametrics, which covers three commonly used stochastic
processes. The first two processes, the Dirichlet process and the beta-Bernoulli process,
are the corner stones for our proposed hierarchical model of tabletop scenes that we will
describe in Chap. 5. The third stochastic process, the Gaussian process, is used in Chap. 3 to
represent signal strength maps as an alternative RFID localization method that we evaluate
alongside our proposed antenna-centric approach.

14 Chapter 2 Basics

2.1 Basics of Probability Theory

Mobile robots are autonomous systems that act in a flexible and adaptive way by observing
the world and by making their actions dependent on the current state of the world. For this,
the robot needs to acquire information about the current state of the world, including its
own state, and it needs to reason about how the state might evolve over time as well as how
its own actions might influence this state. Obviously, all three stages – sensing, planning,
acting – involve substantial uncertainties. A robot never directly observes the true state of
the world. Rather, it has to infer this state from sensor data, which might be inherently
ambiguous with regard to this state and, additionally, it might be subject to measurement
noise. Planning needs to deal with uncertainties, as the robot can never actually predict the
future states of the world with absolute certainty. Likewise, the outcome of its own actions
are uncertain, too, be it because a wheel slips on the ground or its gripper misses the bottle
on the table. A formal system to deal with uncertainty in a consistent way is probability
theory. Not surprisingly, there exists a wide range of techniques in mobile robotics that
have their theoretical foundation in probability theory [74] and many of the techniques
being used in this thesis are also based on probability theory. In the following, we will
therefore shortly review the basics of probability theory [59, 74].

Like propositional logic, probability theory deals with statements. However, in contrast
to propositional logic, these statements are not considered to be either true or false but to
be more or less likely. Hence, a statement is assigned a continuous value, a probability, in
the interval [0, 1]. Further, probability theory formalizes a consistent way for calculating,
or inferring, probabilities for statements based on the probabilities of other statements.
Equivalently, one might say probability theory deals with random events and the statements
are about the possible outcome of events. For example, consider the cast of a die. Then X
could be the random event that denotes the number of dots the die will show after it has
been cast. Then X = 2 is a statement about the outcome of this event, namely that the die
will show 2 dots. If we think it is a fair die, we might assign the probability p(X = x) = 1

6

for all possible outcomes x ∈ {1, . . . , 6}. In this example, X is a discrete random variable
with sample space X = {1, . . . , 6} and with a uniform discrete distribution p.

More formally, a random variable X is defined over a sample space X that defines all
possible outcomes and p is a probability distribution over the sample space X . For discrete
random variables, p is a probability mass function (PMF) and we denote by p(X = x) the
probability that the random variable will assume the value x. Often, we will simply write
p(x) for p(X = x). For continuous variables, p is a probability density function (PDF) and

2.1 Basics of Probability Theory 15

we denote by p(y) the value of the density function at y and by p(Y ∈ A) we denote the
probability of the event that the random variable Y assumes a value in the subset A ⊆ Y
with Y being the corresponding sample space. Probability distributions need to satisfy
certain consistency properties. First, a probability is a real in the interval [0, 1], hence

p(X = x) ∈ [0, 1] for all x ∈ X and p is a PMF (2.1)

p(Y ∈ A) ∈ [0, 1] for all A ⊆ Y and p is a PDF (2.2)

Next, the probabilities for discrete random variables sum to one and the density function
for continuous variables integrates to one.∑

x∈X
p(X = x) = 1 p is a PMF (2.3)∫

y∈Y
p(y) dy = 1 p is a PDF (2.4)

Further, probabilities are additive in the sense that for mutually exclusive events A =

{a1, . . . , an} with ai ⊆ X and ai ∩ aj = ∅ for i 6= j we have for a PMF p

p(X = A) = p(X = a1 or . . . or X = an) (2.5)

= p(X = a1) + · · ·+ p(X = an) (2.6)

and likewise for a PDF p with the corresponding adjustments in notation, e.g. p(Y ∈ A)

instead of p(X = A) and the {a1, . . . , an} then form a partition of the subset A ⊆ Y .
For ease of exposition, we assume for the rest of this section that all variables are discrete.
Some further properties that follow from the above-said are the certain event

p(X) = 1 (2.7)

the impossible event

p(∅) = 0 (2.8)

and the complementary event

p(A) = 1− p(X\A). (2.9)

16 Chapter 2 Basics

In any practical setting, we will have to deal with multiple random variables, e.g. X and
Y , and their joint distribution p(x, y) which corresponds to the event that X = x holds
and that Y = y holds. A joint distribution can be factorized into conditional distributions
according to the chain rule

p(x, y) = p(x | y)p(y) = p(y | x)p(x). (2.10)

Here, the conditional distribution p(x | y) is the distribution for the random variable X
given that we know (with certainty) that Y = y is the case. If the knowledge of the value
of Y tells us nothing about the possible values of X , then this would keep the distribution
for X unchanged such that p(x | y) = p(x) and we say these variables are independent.
Hence in this case we would have

p(x, y) = p(x)p(y) X and Y are independent. (2.11)

An important variant thereof is conditional independence, in which two variables X and
Y are dependent, but become independent when given knowledge of the value of a third
random variable Z. In this case, we say X and Y are conditionally independent given Z
and we have

p(x, y, z) = p(x, y | z)p(z) (2.12)

= p(x | z)p(y | z)p(z) X and Y are cond. indep. given Z. (2.13)

In practice, we will often deal with distributions with more than two variables. One way
of modeling complex joint distributions over multiple variables are Bayesian networks in
which we assume certain conditional independencies between these variables and factor-
ize the joint distribution into conditional distributions. These conditional distributions can
then be modeled by standard distributions such as the Gaussian distribution or the Poisson
distribution. The joint distribution can be represented as a directed acyclic graph like the
one depicted in Fig. 2.1a. The joint factorizes into conditional distributions for each of the
nodes, where the random variable of a node is conditioned on the random variables of its
predecessor nodes or parent nodes. Hence, for the example in Fig. 2.1a we have

p(a, b, c, d) = p(d | b, c)p(b | a)p(c | a)p(a). (2.14)

A further important concept is Bayes’ rule, which directly follows from the definition

2.1 Basics of Probability Theory 17

A

B C

D

(a)

S

D

(b)

Figure 2.1: Bayesian networks can be represented as directed acyclic graphs in which nodes represent random
variables and edges encode dependencies. Gray nodes correspond to observed variables and white
nodes to latent variables.

of conditional probabilities. Consider the following situation in which we have a random
variable D, which represents observable data that the robot may have obtained from sensor
measurements. Further, we have a latent random variable S, which represents some hypoth-
esis about the state of the world, that the robot likes to infer in the light of the data. That
is, we like to compute the conditional probability p(s | d) of a state given the data. If the
joint distribution is modeled by a Bayesian network such as the one depicted in Fig. 2.1b,
then the joint distribution factorizes as p(d, s) = p(d | s)p(s). This can be interpreted as
a causal model in which the state of the world influences the sensor data. We now need to
“invert” this causal relationship, by reasoning about the possible state of the world when
given the data. For this, we can apply Bayes’ rule

p(s | d) =
p(d | s)p(s)

p(d)
=

p(d | s)p(s)∑
s′ p(d | s′)p(s′)

. (2.15)

Here, the equivalence
∑

s′ p(d | s′)p(s′) = p(d) is an example for the law of total proba-
bility in which we integrate out a variable. Bayes’ rule illustrates the general principle for
posterior inference in Bayesian network with multiple variables. We have a joint distribu-
tion p(x, z) over several observed variables z = {z1, . . . , zn} and several latent variables
x = {x1, . . . , xm} and we like to infer the distribution over the latent variables given the
observed variables based on the definition of the joint distribution

p(x | z) =
p(z,x)

p(z)
=

p(z,x)∑
x′1
. . .
∑

x′m
p(z, x′1, . . . , x

′
m)
. (2.16)

In practice, though, it might be infeasible to compute the sum in the denominator. However,

18 Chapter 2 Basics

any quantity that depends on the distribution p(x | z) can be approximated by drawing
samples from this distribution and basing the calculations on the obtained samples. This is
the basic idea of Monte Carlo methods, which we will describe in the following.

2.2 Monte Carlo Methods

Monte Carlo methods [2, 46, 74] can be used to approximate intractable integrals or sums,
such as expectations with respect to a probability distribution p(x). In this case, the main
idea is to obtain a set of samples {x(1), . . . , x(N)} from a distribution p(x) over the sample
space X and then to approximate the expectation

Ep(f(x)) =

∫
x∈X

f(x)p(x) dx (2.17)

by the Monte Carlo approximation based on the samples

EN (f(x)) =
1

N

N∑
i=1

f(x(i)). (2.18)

The main problem here is to obtain samples from the distribution p(x). If the distribution
p(x) is of some standard form, such as a Gaussian, then there might exist dedicated algo-
rithms for directly drawing samples. However, for the general case of arbitrarily shaped
distributions or density functions, we need more generally applicable methods for drawing
samples. In the following, we will describe two widely used techniques for this: importance
sampling and Markov chain Monte Carlo. Further, we describe a sequential Monte Carlo
method for sampling from a dynamic Bayesian network that forms the basis for mobile
robot localization.

2.2.1 Importance Sampling

In importance sampling [14, 74], we side-step the impracticality of directly sampling from
p(x) by introducing an auxiliary proposal distribution q(x) from which we can easily sam-
ple. The samples from the proposal q(x) are then carefully adjusted such that they appear
to be sampled from the target distribution p(x) that we are actually interested in. For this,
the proposal distribution q(x) must have the same support X as the target distribution. The
following derivation is based on [14]. Remember that our initial attempt was to compute
the integral of Eq. (2.17), which we could rewrite by introducing the proposal distribution

2.2 Monte Carlo Methods 19

q(x) as follows

Ep(f(x)) =

∫
f(x)p(x) dx (2.19)

=

∫
f(x)

p(x)

q(x)
q(x) dx. (2.20)

Let us define the so-called importance weight as w(x) ≡ p(x)
q(x) and remember that

∫
w(x)q(x) dx =

∫
p(x)

q(x)
q(x) dx = 1. (2.21)

Then we have

Ep(f(x)) =

∫
f(x)

p(x)

q(x)
q(x) dx (2.22)

=

∫
f(x)w(x)q(x) dx (2.23)

=

∫
f(x)w(x)q(x) dx∫
w(x)q(x) dx

(2.24)

Both integrals appearing in Eq. (2.24) can be approximated by a Monte Carlo estimate with
respect to N samples {x(1), . . . , x(N)} drawn from q(x), which leads to

EN (f(x)) =
1
N

∑
i f(x(i))w(x(i))

1
N

∑
iw(x(i))

(2.25)

=
∑
i

f(x(i))
w(x(i))∑
i′ w(x(i′))

(2.26)

=
∑
i

f(x(i))w̃(x(i)), (2.27)

where

w̃(x(i)) ≡ w(x(i))∑
i′ w(x(i′))

(2.28)

is the normalized importance weight of sample x(i). Please note, that this method is also

20 Chapter 2 Basics

applicable if the target distribution p(x) is known only up to a normalizing constant, be-
cause this constant would cancel in Eq. (2.24) where it appears in each occurrence of the
importance weight w(x).

To summarize, we draw samples from q(x) and compute the normalized weights for each
sample based on the proposal density and the target density. Intuitively, we may say that
the target distribution is now (approximately) represented by the set of weighted samples.
Especially, the samples can be used to compute Monte Carlo estimates of expectations with
respect to the original target distribution.

However, there is the drawback that importance sampling depends on a well-designed
proposal distribution that should closely match the target distribution over the whole sample
space. Otherwise, we would “loose” many samples in low-probability regions of the target
distributions. For arbitrarily shaped target distributions it may become difficult to find
appropriate proposal distributions from which we can easily sample. Further, this will
become even more problematic for high-dimensional target distributions. In such situations,
we can apply Markov chain Monte Carlo methods, that we describe in the next section.

2.2.2 Markov Chain Monte Carlo

The main difficulty of importance sampling was to find a proposal distributions that globally
matches the target distribution as close as possible. Further, the samples have been drawn
independently of each other. If one sample happens to be in a high-probability region of
the target distribution, then this will have no influence on subsequent samples. Roughly
speaking, we would like to utilize this information and try to “explore” or search the space
in this region. This idea is taken up by Markov chain Monte Carlo (MCMC) methods,
in which we can utilize proposal distributions q(x | x(i)) that may depend on the latest
sample x(i). For example, we could sample from a proposal distribution that puts most of
its probability mass around a local neighborhood of x(i). We thereby get a sequence of
samples that move through the state space in small steps. However, if these samples should
represent draws from the target distribution, we must take care to also make this sequence
dependent on the target distribution in an appropriate way.

One commonly used MCMC method is the Metropolis-Hastings algorithm [2]. We are
given a target distribution p(x) known up to a normalization constant, a proposal distribu-
tion q(x′ | x), and an arbitrary initial sample x(0). We then iterate the following. Based on
the current sample x(i), we propose a new sample x? drawn from the proposal q(x? | x(i)).

2.2 Monte Carlo Methods 21

We then compute the acceptance ratio

R =
p(x?)q(x(i) | x?)
p(x(i))q(x? | x(i))

, (2.29)

and set the new sample x(i+1) to

x(i+1) =

x? with probability min(1, R)

x(i) with probability 1−min(1, R)
. (2.30)

Thus, the proposed sample x? is either accepted or rejected with a probability depending
on the acceptance ratio R. If the sample is accepted, the Markov chain “moves” to this
proposed location, otherwise, it “stays” at the current location. The obtained sample is then
added to the set of samples that represent draws from the target distribution. Thus, if the
chain stays at the current location, the obtained sample is once again added to the set of
samples.

Another MCMC method is Gibbs sampling, which can be derived as a special case of
the Metropolis-Hastings algorithm. The following derivation is based on [2]. In Gibbs
sampling, we have a multidimensional state space x = (x1, . . . , xn) and we propose a
new sample by changing only a single variable xj while the other variables, denoted as
x[−j], remain unchanged. Thus, based on the i-th sample x(i) we would propose a sample

x? = (x
(i)
1 , . . . , x

(i)
j−1, x

?
j , x

(i)
j+1, . . . , x

(i)
n). The proposal distribution draws x?j from the full

conditional distribution p(x?j | x
(i)
[−j]) of the target distribution, and hence

qj(x
? | x(i)) =

p(x?j | x
(i)
[−j]) if x?[−j] = x

(i)
[−j]

0 otherwise
. (2.31)

The acceptance ratio for a sample proposed in this way is

R =
p(x?)

p(x(i))

qj(x
(i) | x?)

qj(x? | x(i))
(2.32)

=
p(x?)

p(x(i))

p(x
(i)
j | x?[−j])

p(x?j | x
(i)
[−j])

(2.33)

=
p(x?j | x

(i)
[−j])p(x

(i)
[−j])

p(x
(i)
j | x?[−j])p(x

?
[−j])

p(x
(i)
j | x?[−j])

p(x?j | x
(i)
[−j])

(2.34)

22 Chapter 2 Basics

=
p(x

(i)
[−j])

p(x?[−j])
(2.35)

= 1. because x
(i)
[−j] = x?[−j] (2.36)

Thus, the proposed sample is always accepted. During Gibbs sampling we would apply this
step for each dimension or variable of the state space, either in a fixed or random order. The
main drawbacks of a Gibbs sampler are twofold. First, we must be able to draw samples
from the full conditional distribution of the target distribution. If it is impossible to directly
sample from this conditional, then this could be side-stepped by using Metropolis-Hastings
steps to sample from the conditional. This is known as “Metropolis within Gibbs”. Second,
because we are only changing a single variable at a time the sampler might easily get
stuck in local minima if there exist strong dependencies between several variables. In this
case, it is beneficial to extend the principle of Gibbs sampling to the case where we jointly
propose new values for these strongly correlated variables. This is known as blocked Gibbs
sampling. However, as more variables are clumped together in one block, it might become
increasingly difficult to devise a sampling strategy to jointly draw new values for these
variables from the implied conditional distribution of the target distribution.

In practical applications of MCMC methods, one usually ignores the first couple of sam-
ples during a “burn-in” period. This is, because the initial sample x(0) usually lies in a
region of low probability and the Markov chain first has to reach regions of high probabil-
ity and, therefore, the first samples are not representative for the target distribution. Further,
one could take into account only every n-th sample of the chain to minimize the correlation
between the samples. In contrast to importance sampling, MCMC methods can take ad-
vantage of having found regions of high probability by exploring these regions with local
moves from the proposal. However, if the target distribution is multimodal and the modes
are far apart, it may easily happen that the chain only explores a single mode. One could try
to avoid this by starting several independent chains from different initial locations. Further,
one could propose more global moves from time to time in the hope of reaching an area
close to another mode. Hence, it is apparent that also for MCMC methods it can be difficult
to come up with well-designed proposal distributions.

2.2.3 Monte Carlo Localization for Mobile Robots

Monte Carlo localization [21, 74] is an approach for tracking the pose of a robot by formal-
izing the tracking problem as in inference problem in a dynamic Bayesian network such as

2.2 Monte Carlo Methods 23

x0

u1

x1

u2

x2

u3

x3 . . .

z1 z2 z3

m

Figure 2.2: The Bayesian network used for mobile robot localization. Gray nodes denote observed variables.

the one depicted in Fig. 2.2. The robot’s pose is modeled as a latent variable xt that evolves
over time in discrete steps. The motion model p(xt | xt−1, ut) describes how the pose at a
certain time t depends on the previous pose xt−1 and the latest motion command or control
ut of the robot. Further, this distribution could depend on the map m to model impossible
transitions through walls, though for simplicity we omit this here. At each time step, the
robot takes a sensor measurement zt and the senor model p(zt | xt,m) describes how a
measurement depends on the current pose of the robot and a given map m of the environ-
ment. For localization purposes, we are interested in the belief bel(xt) as a distribution
over the current location of the robot. This corresponds to the posterior distribution

bel(xt) = p(xt | z1:t, u1:t,m) (2.37)

over the current pose of the robot conditioned on the map and all past measurements and
controls. Further, all past states have been integrated out. To compute the belief for the next
time step, we first compute the predictive distribution bel(xt+1) which is the distribution
that takes into account the next control ut+1 but does not yet include the information about
the next measurement

bel(xt+1) = p(xt+1 | z1:t, u1:t+1,m) (2.38)

=

∫
xt

p(xt+1 | xt, ut+1) bel(xt) dxt. (2.39)

Finally, the predicted belief is adjusted by incorporating the information about the new

24 Chapter 2 Basics

measurement zt and hence

bel(xt+1) ∝ p(zt+1 | xt+1)bel(xt+1). (2.40)

In Monte Carlo localization the state distribution is represented nonparametrically by a
set of weighted samples called particles and the resulting method is also called a particle fil-
ter. As argued in [74], the particle filter can actually be thought of estimating a distribution
bel(x1:t) over the full trajectory x1:t = x1, . . . , xt instead of just the filtering distribution
bel(xt) over the last pose xt. Thus, the set of weighted particles {x(i)

1:t, w
(i)
t }Ni=1 represents

an estimate of bel(x1:t). However, if we simply ignore the past states x(i)
1:t−1 of each parti-

cle, then {x(i)
t , w

(i)
t }Ni=1 also defines an estimate of the desired filtering distribution bel(xt)

over the current state.

The particle filter then starts with an initial distribution over the first time step and then
adjusts the particle set to represent a distribution over successively longer histories. In
detail, this works as follows:

• Initialization: Initialize the particle set once by drawing each particle from the prior
x

(i)
0 ∼ p(x0) and set the weights uniformly to w(i)

0 = 1
N .

• Prediction: For each particle x(i)
1:t, sample a new state for the next time step by sam-

pling from the motion model x(i)
t+1 ∼ p(xt+1 | x(i)

t , ut) and append this state to the
history of the particle.

• Update: Compute the new importance weight of each particle w(i)
t+1 = p(zt+1 |

x
(i)
t+1,m) and then normalize the weights.

• Resampling: Resample N particles from the particle set according to their current
weights. Then set w(i)

t+1 = 1
N for each particle.

The weighing of the particles in the update step accounts for the fact that the particles
have been sampled from the predictive distribution

bel(x1:t+1) = p(xt+1 | xt, ut+1) bel(x1:t) (2.41)

but we are actually interested in obtaining samples from the updated belief

bel(x1:t+1) = η p(zt+1 | xt+1)bel(x1:t+1), (2.42)

2.3 Decision Tree Learning 25

that also takes into account the latest sensor measurement. We can use the principle of
importance sampling to correct for this mismatch by computing an importance weight for
the particles by dividing the target distribution by the proposal distribution

w
(i)
t+1 =

bel(x
(i)
1:t+1)

bel(x
(i)
1:t+1)

(2.43)

=
η p(zt+1 | x(i)

t+1,m)bel(x
(i)
1:t+1)

bel(x
(i)
1:t+1)

(2.44)

= η p(zt+1 | x(i)
t+1,m). (2.45)

Please note, that the normalizer η is of no importance, as it cancels during the normalization
of the weights.

The resampling step transforms the non-uniformly weighted particles into a set of uni-
formly weighted particles. The set may now contain duplicates of previously highly weighted
particles and particles with a low importance weight may get lost. This is a crucial step,
because we only have a finite set of particles and, therefore, it is necessary to concentrate
the particles in regions of high probability.

In an important variant of the particle filter the resampling step is delayed. In this case,
the importance weight is adjusted to take into account the previous weight such thatw(i)

t+1 =

p(zt+1 | x(i)
t+1,m)w

(i)
t . The weights can still be normalized in each iteration. A common

criterion to decide when to perform a resampling step is the number of effective particles
defined as

Neff =
1∑

i

(
w

(i)
t

)2 . (2.46)

If this number falls below a certain threshold, typically N
2 , a resampling step is performed

and the weights are again initialized uniformly as 1
N .

2.3 Decision Tree Learning

Decision trees [52, 8, 59] can be used for supervised classification, in which we are given a
set of labeled training examples {(c(i), a

(i)
1 , . . . , a

(i)
n)}mi=1. Here, we assume that the labels

c(i) ∈ {0, 1} are binary and their values denote if the corresponding example is a positive or
negative one. Further, we have a set of attributes A = {A1, . . . , An}, where each attribute

26 Chapter 2 Basics

defines a finite set of possible values Ai = {vi,1, . . . , vi,k}. Besides the label, each training
example is additionally described by a set of attribute values ai ∈ Ai.

A decision tree can be used to classify a new example or observation based on its attribute
values. For this, the observation is propagated top-down through the tree. Each node of the
tree corresponds to a test for a certain attribute Ai of the observation. Depending on the
attribute value ai of the observation it is propagated to one of the child nodes. The leaf
nodes are associated with a class label that defines the classifier output.

To learn the decision tree, it is constructed top-down and each node is associated with a
set of positive Ep and negative En examples of the training set and a setAu of yet untested
attributes. At each node, an attribute A ∈ Au is chosen that maximizes the information
gain

G(A) = I (|Ep| , |En|)−
∑
v∈A

∣∣Ep(v)

∣∣+
∣∣En(v)

∣∣
|Ep|+ |En|

I
(∣∣Ep(v)

∣∣ , ∣∣En(v)

∣∣) (2.47)

where

I(p, n) = − p

p+ n
log2

(
p

p+ n

)
− n

p+ n
log2

(
n

p+ n

)
(2.48)

denotes the information entropy and Ep(v) ⊂ Ep and En(v) ⊂ En are the subset of positive
and negative examples, respectively, at this node for which attribute A assumes the value
v. If the examples of a node belong to one class only, the node becomes a leaf node with
the respective class. If no other attributes are left, the class of a leaf node is defined by the
majority vote of the associated examples.

2.4 Maximum Entropy Models

The maximum entropy principle [31, 6] basically states that from a family of distributions
which are consistent with our prior knowledge we should choose the one with the highest
information entropy. The maximum entropy principle is quite general and we will restrict
ourselves in this section to the case of estimating a finite, discrete distribution where the
prior knowledge is given as a set of expectations.

Suppose we have a random variableX defined over the sample spaceX = {x1, . . . , xn}.
Then the corresponding discrete distribution is parametrized by a n-dimensional probability
vector q = (q1, . . . , qn), which means qi ∈ [0, 1], and

∑
i qi = 1, and p(X = xi) = qi.

Among all possible distributions we seek the one with the highest entropy. If we have no

2.4 Maximum Entropy Models 27

further constraints, except for the normalization constraint, then we maximize

q̂ = arg max
q

H(q) such that
n∑
i=1

qi = 1 (2.49)

= arg max
q

n∑
i=1

−qi log qi (2.50)

where H(q) denotes the information entropy. We find that the uniform distribution with
q̂i = 1

n for all i is the distribution with the highest entropy. Suppose, we are additionally
given m arbitrary “feature” functions indexed by j

fj : X → R for each j = 1, . . . ,m. (2.51)

For each of these functions we are given a value Ej that must be matched by the expected
value of the function with respect to the discrete distribution, that is, it should hold that

Ej =
∑
i

qifj(xi) for each j = 1, . . . ,m. (2.52)

This way, each feature function along with its corresponding value Ej poses an additional
constraint on the admissible values for the vector q, because the functions fj and the values
Ej are fixed and our only hope to fulfill Eq. (2.52) is by finding the right values for the
qi. We thus have a constrained optimization problem: we seek to maximize the entropy
H(q) subject to the m constraints of Eq. (2.52) plus one additional constraint which is the
normalization constraint that ensures that the qi sum to one. For each of these constraint we
introduce a Lagrange multiplier λ ∈ R and transform the constrained optimization problem
into an unconstrained optimization problem of an extended function h(q,λ) which now
includes λ as a parameter and which has the following form

h(q,λ) = h(q1, . . . , qn, λ0, λ1, . . . , λm) (2.53)

= −
∑
i

qi log qi︸ ︷︷ ︸
entropy

− λ0

(∑
i

qi − 1

)
︸ ︷︷ ︸
normalization constraint

−
∑
j

λj

(
Ej −

∑
i

qifj(xi)

)
︸ ︷︷ ︸

expectation constraints

. (2.54)

We will sometimes refer to the Lagrange multipliers λ1, . . . , λm for the expectation con-
straints as “feature weights”, the reason for this will soon become more apparent.

28 Chapter 2 Basics

Now we need to find the parameters of h(q,λ) by setting its gradient to zero. The
derivation for this is shown in Appendix A.2. This results in the following form for each qi
of the discrete distribution

qi =
exp

(∑
j λjfj(xi)

)
∑

i′ exp
(∑

j λjfj(xi′)
) . (2.55)

Thus, the probability p(xi) = qi for each state xi is proportional to an exponentiated sum of
weighted feature functions where the λ1:m = λ1, . . . , λm play the role of feature weights.
However, we still need to determine these weights. To do so, we consider the following
scenario. Suppose, we have a set of ns samples {x(s)}nss=1 from the sample space X such
that each x(s) ∈ X . This data set defines an empirical distribution

p̃(x) =
1

ns

ns∑
s=1

δx(s)(x). (2.56)

Further, suppose that the values Ej , that up to now were supposed to be arbitrary given
values, are actually the feature expectations with respect to the empirical distribution p̃(x)

as represented by the data set, which means

Ej = Ep̃(x) [fj(x)] =
1

ns

ns∑
s=1

fj(x
(s)) for each j = 1, . . . ,m. (2.57)

Further, we suppose that these samples have been drawn from a distribution of the form as in
Eq. (2.55). We can then consider a parameter estimation problem in a maximum likelihood
setting. This means, we derive the feature weights by maximizing the log-likelihood of the
data set with respect to the parameters, or, equivalently, the average log-likelihood `(λ1:m).
Before we proceed, we introduce some notation to enhance readability. We denote by

f(x) = (f1(x), . . . , fm(x)) for any x ∈ X (2.58)

the feature vector formed by the individual feature functions and we introduce a potential
function ψ(x) with

ψ(x) = exp
(
λ1:mfT(x)

)
(2.59)

2.4 Maximum Entropy Models 29

= exp

∑
j

λjfj(x)

 . (2.60)

Then we can rewrite Eq. (2.55) more compactly as

p(x) =
ψ(x)∑
x′ ψ(x′)

(2.61)

where we now use the more common notion
∑

x ψ(x) instead of
∑

i ψ(xi) – in both cases
the sum is supposed to run over all x ∈ X . Using this notation, the average log-likelihood
`(λ1:m) of the data set with respect to the parameters is

`(λ1:m) =
1

ns

∑
s

log p(x(s)) (2.62)

=
1

ns

∑
s

log
ψ(x(s))∑
x ψ(x)

(2.63)

=
1

ns

∑
s

(
logψ(x(s))− log

∑
x

ψ(x)

)
. (2.64)

The gradient of `(λ1:m) is

∇`(λ1:m) = Ep̃(x)[f(x)]− Ep(x) [f(x)] . (2.65)

The derivation for the gradient is shown in Appendix A.3. Here,Ep̃(x)[f(x)] is the expected
feature vector with respect to the empirical distribution p̃(x) as represented by the data set
and Ep(x) [f(x)] is the expected feature vector of the model using the current parameters.
In short, the gradient is computed by the discrepancy between the empirical feature expec-
tation and feature expectation of the model using the current parameters λ1:m.

The optimization problem is convex and the parameters will therefore approach a global
optimum. It can be solved with any standard optimization method. For our approach
presented in Chap. 4, we employ the RPROP algorithm [56] as an efficient gradient-based
optimization technique.

30 Chapter 2 Basics

2.5 Bayesian Nonparametrics

As noted in [34], the “basic idea of Bayesian nonparametrics is to replace classical finite-
dimensional prior distributions with general stochastic processes”. In this section, we give
a brief introduction to three stochastic processes that are commonly used in Bayesian non-
parametrics. The first two are the Dirichlet process and the beta-Bernoulli process. In this
context, we will also discuss hierarchical and nested extensions. The third and last process
that we discuss is the Gaussian process as used in Gaussian process regression. For a more
in-depth introduction to the first two processes, we also like to refer the interested reader
to the tutorials of Teh and Jordan [70] and Gershman and Blei [23]. Gaussian process
regression is presented in all detail in [54].

2.5.1 Dirichlet Process and Chinese Restaurant Process

The Dirichlet process can be considered as an infinite dimensional variant of the Dirichlet
distribution and a draw from it can be considered as an infinite multinomial distribution.
The Dirichlet process is frequently used as a prior in mixture models in which it replaces
a finite dimensional Dirichlet distribution. To help grounding the theory, and for present-
ing a motivating example application, we will therefore first start with a discussion a finite
Gaussian mixture models and the corresponding extension to a Dirichlet process Gaussian
mixture model (DPGMM). We then give a formal definition of the Dirichlet process and,
next, we illustrate an explicit representation of draws from this process by means of the
stick-breaking construction. In contrast to parametric models, which have a finite number
of parameters, the Dirichlet process is a nonparametric model with infinitely many param-
eters. This is problematic when we want to implement inference algorithms for models
based on the Dirichlet process, as we obviously cannot explicitly represent infinitely many
parameters. However, we will see that the posterior predictive distribution of the DP has
a finite dimensional representation which permits feasible algorithms for posterior infer-
ence, for example in infinite mixture models. This posterior predictive distribution of a
DP is closely related to the Chinese restaurant process (CRP). The connection to the DP
is, that the sequential sampling of observations from the CRP can be described in terms of
sampling from a sequence of posterior predictive distributions of a DP.

The description of the Dirichlet process and related concepts in this section is mainly
based on [18, 47, 70, 71, 78] and we would like to redirect the interested reader to these
articles for a more thorough description.

2.5 Bayesian Nonparametrics 31

2.5.1.1 Finite Gaussian Mixture Models

The Dirichlet process is often used as a prior in mixture models and it will prove useful
to keep this application in mind when we later discuss the Dirichlet process itself. In this
section, we will therefore first start with a discussion of finite Gaussian mixture models
(GMM) that make use of a Dirichlet distribution as a prior over the mixture weights and
we will see that the use of a Dirichlet process prior will cause only a slight modification in
the inference procedure. This change, however, will result in a more flexible model, which
is able to adjust the number of mixture components during inference.

As a motivation, consider a scenario in which we are given a set of N points x1:N with
xi ∈ Rd for some d ≥ 1 and we are interested in the predictive distribution p(x∗ | x1:N)

that models the likelihood of observing a point at a certain location x∗ given that we already
have seen the points x1:N . We assume that these points have been drawn from a Gaussian
mixture density p(x | β) parametrized by some β. The parameters β include the mixture
weights and the parameters of the Gaussians, but we will postpone these details for the
moment. The actual form of the mixture density is unknown to us but we have a prior
distribution p(β) over possible mixture densities. By observing the data points our prior
over mixture densities is updated and we have a more informed posterior distribution over
mixture densities

p(β | x1:N) ∝ p(β)
N∏
i=1

p(xi | β). (2.66)

By marginalizing the mixture density we arrive at the posterior predictive distribution

p(x∗ | x1:N) =

∫
β
p(x∗ | β)p(β | x1:N) dβ (2.67)

which models the likelihood of a new point at location x∗ given the previously seen points.
The trouble is, we might not be able solve the integral analytically. However, we can use
Markov chain Monte Carlo techniques to obtain samples {β(j)}Mj=1 from the posterior dis-
tribution p(β | x1:N) and compute a Monte Carlo approximation of the posterior predictive
distribution as

p(x∗ | x1:N) ≈ 1

M

M∑
j=1

p(x∗ | β(j)). (2.68)

In the following, we describe the details of how to utilize Gibbs sampling to draw sam-

32 Chapter 2 Basics

ples from the posterior distribution. We are given N data points x1:N with xi ∈ Rd that
have been sampled from a mixture density consisting of K Gaussians

xi ∼ p(· | w,µ1,Σ1, . . . ,µK ,ΣK) =
K∑
k=1

wkN (· | µk,Σk). (2.69)

This mixture density is parametrized by the mixture weights w = (w1, . . . , wK), which
sum to one, and the parameters of the Gaussians, i.e., their respective mean µk and co-
variance matrix Σk. We will sometimes refer to the Gaussians as mixture components or
clusters and refer to their parameters as cluster parameters θk = (µk,Σk). We are free to
choose any suitable prior for the latent parameters of the mixture density. In our example,
we will use their respective conjugate priors and thus place a Dirichlet prior p(w) on the
weights and a normal-Wishart prior p(µk,Σk) on each of the cluster parameters.

Sampling data points from the implied generative process works as follows. First, we
draw a mixture density by sampling K Gaussians from the normal-Wishart distribution
and the mixture weights from a Dirichlet distribution. Given the resulting mixture density,
we draw each data point xi independently by first sampling a cluster component ci ∼
p(ci | w) according to the weights. Then, we sample the actual observable data point
xi ∼ N (xi | µci ,Σci) from the corresponding Gaussian ci. Please note, that we thereby
introduced correspondence variables ci ∈ {1, . . . ,K} that denote the cluster from which a
point has been sampled from. For example, if c4 = 3 then point x4 has been sampled from
cluster 3. The correspondence variables are also treated as latent variables. In accordance
with the introductory remarks, we denote the latent variables by β but we now include the
correspondence variables, so we have β = (w,θ1:K , c1:N).

To wrap up, the generative process can be described more concisely as

w = (w1, . . . , wK) ∼ Dir(· | α) once (2.70)

θk = (µk,Σk) ∼ NW(· | ν0, κ0,µ0,T0) for k = 1, . . . ,K (2.71)

ci ∼ Mult(· | w) for i = 1, . . . , N (2.72)

xi ∼ N (· | µci ,Σci) for i = 1, . . . , N (2.73)

and the corresponding Bayesian network is depicted in Fig. 2.3.

A complete Gibbs sweep samples new values for each of the latent variables from their
respective conditional distributions. We start with an arbitrary initial state β(0). It will
prove useful to have an intuitive visualization of this state. If, as a toy example, we would

2.5 Bayesian Nonparametrics 33

α

w ν0 κ0 µ0 T0

θk
ci

xi

i = 1, . . . , N

k = 1, . . . ,K

Figure 2.3: Bayesian network representing a finite Gaussian mixture model.

w1 w2 w3 w4

θ1 θ2 θ3 θ4

x1

x2

x3

x4

x5

x6

Figure 2.4: A visual representation of a sample β(i).

have four Gaussians and six data points then a state β(i) of the Markov chain could be
visualized by the matrix depicted in Fig. 2.4. Here, each row corresponds to a data point
and each column corresponds to a cluster. The binary matrix visualizes the correspondence
variables, e.g. here the data point x4 is currently associated to the third Gaussian which
means we have c4 = 3. Further, each column is associated with the cluster variables: the
parameters θk of a Gaussian and its weight wk. We now need to resample the entries of the
binary matrix, i.e., the correspondence variables, as well as the cluster parameters. For the

34 Chapter 2 Basics

correspondence variable we sample a new value from the following distribution

p(ci | x1:N , c[−i],w,θ1:K) = p(ci | xi,w,θ1:K) (2.74)

∝ p(xi | ci,θ1:K)p(ci | w) (2.75)

= N (xi | µci ,Σci)︸ ︷︷ ︸
likelihood

wci︸︷︷︸
prior

. (2.76)

As can be seen in Eq. (2.76) the probability of assigning data point xi to cluster ci
depends on the cluster’s prior probability (which is determined by the current weight wci of
the cluster) and the likelihood under the cluster’s data distribution (which is the likelihood
of the point xi under the current parametrization of the cluster’s Gaussian distribution).

To complete one round of Gibbs sampling, we would resample the weights and param-
eters of the Gaussians. But there is an alternative to this. Remember that our initial mo-
tivation was to integrate out the model parameters. We then resorted to a Monte Carlo
approximation of the integral, because we realized we could not solve the integral analyt-
ically in general. However, because we used conjugate priors for the mixture weights and
the cluster parameters, we actually can integrate out at least these variables, though we still
need to explicitly represent and sample the correspondence variables. Thus, the posterior
over the latent variables can be expressed solely in terms of the correspondence variables
p(c1:N | x1:N). This modified Gibbs sampling procedure is known as a collapsed Gibbs
sampler. It will resample each correspondence variable ci from the following distribution

p(ci | c[−i],x1:N) ∝ p(xi | c,x[ci])︸ ︷︷ ︸
likelihood

p(ci | c[−i])︸ ︷︷ ︸
prior

. (2.77)

Here, x[ci] denotes all data points currently associated to the the cluster ci. As can be
seen, the marginalization of the mixture weights and cluster parameters introduced new
dependencies between some of the variables which previously have been conditionally in-
dependent.

For example, the conditional probability p(ci | w) of a correspondence variable was
independent of other correspondence variables given the weights. By marginalizing the
weights, the correspondence variables are now dependent on each other, which results in
the following new form of the cluster prior

p(ci = k | c[−i]) =
nk + αk∑
j nj + αj

. (2.78)

2.5 Bayesian Nonparametrics 35

Here, nk is the number of points currently assigned to cluster k, where the count excludes
the association of point xi itself. In the matrix representation of Fig. 2.4, this corresponds
to the number of black squares in column k, where we ignore the row of point xi. The
αk are parameters of the Dirichlet prior which in this case act as pseudo-counts for the K
clusters.

Similar arguments hold for the likelihood p(xi | ci,θ1:K) of a single data point which
was independent of other data points given its correspondence variable ci and the cluster
parameters θ1:K . By marginalizing out the cluster parameters the likelihood now becomes
dependent on all other data points x[ci] currently assigned to cluster ci

p(xi | c,x[ci]) = tv(xi | µci ,Σci). (2.79)

This is the posterior predictive distribution with respect to a normal-Wishart prior. The re-
sulting distribution is a multivariate t-Distribution tv(xi | µci ,Σci), where the parameters
µci and Σci are determined both by the parameters ν0, κ0,µ0,T0 of the normal-Wishart
prior as well as the location of the data points x[ci]. The details for calculating this like-
lihood can be found in the appendix A.1. To summarize, the collapsed Gibbs sampler
resamples the cluster assignments from the following distribution

p(ci = k | c[−i],x1:N) ∝ tv(xi | µci ,Σci)(nk + αk). (2.80)

2.5.1.2 Dirichlet Process Gaussian Mixture Models

A drawback of finite Gaussian mixture models is that we have to specify the number of
clusters K in advance. It is unlikely that in any practical setting we could assume to know
this number and we should rather treat it as another latent variable. Hence, it would be
desirable to have a more flexible model that could increase or decrease the number of in-
stantiated mixture components during inference as needed. The Gibbs sampling procedure
would then provide us with samples that additionally imply a posterior distribution over the
number of mixture components.

Such a model can be obtained by replacing the Dirichlet distribution over the mixture
weights with a Dirichlet process and the resulting model is called a Dirichlet process Gaus-
sian mixture model (DPGMM) [47]. The usage of a Dirichlet process prior reflects the
assumption that there are actually infinitely many mixture components. Accordingly, if we
draw the mixture weights from a Dirichlet process we get a vector with infinitely many en-
tries that still sum to one. As for the finite variant, we can also analytically integrate out the

36 Chapter 2 Basics

weight vector and the resulting posterior predictive distribution for a correspondence vari-
able ci has a similarly simple form. Denoting the number of currently instantiated clusters
in the model by K, the new cluster prior is

p(ci = k | c[−i]) =


nk

α+
∑
j nj

k is an existing cluster (k ≤ K)

α
α+

∑
j nj

k is a new cluster (k = K + 1)
. (2.81)

Here, α is a parameter stemming from the Dirichlet process. The prior to assign a data point
to an already existing cluster is proportional to the number nk of points already associated
with this cluster (not counting the point xi itself). With a probability proportional to α
we would add a new cluster to our model and the point will be associated to this newly
instantiated cluster. This would correspond to the expansion of the matrix in Fig. 2.4 by
one column. If xi is the only point of its cluster, then this cluster is removed from the model
prior to resampling the correspondence variable ci. Please note, that K is not a predefined
constant anymore, rather it will be implicitly determined by the correspondence variables.

For the complete conditional distribution that is used by the Gibbs sampler, we only need
to combine this prior with the likelihood of the data distribution of the respective clusters

p(ci = k | c[−i],x1:N) ∝

p(xi | c,x[k])nk k is an existing cluster (k ≤ K)

p(xi | c)α k is a new cluster (k = K + 1)
. (2.82)

Here, we assume that the cluster parameters are integrated out and we work with the poste-
rior predictive distributions p(xi | c,x[k]) with respect to the normal-Wishart prior. When
considering a new cluster, the likelihood is the prior predictive distribution p(xi | c) of the
normal-Wishart prior as there are no points associated to this newly instantiated cluster yet.

In Fig. 2.5 we illustrate an example run of a collapsed Gibbs sampler for a DPGMM.
Each iteration corresponds to one Gibbs sweep during which each correspondence variable
is sampled once. For generating the data set that is shown on top, we sampled 300 data
points from three Gaussians. The Dirichlet process prior uses a concentration parameter of
α = 1.0 and the normal-Wishart prior has parameters µ0 = (0, 0)T, κ0 = 0.2, ν0 = 5.0,
and T0 = 0.0025I. In the example run shown in Fig. 2.5, we had either three or four active
clusters in each iteration, though we also saw more clusters in different runs. If more than
three cluster existed, then these additional clusters usually had no more than a few data
points assigned to it. For each iteration shown in Fig. 2.5, we depict on the left side the
posterior predictive distribution of the mixture density when conditioned on the data points

2.5 Bayesian Nonparametrics 37

−0.1 0 0.1

−0.1

0

0.1

−0.1 0 0.1

−0.1

0

0.1

−0.1 0 0.1 −0.1 0 0.1 −0.1 0 0.1
(a) Iteration 1. (e) Iteration 10.

−0.1 0 0.1

−0.1

0

0.1

−0.1 0 0.1 −0.1 0 0.1 −0.1 0 0.1

(b) Iteration 2. (f) Iteration 15.

−0.1 0 0.1

−0.1

0

0.1

−0.1 0 0.1 −0.1 0 0.1 −0.1 0 0.1

(c) Iteration 3. (g) Iteration 20.

−0.1 0 0.1

−0.1

0

0.1

−0.1 0 0.1 −0.1 0 0.1 −0.1 0 0.1

(d) Iteration 5. (h) Iteration 25.

Figure 2.5: Example run of a collapsed Gibbs sampler for a DPGMM.

38 Chapter 2 Basics

with their current cluster assignments. On the right side, we depict the most likely cluster
assignment for a new point. Any new point that falls into the red area would most likely be
assigned to a newly instantiated cluster.

We have seen, that this sampling technique can increase or decrease the number of com-
ponents in the mixture model, which allows the effective model complexity to adapt to the
data complexity as needed. Hence, this gives us the desired flexibility of not having to
specify the number of components in advance. We now rather have a prior over the number
of components which is influenced by the parameter α. The higher α the more components
we expect a priori. Posterior inference in this model remains tractable, even though we
assume that there exist infinitely many mixture components, because we only have to con-
sider the currently instantiated clusters plus the possibility of expanding the model with one
additional cluster. This makes the model also appealing from a computational perspective.
In the following, we will discuss the Dirichlet process in more detail.

2.5.1.3 Definition of the Dirichlet Process

The Dirichlet process was introduced by Ferguson [18]. It can be defined as follows.1 Let
G0 be a distribution over the sample space Ω, and let α > 0 be a positive real number. Then
a random distribution G over the sample space Ω is distributed according to a Dirichlet
process with concentration parameter α and base distribution G0

G ∼ DP(α,G0), (2.83)

if for all k ≥ 1 and all partitions (A1, . . . , Ak) of Ω the vector (G(A1), . . . , G(Ak)) is
Dirichlet distributed according to

(G(A1), . . . , G(Ak)) ∼ Dir(αG0(A1), . . . , αG0(Ak)). (2.84)

The intuition behind Eq. (2.84) will become more apparent in the next section when we
look at an explicit representation for a draw G.

2.5.1.4 Stick-breaking Construction

The definition of the Dirichlet process as given above was not a constructive one. It did
not provide us with any means to actually draw a distribution G that satisfies these require-

1This is a slightly simplified definition that avoids measure theoretic jargon.

2.5 Bayesian Nonparametrics 39

0 1
w1

w2

w3

. . .

Figure 2.6: Stick-breaking construction for the Dirichlet process.

ments. In the following this will be remedied by the so-called stick-breaking construction.

A draw G ∼ DP(α,G0) from a Dirichlet process can be explicitly represented as an
infinite sum of weighted Dirac functions centered at values θi

G(·) =
∞∑
i=1

wiδθi(·). (2.85)

Hence, a sample G from the Dirichlet process is parametrized by an infinite set of tuples
{(wi, θi)}∞i=1. To draw a sample form a DP, we need to sample the individual values wi
and θi such that the correspondingG is distributed according to a Dirichlet process. The wi
and θi are sampled independently of each other. Let us first consider the atoms θi, which
are simply sampled independently from the base distribution G0

θi ∼ G0 for i = 1, . . . ,∞ (2.86)

Next, the weights wi are sampled according to

vi ∼ Beta(1, α) for i = 1, . . . ,∞ (2.87)

wi = vi

i−1∏
k=1

(1− vk) for i = 1, . . . ,∞ (2.88)

where α in Eq. (2.87) is the concentration parameter of the Dirichlet process. This is
the so-called stick-breaking process and there is an intuitive metaphor for describing this
process. One imagines a stick of length one and then breaks off a segment at a proportion
sampled from Beta(1, α). This will be the weight w1 for the first component of the infinite
sum. The remaining stick has length 1 − w1 and is then treated similarly. This process
recurses infinitely. Because the stick had a length of one, the infinitely many weights,
which correspond to the segments of the stick, must sum to one (see also Fig. 2.6).

40 Chapter 2 Basics

The intuition behind Eq. (2.84) should now be more apparent. Remember that the atoms
of G have been sampled from the base distribution G0 which is defined over the space Ω

and (A1, . . . , Ak) forms a partition of this space. Thus, each atom of G belongs to exactly
one subset Ai of Ω. The probability mass G(Ai) assigned to subset Ai by the distribution
G is simply the sum of the weights of the atoms within this region. Hence, the vector
(G(A1), . . . , G(Ak)) is a probability vector, i.e., its entries are in the interval [0, 1] and
they sum to one. If we keep the partition fixed and repeatedly sample G, then we would
get different probability vectors, because the weights and locations of the atoms changed.
Thus, for a given partition of Ω the Dirichlet process implicitly defines a distribution over
the corresponding probability vectors – and these vectors are distributed according to a
Dirichlet distribution with parameters αG0(Ai), . . . , αG0(Ak) and hence

(G(A1), . . . , G(Ak)) ∼ Dir(αG0(A1), . . . , αG0(Ak)). (2.89)

2.5.1.5 Chinese Restaurant Process

If we draw samples from G as given in Eq. (2.85), we obtain the atom θi with probability
wi. Now suppose we already have obtained a set of samples θ(1), . . . , θ(n) from G with
DP(α,G0) being the Dirichlet process prior over G. Then, the predictive distribution over
a new atom θ given the previous samples and the DP prior arises when we integrate out G.
This leads to:

p(θ | θ(1), . . . , θ(n), G0, α) =
α

α+ n
G0(θ) +

1

α+ n

n∑
i=1

δθ(i)(θ) (2.90)

=
α

α+ n
G0(θ) +

nθ
α+ n

. (2.91)

Here, nθ is the number of times the atom θ has been previously sampled.
This distribution is closely connected to the Chinese restaurant process (CRP). In this

metaphor, one imagines customers arriving sequentially at a Chinese restaurant with an
infinite number of tables. The first customer is seated at one of the tables and samples
an atom θ ∼ G0 from the base distribution. This will be the parameter of the table and
any subsequent customer seated at this table will inherit this parameter. When the n-th
customer arrives she will sit at an already occupied table with a probability proportional
to the number of customers sitting at this table and with a probability proportional to α
she will sit at a new table. In the second case, she also draws the parameter for this newly
occupied table. When the (n+1)-th customer is seated, the parameter θ at her table appears

2.5 Bayesian Nonparametrics 41

to be sampled from the posterior predictive distribution in Eq. (2.90). Note, that the table
assignments also imply a clustering of the customers.

2.5.1.6 Dirichlet Process Gaussian Mixture Models Revisited

We will now shortly revisit the Gaussian mixture model, to illustrate how the Dirichlet
process and the Chinese restaurant process are linked to the Dirichlet process Gaussian
mixture model (DPGMM) and the Gibbs sampling procedure that we described above.

Consider the following model which specifies a a particular multivariate DPGMM from
which we draw n points xi

G ∼ DP(α,NW(ν0, κ0,µ0,T0)) once (2.92)

{µci ,Λci} ∼ G for i = 1, . . . , n (2.93)

xi ∼ N (µci ,Λ
−1
ci) for i = 1, . . . , n (2.94)

In Eq. (2.92) we draw G from a Dirichlet process with a concentration parameter α and
a normal-Wishart prior NW that plays the role of the base distribution. Remember that
G is a set of infinitely many weighted atoms {wj , θj}∞j=1, where the weights are drawn
according to the stick-breaking process that is influenced by the concentration parameter α,
while the atoms θj are sampled independently from the base distribution. In our case, the
base distribution is a normal-Wishart distribution, which is a distribution over Gaussians
that are parametrized by their respective means µj and precision matrices Λj . Thus, each
atom θj = {µj ,Λj} in G corresponds to a Gaussian distribution and G corresponds to
an infinite Gaussian mixture model consisting of infinitely many weighted Gaussians with
different means and covariance matrices. Next, in Eq. (2.93) we draw one Gaussian mixture
component from G proportional to its weight. Here, ci is the correspondence variable of
the i-th point and denotes the index of the Gaussian we just sampled. The actual observable
data point xi is then sampled in Eq. (2.94) from the corresponding Gaussian distribution.

Instead of first drawing G from the Dirichlet process and then drawing the points inde-
pendently from the Gaussians defined by G we could also follow another sampling proce-
dure by switching to the Chinese restaurant representation. In this case, we would draw
the n points from a sequence of posterior predictive distribution p(xi | x1, . . . ,xi−1) that
arise when we integrate out the draw G from the Dirichlet process. Following the Chinese
restaurant metaphor, the data points correspond to customers, the mixture components cor-
respond to the tables and each table is associated with a table parameter which is a Gaussian

42 Chapter 2 Basics

drawn from the normal-Wishart prior. Drawing a data point in this representation works as
follows. First, a customer is seated according to the usual CRP rules at one of the tables.
Whenever a customer is seated at a new table we once draw a Gaussian from the normal-
Wishart prior and this Gaussians then becomes associated with this table and is reused for
any subsequent customers sitting at this table. The observed data point xi is then drawn
from the Gaussian at the table where it has been seated.

This Chinese restaurant representation of the above-defined DPGMM finally provides
the link to the Gibbs sampling procedure described earlier. In this procedure, we were
interested in inverting the generative process by inferring the cluster or table assignments
ci of a given set of data points. If we also integrate out the table parameters, i.e. the
Gaussians, then this corresponds to the collapsed Gibbs sampler.

2.5.2 Beta-Bernoulli Process and Indian Buffet Process

In the previous sections we saw that mixture models based on the Dirichlet process or the
Chinese restaurant process are useful for clustering data into distinct groups where each
data point is associated with one out of several latent clusters. For other applications, it
might be more appropriate to model data points or observations in terms of features, where
an observation would be associated with several features instead of a single class or cluster.
The task would then be to infer the latent features themselves and, for each observation, a
binary feature vector di = (di,1, . . . , di,k) with di,j ∈ {0, 1} that indicates for each of the
k features whether the observation is associated with it or not.

In a Bayesian setting, we need a prior for the feature vector of each individual observa-
tion. If we assume that the features are independent we can use a Bernoulli distribution
as a prior for the presence or absence of a certain feature in a given observation. Further,
we could use a single beta distribution as a prior over the parameters of the k Bernoulli
distributions. This is a finite model in which we have to specify a fixed number of features
in advance. For a more flexible model, we could assume that there exist infinitely many
features. For this, we replace the beta distribution with a beta process, which acts as a prior
for the parameters of an infinite collection of Bernoulli variables.

The beta process BP(c,G?0) is parametrized by a concentration parameter c and a base
measure G?0 that puts total mass α = G?0(Ω) on the sample space Ω. To make the mass
parameter α more obvious, we will use the notation BP(c, α,G0), where G0 = 1

αG
?
0 is a

2.5 Bayesian Nonparametrics 43

probability measure or base distribution. A draw

G ∼ BP(c, α,G0) (2.95)

from this process can be represented as an infinite set {wi, θi}∞i=1 of weighted atoms drawn
from the base distribution G0. In the Dirichlet process, the weights modeled a discrete
distribution and the weights therefore sum to one. In contrast, a draw from the beta process
can be thought of as an infinite collection of Bernoulli variables where their parameters are
defined by the weights wi of the atoms. Hence, G parametrizes a Bernoulli process and if
we sample from this process

θ = {θ1, . . . , θn} ∼ BeP(G) (2.96)

we get a set of atoms, where atom θi is part of the collection with probability wi and with
probability 1− wi it is absent.2

There also exist different stick-breaking constructions for the beta process. One vari-
ant [72], which is defined only for the special case of c = 1, has an interesting connection
to the stick-breaking construction of the Dirichlet process. It is defined as follows

θi ∼ G0 for i = 1, . . . ,∞ (2.97)

vi ∼ Beta(1, α) for i = 1, . . . ,∞ (2.98)

wi =
i∏

k=1

(1− vk) for i = 1, . . . ,∞ (2.99)

In Eq. (2.97), the location θi of the atoms are drawn independently from the base distribu-
tion G0. In Eq. (2.98), the break points vi for the stick are sampled just as for the Dirichlet
process, but in Eq. (2.99) the weights are defined to be the other part of the stick – the part
from which we resume to break off segments. This is also illustrated in Fig. 2.7 on the next
page. Without going into details, we like to point out that a stick-breaking construction for

2For the sake of simplicity, we present the draws from the beta process and the Bernoulli process not in terms
of random measures but in terms of the corresponding random parameters that parametrize these measures.
We sometimes also have done this when discussing the Dirichlet process. For example, a draw G ∼ DP
from the Dirichlet process is a probability measure G(·) =

∑∞
i=1 wiδθi(·) with parameters {wi, θi}∞i=1.

A draw H ∼ BP from the beta process is a completely random measure H(·) =
∑∞
i=1 wiδθi(·) with

parameters {wi, θi}∞i=1. A draw Z ∼ BeP from the Bernoulli process is a completely random measure
Z(·) =

∑∞
i=1 diδθi(·) with parameters {di, θi}∞i=1 with di ∈ {0, 1} and di ∼ Bern(wi) with wi stem-

ming from the correspondingH ∼ BP. Hence, the measure Z could be parametrized solely in terms of the
finite set of “active” atoms {θk}nk=1 for which dk = 1 as done in Eq. (2.96). For details see also [49, 73].

44 Chapter 2 Basics

0 1
w1

w2

w3

. . .

Figure 2.7: An illustration of the stick-breaking construction for the beta process for the special case of c = 1.
Contrary to the construction of the DP, the weights are now defined to be the other part of the stick
from which we continue to break off segments.

the general case of c > 0 is described in [49].

In practice, the beta-Bernoulli process is augmented with an application specific data
distribution p(x | θ), which is now conditioned on a set of atoms θ = {θ1, . . . , θn} instead
of just a single atom as was the case for mixture models based on the Dirichlet process. To
draw n data points from such a model, we would proceed as follows

G ∼ BP(c, α,G0) once (2.100)

θ(i) = {θ(i,1), . . . , θ(i,m)} ∼ BeP(G) for i = 1, . . . , n (2.101)

xi ∼ p(· | θ(i)) for i = 1, . . . , n (2.102)

For a given set of data points {xi}ni=1, we would be interested to invert this generative
process to infer the latent features {θ1, θ2, . . . }. Further, we would like to infer for each
data point xi the set of active features θ(i) that have been used to generate the corresponding
point from the data distribution in Eq. (2.102). For this, we could introduce the above-
mentioned feature vector di = (di,1, . . . , di,k) and use a Gibbs sampling procedure to draw
samples from the posterior distribution over the latent variables given the observed data
points. However, it is impractical to represent G in a MCMC-based inference procedure,
because G has infinitely many parameters. For mixture models based on the Dirichlet
process this has been resolved by analytically integrating out the draw from the DP which
gave rise to the Chinese restaurant representation. The analog for the beta-Bernoulli process
is the Indian buffet process (IBP) [24], which arises when we integrate out the drawG from
the beta process. While in the CRP a customer has been associated to a single class (or
table), in the IBP a customer would be associated to multiple features (or dishes).

More specifically, in the IBP metaphor one imagines customers arriving sequentially at

2.5 Bayesian Nonparametrics 45

an Indian buffet with an infinite number of dishes where each dish is associated with a dish
parameter θ sampled from the base distribution G0. The first customer at the buffet tastes
a certain number of dishes and this number n1,+ is drawn from a Poisson distribution with
mean α

n1,+ ∼ Pois (α) , (2.103)

where α is the mass parameter of the beta process. The i-th customer arriving at the buffet
tastes some of the dishes that previous customers have tasted already, as well as a certain
number of new dishes. The previously chosen dishes are selected based on their popularity,
that is, with a probability of

nk
i− 1 + c

(2.104)

the i-th customer also tastes dish k, where nk ≥ 1 is the number of customers that pre-
viously selected dish k. Here, c is the concentration parameter of the beta process. This
decision is made independently for each of the previously tasted dishes, which reflects the
fact that the atoms of G model independent Bernoulli variables. The i-th customer then
additionally tastes a Poisson distributed number ni,+ of new dishes not chosen by any cus-
tomer before her

ni,+ ∼ Pois

(
cα

i− 1 + c

)
. (2.105)

This also includes the possibility of not choosing any new dishes at all. Whenever a dish has
been tasted for the first time, we once sample its associated dish parameter θ from the base
distribution G0. This is the two-parameter IBP introduced in [73]. The original IBP [24] is
recovered with c = 1. Further, we like to point out that a three parameter generalization of
the IBP has been proposed in [69].

We could then use the IBP representation for a Gibbs sampler that resamples the dish
assignments for each customer. As with the CRP, during Gibbs sampling one can assume
that any customer is the last one to arrive at the buffet and resample the dish assignments
accordingly. The data likelihood of a customer (data point) then depends on the associated
dish parameters of all dishes she has tasted. Similar as for the CRP, a state of the Gibbs
sampler can be visualized by the corresponding association matrix shown in Fig. 2.8 on the
next page. The rows correspond to the dishes of the buffet and the rows to the customers.
Please note, that in contrast to the CRP, a row may now contain multiple black squares (as-
sociations). If the data distribution is conjugate to the base distribution of the beta process,
then the dish parameters can be integrated out analytically and do not have to be explicitly
represented during Gibbs sampling. However, depending on the application, for the IBP

46 Chapter 2 Basics

θ1 θ2 θ3 θ4 θ5

x1

x2

x3

x4

x5

x6

Figure 2.8: An illustration of an Indian buffet process. The columns correspond to the dishes and the rows
to the customers. The matrix depicts the customer to dish associations. The θi ∼ G0 are the
dish parameters sampled from the base distribution G0 and the xi are the data points. The data
likelihood p(xi | θ) of a point xi depends on the set of features θ that it is associated with.

it might be more difficult to design models with a conjugate data distribution than for the
CRP, because the data distribution now conditions on a varying number of parameters.

2.5.3 Hierarchical Processes

In the previous sections we saw that the Dirichlet process and the beta-Bernoulli process
may use arbitrary base distributions. Most of the time, we did not specify the actual form
of this base distribution or we used a normal-Wishart distribution when illustrating mix-
ture models based on the Dirichlet process. However, because we may use arbitrary base
distributions we may also use a draw from another process as the base distribution.

In short, the key idea of hierarchical processes is that the base distribution of a low-
level process is a draw from a high-level process. For example, in a two-level hierarchical
Dirichlet process [70, 71]

G0 ∼ DP(β,H0) once high-level DP (2.106)

Gi ∼ DP(α,G0) for i = 1, . . . , n low-level DP (2.107)

we have a high-level DP from which we once draw G0 = {w0,j , θ0,j}∞j=1 which then
will be reused as the base distribution for the low-level DP from which we draw several
Gi = {wi,j , θi,j}∞j=1. The draws Gi from the low-level DP are related, as they share the
same set of atoms that also appear in G0. However, the weights of the atoms may differ
for each Gi. This is best illustrated by considering how a stick-breaking construction for a
draw Gi works: The weights wi,j are only influenced by the parameter α of the low-level
process, while the atoms θi,j ∼ G0 are sampled independently from the base distribution

2.5 Bayesian Nonparametrics 47

G0. Because G0 is a discrete distribution (an infinite set of weighted atoms), each atom
that has been sampled during the stick-breaking construction of Gi is necessarily an atom
that also appears in G0. Further, an atom in G0 may be sampled multiple times during the
stick-breaking construction of Gi. Without changing the distribution Gi we could replace
these multiple occurrences of an atom by a single occurrence and assign a new weight w̃ to
it that corresponds to the sum of the weights of its multiple occurrences in Gi. If we write
out Gi more formally as the sum of weighted Dirac functions then

Gi(·) =
∞∑
j=1

wi,jδθi,j (·) (2.108)

=

∞∑
h=1

w̃i,hδθ0,h(·) with w̃i,h =
∑

k:θi,k=θ0,h

wi,k for each h (2.109)

Hence, each Gi can be considered as a re-weighting of the atoms of G0. This can be useful
for modeling related data sets, in which we expect to see the same clusters across different
data sets but the clusters are allowed to have different weights for each data set.

There also exists a corresponding hierarchical Chinese restaurant process representation
(called the “Chinese restaurant franchise” 3) that arises when we integrate out the individual
draws from this model. In this representation, we have a high-level CRP that corresponds to
G0 and several low-level CRPs that correspond to the draws Gi from the low-level process
(see also Fig. 2.9). A customer enters a low-level CRP and is seated at one of the tables
according to the usual CRP rules, whereby a new table is chosen with a probability propor-
tional to α – this parameter stems from the low-level DP of Eq. (2.107). If a new table is
chosen, we also need to draw a parameter for this newly occupied table. For this, we go to
the high-level CRP, take a seat (according to the rules which we describe below), and use
the table parameter of the corresponding high-level table as the new parameter for the low-
level table. We may say, that the low-level table now references the high-level table (this
corresponds to an arc in Fig. 2.9). Customers that arrive at an already occupied table of the
low-level CRP would reuse the corresponding table parameter without being redirected to
the high-level restaurant.

The seating rules for the high-level CRP are defined as follows. A new table is chosen

3Please note, that in the original paper [71] the hierarchical Chinese restaurant process is called the Chinese
restaurant franchise and is presented by using a different metaphor in which the high-level CRP corresponds
to a “menu” common to all (low-level) restaurants of a “franchise” from which the first customer of a new
table chooses a “dish” (the table parameter). To avoid a confusion with the “dishes” of the Indian buffet
metaphor, we described the menu here as a “high-level restaurant”.

48 Chapter 2 Basics

θ1 θ2 θ3 θ4
. . .

θ2 θ1 θ4
. . . θ2 θ4 θ2

. . .

Figure 2.9: An illustration of a hierarchical Chinese restaurant process. The high-level CRP is shown on top
and two low-level CRPs are depicted below. The table parameters of the low-level CRPs reference
the table parameters in the high-level CRP. Data points (customers) would enter one of the low-level
CRPs, while the customers of the high-level CRP correspond to the empty tables of the low-level
CRPs. Hence, for the high-level CRP the number of customers at a table corresponds to the number
of incoming arcs.

with a probability proportional to the parameter β, which stems from the definition of the
high-level DP in Eq. (2.106). In this case, we need to a draw a parameter for this newly
occupied high-level table from the base distributionH0 of Eq. (2.106). An already occupied
table in the high-level CRP is chosen with a probability proportional to the number of times
it has been referenced by tables from any low-level restaurant. Hence, the customers in the
high-level CRP can be considered to be the empty tables of the low-level CRPs for which
we sampled a new table parameter. In Fig. 2.9, this count corresponds to the number of
incoming arcs. The references are counted on a per-table basis – if several customers sit at
the same low-level table, then this low-level table nevertheless counts as a single reference
to the high-level table. Please note, that the counts of the high-level CRP thereby introduce
the desired coupling between the different low-level CRPs – the distribution from which
a new table parameter of a low-level restaurant is sampled, is also influenced by the table
parameters of other low-level restaurants.

We also like to point out – without going into details – that similar hierarchical construc-
tions also exists for the beta-Bernoulli process [73].

2.5.4 Nested Processes

In a hierarchical process, the base distribution is a draw from another process. In a nested
process, the base distribution is itself a stochastic process. Hence, a two-level nested Dirich-

2.5 Bayesian Nonparametrics 49

. . .

θ1,1 θ1,2 θ1,3 . . .

θ2,1 θ2,2 θ2,3 . . .

θ3,1 θ3,2 θ3,3 . . .

Figure 2.10: An illustration of a nested Chinese restaurant process. Each table parameter can be thought of as
a reference to another CRP which is nested within this table. In contrast to the hierarchical CRP,
the atoms θi,j are distinct (assuming a continuous base distribution) and are not shared among the
different CRPs. Data points (customers) would enter the CRP on the lower left and would finally
be seated at one of the tables of the referenced CRP on the upper right.

let process [57] can be defined as

G ∼ DP(α,DP(β,H0)). (2.110)

Again, the draw G can be represented as an infinite set {wi, θi}∞i=1 of weighted atoms
drawn from the base distribution. In this model, the base distribution is another DP. Hence,
the atoms

θi = Gi ∼ DP(β,H0) (2.111)

themselves are draws from the nested Dirichlet process and each Gi is again a set of
weighted atoms, whereby these atoms are draws from H0. If H0 is continuous, then the
atoms appearing in Gi and Gj (for some i 6= j) are distinct. Thus, in contrast to the
hierarchical CRP, the atoms are not shared between the individual processes.

As noted in [7], the draws from nested Dirichlet process can be integrated out yielding
a nested Chinese restaurant process, which is illustrated in Fig. 2.10. In this representa-
tion, each table parameter of the first CRP corresponds to a separate, nested CRP. One can
imagine the table parameters as little notes with the address of another Chinese restaurant.

50 Chapter 2 Basics

A customer arriving at a table of the first restaurant is transferred to the referenced second
restaurant and is finally seated there. A Gibbs sampler for such a model needs to maintain
and resample two association variables for each data point (or customer): one index for the
table in the first restaurant and a second index for the table in the referenced restaurant.
This model can also be extended to multiple levels in the obvious way.

Nested models therefore separate data points into distinct non-interacting groups and
each group maintains its own set of atoms. In contrast, hierarchical models promote the
sharing of information among low-level processes by maintaining a globally available set
of atoms that can be referenced from the various low-level processes.

The Dirichlet process and the beta process can also be mixed in such models. For exam-
ple, a beta process can be the base distribution in a Dirichlet process. In the usual metaphor,
a customer arriving at a table in the Chinese restaurant would be transferred to an Indian
restaurant with a large buffet, where she tastes different dishes. A draw from such a model
would result in a set of atoms:

G ∼ DP(α,BP(c, β,H0)) (2.112)

G(i) ∼ G (2.113)

{θ(i,1), . . . , θ(i,k)} ∼ BeP(G(i)) (2.114)

2.5.5 Gaussian Process Regression

The Dirichlet process and the beta process place a prior on discrete structures represented
by an infinite set of weighted atoms. In Gaussian process regression, we place a prior on
continuous functions. This is useful for regression, in which we are given a set of points
and are interested in the posterior distribution over functions that are consistent with our
observations. Based on this posterior distribution we can evaluate the predictive likelihood
for observing a point at a new location given the previously seen data points.

More formally, in Gaussian process regression [54], we are given a set {(xi, yi)}ni=1 of
noisy observations yi = f(xi) + ε of an unknown function f : Rn → R evaluated at
input locations xi. The additive noise ε is assumed to be Gaussian ε ∼ N (0, σ2

n) with zero
mean and variance σ2

n. The objective is to estimate the function value f(x∗) at an arbitrary
location x∗ given the data D = {(xi, yi)}ni=1.

Gaussian processes (GPs) are a nonparametric approach to the regression problem, that
is, we do not have to specify a parametric form of the unknown function f and fit the
function parameters to the data. Instead, a GP can be considered as a distribution over

2.5 Bayesian Nonparametrics 51

functions. A GP is specified by a mean function m(·) and covariance function k(·, ·)

m(x) = E[f(x)] (2.115)

k(x,x′) = E[f(x)−m(x)]E[f(x′)−m(x′)] (2.116)

that imply a prior distribution over functions before seeing any data and, informally speak-
ing, capture our prior knowledge about the nature of the unknown function f . For the sake
of simplicity, we will assume a zero mean function for the remainder of this section. A
common choice for the covariance function is the squared exponential

k(x,x′) = σf exp

(
‖x− x′‖2

2l2

)
. (2.117)

If we sample m function values y = (y1, . . . , ym)T at locations X = {xi}mi=1 from
this prior over functions, then they will be distributed according to a multivariate Gaussian
distribution

y ∼ N (0,K(X,X) + σ2
nI) (2.118)

where K(X,X) is a covariance matrix with entries kij = k(xi,xj). Accordingly, the
noisy observations y = (y1, . . . , yn)T and the function value y∗ at a query point x∗ will be
jointly Gaussian distributed according to[

y

y∗

]
∼ N

(
0,

[
K(X,X) + Iσ2

n K(X,x∗)

K(x∗, X) k(x∗,x∗)

])
(2.119)

We can now condition this distribution on the dataD = {(xi, yi)}ni=1 and obtain the predic-
tive distribution for the query point x∗ as a GaussianN (µx∗ , σ

2
x∗) with mean and covariance

µx∗ = K(X,x∗)T
(
K + σ2

nI
)−1

y (2.120)

σ2
x∗ = k(x∗,x∗)−K(X,x∗)T

(
K + σ2

nI
)−1

K(X,x∗). (2.121)

If we are interested in predicting several query points, then the predictive distribution will
be a multivariate Gaussian distribution which thereby also models to covariance between
the query points.

CHAPTER 3

RFID-based Object Localization and
Self-Localization

In recent years, there has been an increasing interest within the robotics
community in investigating whether Radio Frequency Identification
(RFID) technology can be utilized to solve localization and mapping
problems in the context of mobile robots. We present a novel sensor
model which can be utilized for localizing RFID tags and for tracking
a mobile robot moving through an RFID-equipped environment. The
proposed probabilistic sensor model characterizes the received signal
strength indication (RSSI) information as well as the tag detection events
to achieve a higher modeling accuracy compared to state-of-the-art
models which deal with one of these aspects only. We furthermore
propose a method that is able to bootstrap such a sensor model in a
fully unsupervised fashion. Real-world experiments demonstrate the
effectiveness of our approach also in comparison to existing techniques.

Radio Frequency Identification (RFID) technology has become popular in areas such
as supply chain management and inventory control, primarily because information can be
attached to real-world products cheaply and can be retrieved without requiring physical
contact. Recently, also robotics researchers have started to explore potential applications of
the technology, focusing on the tasks of localization, mapping, and activity recognition. An
RFID system consists of one or several RFID antennas and tags distributed in the environ-
ment. The antenna sends out electromagnetic waves and the passive RFID tags, consisting

54 Chapter 3 RFID-based Object Localization and Self-Localization

of a chip and a small antenna, use either load modulation or backscattering to send back
their unique ID to the receiver. Ultra-high frequency (UHF) systems, one of which is also
used in this work, has a reading range of up to a few meters.

According to scenarios envisioned for the near future, virtually every retail product could
be equipped with an RFID tag. In addition to the semantic information about a given en-
vironment or situation [51, 40], such a setup also provides a rich source of spatial infor-
mation, which can be utilized (a) to infer the location of the tags within the environment,
(b) to localize the sensor relative to them, or (c) to solve both tasks jointly. A major precon-
dition for solving all these tasks is the availability of an accurate sensor model p(z | x) that
characterizes the relationship between locations x and measurements z. The contribution
of the work presented in this chapter is two-fold: First, we present a novel sensor model
that utilizes the received signal strength indication (RSSI) as well as tag detection events
to achieve superior accuracy compared to state-of-the-art models that cover one of the two
aspects only (see Fig. 3.1 for an illustration). We use this sensor model for localizing RFID
tags and for tracking a mobile sensor platform, a shopping cart, equipped with two RFID
antennas. As a second contribution, we describe how our sensor model can be learned in an
fully unsupervised fashion. We also compare our model with a sensor model that has been
shown to be effective for WiFi localization and we point out how this model can be further
improved in the context of RFID localization and present experimental results. Real-world
experiments in an office environment and a supermarket demonstrate that our system is able
to robustly estimate the position of the tags and to track a shopping cart moving through an
RFID-equipped supermarket.

3.1 The Sensor Model

The techniques for localizing RFID tags as well as for tracking a mobile antenna both rely
on a sensor model p(z | x, `g) which specifies the likelihood of obtaining a measurement
z given the pose x = (x, y, θ) of the antenna and the location `g = (xg, yg) of the detected
tag with unique ID g. In our case, an observation z = (g, s) carries two pieces of informa-
tion, namely that we have detected the tag g in the first place, and secondly that we received
its signal with a signal strength s. Indeed, the event of detecting a tag is informative in it-
self, and this fact forms the basis for many of the previously proposed probabilistic sensor
models for tag localization [26, 15, 43, 80]. Note also that the other class of existing sensor
models, which consider signal strength only, implicitly condition on the tag detection event

3.1 The Sensor Model 55

−2 −1 0 1 2 3 4

−1

0

1

[m]

[m
]

5

6

7

8

(a) Mean of the logarithmic signal strength.

−2 −1 0 1 2 3 4

−1

0

1

[m]

[m
]

0

0.5

1

1.5

2

(b) Standard deviation of the logarithmic signal strength.

−2 −1 0 1 2 3 4

−1

0

1

[m]

[m
]

0

0.1

0.2

0.3

(c) Tag detection probability.

Figure 3.1: The proposed sensor model combines information about the expected received signal strength, (a)
and (b), and about the probability of detecting a tag (c).

56 Chapter 3 RFID-based Object Localization and Self-Localization

since a signal strength measurement can be obtained in this way only. We make the distinc-
tion between both sources of information explicit by denoting with d the binary variable
that encodes the detection of a certain tag. Hence, the sensor model can be formalized as

p(z | x, `g) = p(s, d | x, `g)

= p(s | d,x, `g)p(d | x, `g). (3.1)

In the most general form, these two conditional distributions are intractable to learn in
practice since, for example, p(d | x, `g) specifies a tag detection probability for every pos-
sible combination of antenna pose x and tag location `g. Therefore, we make the common
assumption that only the relative location ∆(x, `g) of a tag with respect to the antenna is
relevant (see [26, 15, 43, 80]). This assumption certainly is a strong one, since the prop-
agation of an RFID signal is also influenced by location-dependent factors, such as the
materials the tags are attached to, the orientation of the tags relative to the antenna, or ob-
stacles that reflect or absorb electro magnetic waves. The gain in efficiency, however, is
large in comparison to other simplifications that could be made. As we will show in the ex-
perimental evaluation, the accuracy of a location-dependent sensor model for RFID tags is
slightly higher than of our model, but that gain comes at a high computational cost already
for small environments.

Committing ourselves to sensor-centric sensor modeling, which considers relative tag
positions only as outlined above, we get

p(z | x, `g) = p(s | d,∆(x, `g))p(d | ∆(x, `g)) . (3.2)

In words, this models the likelihood of an observation as the likelihood of receiving sig-
nal strength s at position ∆(x, `g) relative to the antenna multiplied by the probability of
detecting a tag at this relative position.

Location-dependent sensor models, that characterize the distribution of signal strength
relative to the environment rather than to the sensor (see [64, 62, 19]), can be understood
as a different approximation that stays more faithful to the true signal strength distribution.
Instead of conditioning the signal strength on the relative tag position, they learn a separate
signal strength distribution pg(s | x) for each tag individually, which is conditioned only on
the antenna location. The resulting signal strength maps implicitly contain all environment-
specific factors. On the downside, they do not model the location of the tag explicitly and,
thus, cannot be used to estimate the location of the tags directly.

3.2 Learning the Model from Data 57

3.2 Learning the Model from Data

We first describe how the components of Eq. (3.2) can be learned in a semi-autonomous
way and then extend this procedure to an unsupervised bootstrapping method.

3.2.1 Semi-Autonomous Learning

Vorst et al. [80] proposed a method for learning a tag detection sensor model in a semi-
autonomous fashion, which we will adopt and extend towards also learning the signal
strength distribution. Building on this, we show how to learn both models in an fully au-
tonomous way. The semi-autonomous way of learning a tag detection model is to assume a
list of tag positions given as well as the trajectory of a mobile antenna moving through the
environment. At every tag detection event, we transform the tag positions into the antenna’s
local coordinate system and register the tag detection at the tags relative position as a posi-
tive event while registering the non-detected tags as negative events. We then discretize the
space relative to the antenna according to a two-dimensional grid and count for every grid
cell (x, y) the positive events n+

x,y and the negative events n−x,y. Given these counts, the tag
detection probability is then defined as px,y = n+

x,y/
(
n+
x,y + n−x,y

)
. Likewise, we maintain

a second grid that contains statistics about the average received logarithmic signal strength
µx,y and the empirical variance σx,y for each grid cell. Under the assumption that the loga-
rithmic signal strengths within each grid cell are normally distributed, we can estimate the
likelihood of an observation z = (g, s) at the antenna relative position ∆(xt, `g) = (x, y)

as

p(z | x, `g) = p(s | d,∆(x, `g))p(d | ∆(x, `g)) (3.3)

∝ 1

σx,y
√

2π
exp

(
−(log(s)− µx,y)2

2σ2
x,y

)
px,y .

3.2.2 Bootstrapping the Sensor Model

So far, learning the sensor models required knowledge about the true tag positions, which
might be tedious or impossible to acquire in practice. We can sidestep this, by bootstrapping
the sensor models. We start with a basic, yet plausible tag detection model similar to the
one proposed by Hähnel et al. [26] and iterate the following steps: (a) Use the current
model to estimate the tag locations (as described in the next section) and (b) learn a new
sensor model based on the estimated tag locations (as described above).

58 Chapter 3 RFID-based Object Localization and Self-Localization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-2 -1 0 1 2 3

-2

-1

 0

 1

 2

(a) RSSI=log(2000)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-2 -1 0 1 2 3

-2

-1

 0

 1

 2

(b) RSSI=log(500)

Figure 3.2: Two instances of the inverse sensor model that describes the likelihood of relative offsets
between antenna and tag given a certain level of received signal strength (RSSI). We plot
(a) RSSI=log(2000) and (b) RSSI=log(500). The antenna is located at (0, 0) and oriented towards
the positive x-axis.

In the experimental section, we present results that indicate that alternating tag location
estimation and sensor model learning converges in terms of tag location error and the sim-
ilarity of the bootstrapped sensor model to a model learned in a semi-autonomous way.
Fig. 3.1 shows an example for a sensor model learned this way in an office environment.
Fig. 3.2 visualizes two instances of the corresponding inverse sensor model, that is, the
likelihood of relative poses given a certain level of received signal strength. This model
has been calculated analytically from the three components of the sensor model depicted in
Fig. 3.1. The improvement of the estimated tag locations during the bootstrapping proce-
dure is illustrated in Fig. 3.3.

Based on this bootstrapping procedure, we can learn both the sensor model and the tag lo-
cations in a fully unsupervised fashion. This greatly simplifies sensor modeling in practice,
compared to the manual acquisition of calibration data. In contrast to the semi-autonomous
method, it does not require knowledge about the true tag positions.

3.3 Mapping Tags from Known Sensor Poses

For localizing RFID tags, we move a mobile antenna through the environment and integrate
the measurements iteratively so that the estimates of tag locations improve gradually over
time. We assume that the antenna is localized, e.g., applying laser-based FastSLAM [25],

3.3 Mapping Tags from Known Sensor Poses 59

Figure 3.3: Ground truth tag locations (black) and tag locations estimated (green) with the initial sensor model
(top), and with the learned models at bootstrapping iterations 2 (middle) and 25 (bottom).

so that we have accurate estimates of the positions at which observations have been made.

Formally, we are given a sequence of tag readings z1:t = {(gi, si)}ti=1 denoting the
unique ID g of the detected tag and the received signal strength s, as well as a sequence
of antenna poses x1:t = {(xi, yi, θi)}ti=1, denoting the antenna’s position and orientation
at which these observations have been made. We are interested in the posterior p(`g |
x1:t, z1:t) of the tag location `g = (xg, yg) given the information up to time t. Using
Bayes’ rule and assuming independence between measurements, we get the recursive up-
date formula

p(`g | x1:t, z1:t) = ηp(zt | ∆(xt, `g))p(`g | x1:t−1, z1:t−1), (3.4)

60 Chapter 3 RFID-based Object Localization and Self-Localization

where p(zt | ∆(xt, `g)) is the sensor model described in the previous section and η is a
normalization factor (see also [26]).

To estimate this posterior sequentially as new data arrives, we apply a particle filter for
each tag and use its unique ID g for data association. Each filter is initialized with a uniform
particle distribution {(w(i)

g , `
(i)
g)}i, where w(i)

g denotes the weight of a particle and `(i)
g its

location. The initial particle distribution is bounded by the maximum reading range of
the antenna and centered around the antenna’s position during the first encounter of the
tag [visualized in Fig. 3.4 (a)]. We resample whenever the so-called number of effective
particles

neff =
1∑

i(w
(i))2

(3.5)

falls below a threshold κ, which we set to half the number of particles of the filter. In the
resampling step, we follow Liu and West [42], and disturb the individual particle locations
by resampling them from a normal distribution with the following parametrization

`(i)
g ∼ N (µLW,ΣLW) (3.6)

µLW = a`(i)
g + (1− a)µg (3.7)

ΣLW = h2Σg (3.8)

Here, µg and Σg are the mean and covariance matrix of the particle set of tag g and the two
parameters a and h2 are defined as

a =
3γ − 1

2γ
(3.9)

h2 = 1− a2 (3.10)

and only depend on a discount factor γ, which we set to 0.95. This procedure causes
the particle-based estimates of the tag locations to converge to the true locations even for
crudely initialized estimates within a few filter iterations, as can be seen in Fig. 3.4.

3.4 Localizing a Mobile Agent

Given that we know the locations of the RFID tags, we can use the very same sensor
model to track a mobile agent equipped with an RFID antenna. We apply Monte Carlo
Localization (MCL) [11], which utilizes a particle filter to maintain the posterior over the

3.4 Localizing a Mobile Agent 61

(a
)I

ni
tia

lfi
lte

rs
ta

te
.

(b
)A

ft
er

se
co

nd
fil

te
ru

pd
at

e.

(c
)A

ft
er

5t
h

fil
te

ru
pd

at
e.

(d
)A

ft
er

30
th

fil
te

ru
pd

at
e.

Fi
gu

re
3.

4:
L

oc
al

iz
in

g
R

FI
D

ta
gs

in
an

of
fic

e
co

rr
id

or
:

T
he

gr
ee

n
ci

rc
le

in
di

ca
te

s
th

e
es

tim
at

ed
ta

g
lo

ca
tio

n
an

d
th

e
bl

ac
k

ci
rc

le
th

e
po

se
of

th
e

sh
op

pi
ng

ca
rt

.

62 Chapter 3 RFID-based Object Localization and Self-Localization

agent’s location

bel(xt+1) ∝ p(zt+1 | ∆(xt+1, `g))

∫
xt

p(xt+1 | xt) bel(xt) dxt . (3.11)

While the sensor model p(z | ∆(x, `g)) remains the same, the crucial part here is the
motion model p(xt+1 | xt), from which we sample the next particle distribution. As we are
tracking a shopping cart, which does not provide odometry information, we used a velocity
based motion model that tries to capture the typical motion patterns of people pushing the
cart. For this, each particle s(i) is constrained in a seven-dimensional space

s(i) = (x,v,m) = (x, y, θ, vx, vy, vθ,m) , (3.12)

that consists of the current pose x = (x, y, θ) of the cart, its velocity v = (vx, vy, vθ), and
a motion statem. The velocity is parameterized by the translational velocity vx in direction
of the cart, a lateral drift velocity vy, and a rotational velocity vθ. The discrete motion state
m can assume one of the following seven values: standing, moving forwards (backwards),
turning left forwards (backwards), or turning right forwards (backwards).

The transition from one particle state s
(i)
t to the state s

(i)
t+1 at the next point in time is

modeled as follows: first, we sample a new motion statemt+1 according to a state transition
probability p(mt+1 | mt). If the motion state changed, we sample new velocities vt+1 from
three motion state-specific normal distributions

vx ∼ N (µm,x, σ
2
m,x) (3.13)

vy ∼ N (µm,y, σ
2
m,y) (3.14)

vθ ∼ N (µm,θ, σ
2
m,θ) (3.15)

that capture the velocity distributions of the particular motion state. If the sampled motion
state is the same as in the time step before, we do not sample new velocities, but rather
keep the velocities of the previous point in time. Once the new velocities are determined,
we deterministically compute the new pose of a particle based on the velocities and the time
passed during one filter update step. As during tag localization, we resample whenever the
number of effective particles is less than half of the particle set size. To account for physical
constraints imposed by walls and other obstacles, we set the weight of a particle close to
zero, whenever it enters an occupancy grid cell that is likely to be occupied. The transition
probabilities p(mt+1 | mt) and the parameters of the velocity distributions (µm,x, σ2

m,x,

3.5 Experimental Evaluation 63

RFID tag

RFID reader

RFID antenna laser range scanner

(a) (b)

Figure 3.5: (a) We equipped a shopping cart with an RFID reader and a laser range scanner and deployed about
350 passive UHF tags in a supermarket. (b) DogBone RFID tag by UPM Raflatac.

etc.) were learned from recorded trajectories with hand-labeled motion states.

3.5 Experimental Evaluation

To evaluate our approach, we equipped a shopping cart with a SICK RFI 641 UHF RFID
reader with two antennas mounted perpendicular to each side of the cart (see Fig. 3.5). The
reader also reports which antenna detected the tag, and we know their positions relative to
the center of the cart. As the antennas are identical in construction we assume the same
sensor model for both. The reader is configured to run in continuous mode, reporting a tag
as soon as it is detected. The typical tag detection rate of the system is about 10 Hz. We
used passive UHF tags (“DogBone” by UPM Raflatac). In order to acquire a ground truth
trajectory and an occupancy grid of the environment we additionally equipped the cart with
a SICK LMS 291 laser scanner and processed the data with the GMapping algorithm [25],
which is an efficient laser-based realization of the FastSLAM approach. In the remainder
of this section we present experimental results about the tag localization approach and the
localization of a mobile agent.

64 Chapter 3 RFID-based Object Localization and Self-Localization

3.5.1 Localizing the RFID Tags

We distributed 28 RFID tags in an office corridor as depicted by the black circles in Fig. 3.3
on page 59. Neighboring tags had an average distance of about two meters. We knew
the true locations of the tags and therefore could evaluate the accuracy of tag localization
quantitatively. We bootstrapped the sensor model by moving the shopping cart up and down
the corridor several times – performing 360◦ turns at several locations. This took about 4
minutes and resulted in roughly 4 100 tag detections. Fig. 3.6 (a) shows the evolution of
the average error of the estimated tag locations after each iteration of the bootstrapping
process. As can be seen, the error converges to a final value of about 29 cm. We also
give the estimation results for the signal strength-based model alone (red line) and the tag
detection-based model alone (blue line) evaluated on the same trajectory. Our proposed
combined sensor model (black line) is significantly better than either the signal strength-
based model or the tag detection-based one alone.

If we learn the sensor model semi-autonomously based on the true tag locations, we
achieve a localization accuracy of about 27 cm instead of 29 cm. This indicates, that the
bootstrapping process yields a sensor model that is comparable to a semi-autonomously
learned sensor model. This was also confirmed by visually comparing the individual com-
ponents of the two models. To confirm this finding quantitatively, we calculated the aver-
age symmetric Kullback-Leibler divergence between all grid cells of the two models after
each bootstrapping iteration. The results illustrated in Figs. 3.6 (b) and (c) show that the
bootstrapping process also converges in terms of model similarity to a semi-autonomously
learned model.

3.5.2 Localizing a Mobile Agent

We distributed about 350 tags along the shelves in a supermarket at an average distance of
approximately one meter. Then we bootstrapped the sensor models and the tag positions
by using data from six log files, which we collected by moving the shopping cart through
the environment. The log files contained 34 200 tag detections and lasted about 74 minutes
in total. We used the localization technique described above and defined as the localization
result the trajectory of the most likely particle. An example of an estimated trajectory and
its corresponding ground truth trajectory is depicted in Fig. 3.7.

To evaluate the accuracy of the localization technique quantitatively, we localized the
agent on seven different log files which lasted 24 minutes in total and contained 13 400 tag
detections. We repeatedly localized the cart for each log file ten times and averaged the

3.5 Experimental Evaluation 65

2 4 6 8 10 12 14 16 18 20 22 24
0.2

0.4

0.6

0.8

bootstrapping iteration

ta
g

lo
ca

tio
n

er
ro

r[
m

]
signal strength model
tag detection model

combined model

(a) Average tag localization error.

2 4 6 8 10 12 14 16 18 20 22 24

0.2

0.4

0.6

0.8

bootstrapping iteration

K
ul

lb
ac

k-
L

ei
bl

er
di

ve
rg

en
ce KLD signal strength models

(b) Divergence of the signal strength models.

2 4 6 8 10 12 14 16 18 20 22 24

2

4

6

8

·10−2

bootstrapping iteration

K
ul

lb
ac

k-
L

ei
bl

er
di

ve
rg

en
ce KLD tag detection models

(c) Divergence of the tag detection models.

Figure 3.6: The bootstrapping process: (a) The process converges in terms of the average tag location error.
The error bars depict the 2σ confidence interval. (b) and (c) show that the bootstrapping procedure
also converges in terms of sensor model similarity to a semi-autonomously learned model.

66 Chapter 3 RFID-based Object Localization and Self-Localization

Figure 3.7: Comparison of the estimated trajectory (black) and the ground truth trajectory (red) on one of the
supermarket log files.

measured error values. The error was quantified in terms of the average position error and
the average orientation error. The results are given in Fig. 3.8.

Using only the tag detection model can be considered equivalent to the approach by
Vorst et al. [80]. For further comparison, we implemented a model similar to the one pre-
sented by Ferris et al. [19], which used Gaussian process regression [54] to model the signal
strength distributions of WLAN access points in 2D space. We used Gaussian process re-
gression for modeling the signal strength of the RFID tags in the supermarket. We observed
that the estimation of the cart’s orientation can be significantly improved [Fig. 3.8 (b)], if
the antenna’s orientation is taken into account, and hence the signal strength is mapped in
pose space rather than in 2D. The proposed combined sensor model outperforms both of its
components – the tag detection model and the signal strength model – and performs compa-
rable to the signal strength map. Both methods can be executed online for 2 500 particles,
but the proposed model needs only 2.6 minutes on average to process all log files, while
the signal strength map, which uses Gaussian process regression instead of a grid, requires

3.5 Experimental Evaluation 67

250 500 1,000 2,500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

number of particles

av
er

ag
e

po
si

tio
n

er
ro

r[
m

] signal strength map (pose)
signal strength map (point)

signal strength model
tag detection model

proposed combined model

2,500
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

(a) Average position error.

250 500 1,000 2,500
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

number of particles

av
er

ag
e

or
ie

nt
at

io
n

er
ro

r[
ra

d]

2,500
0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) Average orientation error.

250 500 1,000 2,500
0

2.5

5

7.5

10

12.5

number of particles

ru
nt

im
e

[m
in

]

(c) Runtime.

Figure 3.8: Evaluation of several sensor models for RFID-based localization: the proposed combined model,
and its two components alone. For comparison, we show the results of a signal strength map,
similar to the model by Ferris et al. [19], mapping the signal strength either in pose space (“pose”)
or in 2D (“point”).

68 Chapter 3 RFID-based Object Localization and Self-Localization

13.4 minutes, as can be seen in Fig. 3.8 (c).

In both tasks – localization and mapping – the signal strength model alone was con-
sistently less accurate than the tag detection model. This is an unexpected finding, since
the received signal strength should intuitively be more informative than a simple detec-
tion event. Close inspection of the recorded data reveals, however, that the relationship
between signal-strength and sensor location is more noisy than it is the case for tag detec-
tions. Thus, the particle filter as a sophisticated way of integrating information over time,
is able to recover the (real-valued) pose information accurately from the stream of (binary)
tag detection events.

3.6 Future Work

There are several directions for future work. Our results showed that considering signal
strength information along with tag detection events lead to an improved sensor centric
model. Therefore, it would be interesting to see if the accuracy of signal strength maps
could be improved in just the same way by combining them with “tag detection maps”.
Another direction would be to extend the model to a 3D sensor model. Moreover, the
assumption made that the tag map remains static could be alleviated – a technique for map-
ping “nomadic” tags (static tags which change locations from time to time) was presented
in [43].

3.7 Related Work

There is a variety of approaches to RFID-based localization, which can be characterized
by the type of sensor information used as well as by the general approach to modeling
this information. Some of the earlier systems only provided information about the ID of
the detected tag while later systems also provide information about the received signal
strength. Hence, some localization techniques utilize sensor models that are based only
on tag detection events [26, 37, 60, 15, 43]. For some RFID readers that do not provide
RSSI (signal strength) directly, this information can be emulated by means of different
attenuation levels or power levels of the antenna [48, 1, 36]. Sensor models for localizing
tags are usually designed to be sensor centric [26, 15, 43, 1, 12]. A different design, that
can be used for localizing a mobile robot, is to lay out the sensor model relative to the
environment [60, 64, 62, 19].

3.8 Conclusions 69

Hähnel et al. [26] utilized a piecewise constant tag detection sensor model to first localize
the tags and then use the tag map to localize a mobile antenna. Schneegans et al. [60]
compared histograms of tag detections with previously recorded histograms at different
locations. Kleiner et al. [37] used a combination of pedestrian odometry and tag detections
to perform graph-based RFID SLAM in a large outdoor environment. Kanda et al. [36]
deployed RFID readers in a science museum and tracked people with attached RFID tags.
Vorst et al. [80] showed how to learn a tag detection sensor model in a semi-autonomous
fashion. Some approaches in the context of WiFi localization model the expected signal
strength at different locations by using a discrete grid [64], or Gaussian process regression
[62, 19].

Several approaches have addressed exclusively the tag localization problem. Ni et al. [48]
compared the (emulated) signal strengths of tags at unknown locations with signal strengths
received from reference tags at known locations. Alippi et al. [1] used several rotating an-
tennas. Ehrenberg et al. [15] used an HF RFID system to localize books on a shelf. Liu et
al. [43] used a tag detection model that is able to estimate the 3D position of the tag.
Deyle et al. [13] introduced the concept of RSSI images, which are acquired by panning
and tilting an RFID antenna attached to a robot while recording the RSSI measurements.

In contrast to the above-mentioned approaches, we model both phenomena – tag detec-
tion events as well as signal strength. The increased accuracy of the model allows us to
address (a) localization of a mobile sensor relative to given tag locations and (b) mapping
of tag locations when these are unknown. Furthermore, we showed how to simultane-
ously learn the sensor model and estimate the position of the RFID tags in an unsupervised
fashion. We presented real-world experiments in an office environment as well as in a
supermarket environment and compared our approach with state-of-the-art methods.

3.8 Conclusions

In this chapter, we presented a novel combined sensor model that utilizes both (a) the re-
ceived signal strength and (b) tag detections of RFID systems for robot localization and
mapping of tags. We also presented a technique to learn such a model in an unsupervised
way. This greatly simplifies the task of sensor modeling in practice compared to the man-
ual acquisition of calibration data. For comparison, we implemented a sensor model that
has been shown to be effective for WiFi localization. We furthermore described how this
model can be improved in the context of RFID localization. As our experiments in several

70 Chapter 3 RFID-based Object Localization and Self-Localization

real-world settings showed, our approach achieves the computational efficiency of existing
sensor-centric models and an accuracy of a state-of-the-art approach that learns a location-
dependent model for each tag.

Our proposed technique enables a mobile robot to localize and identify objects. The
resulting object map consists of a list of object locations and object IDs. We now move
on to the question how robots can take advantage of such object maps and how to leverage
knowledge about usual object arrangements to more efficiently carry out their tasks. In
particular, we are interested in finding an object in an unknown environment that has to be
explored while searching for the object. As a motivating application scenario, we consider
the search for a product in unknown supermarket. This will be the topic of the next chapter.

CHAPTER 4

Searching for Objects

We consider the problem of efficiently finding an object with a mobile
robot in an initially unknown, structured environment. The overall
goal is to allow the robot to improve upon a standard exploration
technique by utilizing background knowledge from previously seen,
similarly structured environments. We present two conceptually different
approaches. Whereas the first method is a reactive search technique
that decides where to search next only based on local information
about the objects in the robot’s vicinity, the second algorithm is a more
global and inference-based approach that explicitly reasons about the
location of the target object given all observations made so far. While
the model underlying the first approach can be learned from data of
optimal search paths, we learn the model of the second method from
object arrangements of example environments. Our application scenario
is the search for a product in a supermarket. We present simulation
and real-world experiments in which we compare our strategies to
alternative methods and also to the performance of humans.

Consider the situation where you want to find a product in a supermarket where you
have never been to before. Certainly, you will not just wander around randomly through
the market nor will you systematically visit each so far unvisited aisle in the market until
you find the product. Your search will rather be guided by the current observations and
the expectations you have about how objects in supermarkets are usually arranged. Over
time, you might even have developed some heuristics that proved to be useful for quickly

72 Chapter 4 Searching for Objects

finding a certain product, like “if you want to find yogurt, follow the aisle with the cooling
shelves.”

The search for a product in an unknown supermarket is a problem that everyone is famil-
iar with and it therefore is an illustrative instance of the kind of search problems we want to
tackle with the techniques presented in this chapter. Even for humans [75] this task is not
an easy one and we will also compare our search techniques to the performance of human
participants that took part in a field study conducted in a real supermarket [35]. However,
the supermarket is just an example scenario. Searching for objects or places in offices or
domestic environments is conceptually similar. All we assume is that the environment is
structured and the object arrangements exhibit some spatial dependencies such that a gen-
eralization to an unknown yet similarly structured environment is possible. We regard this
as a rather weak assumption that holds for a huge variety of man-made environments. We
thus strive for a general way to model, learn, and utilize background knowledge such that
a mobile robot is able to find an object more efficiently than it would have been possible
without such domain-specific knowledge. For this, we present and evaluate two approaches
and provide alternative views on the search problem.

The first approach is a reactive search technique that only depends on local information
about the objects in the robot’s vicinity when deciding where to search next. This approach
emphasizes the sequential nature of the search process, which is a sequential decision mak-
ing process. Being in a certain state we must choose among a set of available actions. In
this setting, background knowledge can be encoded as a state-to-action mapping, a policy,
that tells us what to do in a certain situation. In the supermarket scenario, a state includes
the currently observed objects in direction of the different aisles and the available actions
correspond to the aisle we may choose to visit next. To learn this state-to-action mapping,
we draw on ideas from imitation learning [3]. In particular, we want to imitate a simu-
lated robot that exhibits an optimal search behavior by approaching the target object on the
shortest path. In each visited state of a demonstrated example path, the robot takes a certain
action and discards the other available actions in this state. Thereby, it provides positive
and negative examples of state-action pairs to be taken or not, respectively. These examples
can be used to learn a classifier for state-action pairs, which yields a classifier-based policy
representation [55]. This might either be a multi-class classifier that directly outputs the ac-
tion to be taken in a given state, or it might be a binary classifier that labels each available
action in a state as promising or non-promising (if there is a tie, we may choose randomly
among the promising actions). The latter has been empirically shown [55] to yield poli-
cies that perform better than the ones that are represented by multi-class classifiers. We

73

use decision trees as binary classifiers which result in compact policy representations that
resemble search heuristics like the above-mentioned heuristic for finding yogurt.

The second approach treats the search problem as an inference problem. This is moti-
vated by the observation that we are constantly reasoning about the location of the object
while searching for it. This reasoning process will be influenced by the thus far observed
objects and structure of the environment as well as our expectations about usual object ar-
rangements in such environments. In the supermarket scenario this means, for example,
that if we are searching for beer and in one aisle we observe milk we may conclude that the
beer is probably not in the same aisle. In this setting, background knowledge is encoded
as expectations about how objects co-occur. However, co-occurrence of objects can only
be defined with regard to a spatial context – like objects being “in the same aisle”, or one
object being “in the neighboring aisle” of the other. Each particular spatial context induces
a different local co-occurrence model. In general, there is no single best spatial context
and object arrangements in real-world environments are too complex to be faithfully repre-
sented by any of these rather basic models alone. Nevertheless, each local model captures
useful statistical properties of such object arrangements. Based on these considerations and
motivated by the idea of combining an ensemble of base classifiers to form a more robust
classifier, we proceed as follows: we use a diverse set of local co-occurrence models, each
considering a different spatial relation, and fuse their outcomes as features in a maximum
entropy (MaxEnt) model [30, 6] which in our case models the discrete distribution over
all possible locations of the target object. The robot then essentially moves to the location
which most likely contains the target object. Each time new information becomes avail-
able, i.e., newly detected objects or newly discovered parts of the environment, the robot
recomputes the distribution.

These two approaches have quite different properties. The first approach uses only local
information, as it depends only on the objects in the vicinity of the robot, while the second
takes into account all observations made so far. Moreover, the underlying model of the first
approach is learned by observing optimal search behavior, while the model of the second is
learned from object arrangements of similarly structured example environments.

This chapter is organized as follows. First, we describe our reactive search strategy based
on search heuristics. Next, we present the inference-based search strategy as our second
approach. We present the results of an experimental evaluation including simulation and
real-world experiments. The experiments include a direct comparison of both approaches,
as well as a comparison to a baseline strategy and to the search efficiency of human subjects
in a real supermarket.

74 Chapter 4 Searching for Objects

Figure 4.1: Example map of a real supermarket environment. The map contains the shelf locations (black
boxes) and the products within the shelves. The underlying structure is a graph. The task of the
robot is to efficiently find a certain product.

4.1 Reactive Search Strategy

Both approaches are learned and evaluated on the same data gathered from four real super-
markets, but due to their differences in approaching the search problem, they use different
representations of the environment. For example, our reactive search strategy distinguishes
aisles into main aisles and side corridors, while for our inference-based search technique
this distinction is of no importance. When describing a search strategy, we will therefore
also include a section that describes in detail how the search strategies models the envi-
ronment. In the following, we first describe the reactive search strategy which is based on
search heuristics represented as decision trees.

4.1.1 Modeling the Environment

A supermarket m ∈ M contains a set of shelves Sm ⊂ S and a graph Gm = (V,E), as
illustrated in Fig. 4.1. Each shelf s ∈ S is associated with a location `s = (xs, ys) and
an orientation θs. The relation INMARKET ⊂ S ×M associates each shelf with its corre-

4.1 Reactive Search Strategy 75

Figure 4.2: Three example situations for illustrating the short range visibility. Whereas gray shelves are visible,
white shelves are not visible. The location of the robot is indicated by the black node and its
orientation is indicated by the arrow.

sponding market. Furthermore, we define a set of shelf types T = {NORMAL, COOLING,
FREEZER, COUNTER, GROCERY} and each shelf is associated with exactly one type as
defined by the relation TYPE ⊂ S × T . Each shelf contains at least one product and the
same product might be placed in several shelves, as defined by the relation INSHELF ⊂
P × S. The relation CATEGOF ⊂ P × C, associates each product with a product category.

For the experiments, we used a set of 196 products at the granularity of small categories
like “sugar”, “pizza”, “apples”, “tea”, etc. We furthermore used 20 product categories with
a coarser granularity like “breakfast”, “dairy products”, “vegetables & fruits”, etc.

The nodes V of a graph Gm = (V,E) model the decision points in the supermarket and
the directed edges define the reachability between decision points. While the reachability
could have been modeled with undirected edges, the visibility of the shelves also depends
on the current node (the robot’s current location) and therefore is defined over directed
edges. We use two variants of a visibility relation that defines the shelves that are visible
when looking into the direction of a certain edge. The first one is a long range variant
SHELFVISL ⊂ E × S and the second is a short range variant SHELFVISS ⊆ SHELFVISL.
This is motivated by the fact that, although certain information, like the type of a shelf, can
be determined reliably over long distances, some information can only be determined when
one is in close vicinity to a shelf, like for example the products contained within a shelf.
Three example situations illustrating the short range visibility are depicted in Fig. 4.2. On

76 Chapter 4 Searching for Objects

the basis of the two visibility relations we define several other visibility relations, like the
visible products

PRODVIS = {(e, p) | SHELFVISS(e, s), INSHELF(p, s)}, (4.1)

and the visible product categories

CATEGVIS = {(e, c) | PRODVIS(e, p), CATEGOF(p, c)}. (4.2)

The visibility of shelf types is modeled in such a way that we can distinguish whether the
shelf type is seen in the direct vicinity, or being observed at a further distance:

TYPEVISS = {(e, t) | SHELFVISS(e, s), TYPE(s, t)} (4.3)

TYPEVISL = {(e, t) | SHELFVISL(e, s), TYPE(s, t)}. (4.4)

The reactive search strategy utilizes the information associated with each edge to decide
which edge to follow. In the next section we describe how we learn such a strategy from
data by observing optimal search paths.

4.1.2 Learning Search Heuristics

We are interested in learning a reactive search strategy that depends only on local informa-
tion in order to find a certain target product. We therefore classify the outgoing edges of
the current node by a decision tree into promising and non-promising directions based on
the information associated with each edge. For learning such a decision tree, we first need
to define appropriate edge attributes and then gather training data by generating optimal
search paths in a training set of supermarkets. To evaluate the strategy, we apply it to a
previously unseen market.

4.1.2.1 Defining Edge Attributes

One obvious piece of information, by which the search should be guided, is which products
and product categories are visible at a certain edge. If we are searching for coffee and an
aisle contains tea, or in general breakfast products, then this edge is certainly a promising
candidate. But the decision should also be influenced by additional factors. If we know
that an edge has been visited already, we can reject it in order to avoid loops. Also the type
of an edge might be of interest, such as if an edge belongs to an aisle that follows a wall

4.1 Reactive Search Strategy 77

(wall aisle), because some products, like milk, are only located in such aisles. Likewise,
we define main aisles as aisles that follow a main direction in a market and from which
many narrow side corridors branch off. Next, it is informative if the robot is approaching
certain landmarks in the supermarket, like the entrance, the exit, or the back of the market.
Vegetables, for example, are always located near the entrance in our markets. Thus, each
optimal search path for finding apples would mostly contain edges that are approaching the
entrance. Likewise, frozen food is usually in the back of the market and wine and non-food
are near the exit of the market.

We also use statistics about the expected relative product position between the entrance
and the exit based on the layout of all training markets. The relative position of a shelf s
with respect to the location `en of the entrance node and the location `ex of the exit node
of the corresponding market is defined as

relPos(s) =
‖`s − `en‖

‖`s − `en‖+ ‖`s − `ex‖
. (4.5)

The expected relative position of a product is then defined as the average of these values
for all shelves that contain this product in the training markets Mt

Sp = {s | INSHELF(p, s), INMARKET(s,m),m ∈Mt} (4.6)

expRelPos(p) =
1

|Sp|
∑
s∈Sp

relPos(s). (4.7)

We define a binary edge attribute (No. 222 in Tab. 4.1) that indicates if the robot would be
approaching the expected relative position of the target product by following that edge.

Furthermore, we calculate the average Euclidean distance prodDist(pi, pj) for each pair
(pi, pj) of products based on their locations in the training markets. If we denote by Pi,j
the set of visible products that are associated with an outgoing edge ei,j from the current
node vi to a possible successor node vj , then the average product distance of this edge to
the target product pt is defined as

avgProdDist(ei,j , pt) =
1

|Pi,j |
∑
p∈Pi,j

prodDist(pt, p). (4.8)

We define an indicator attribute (attribute No. 223 in Tab. 4.1) that is set to true if an edge
has the lowest average product distance of all outgoing edges of the current node, and
thus can be considered to be the most promising edge with respect to the expected product

78 Chapter 4 Searching for Objects

Table 4.1: The attributes that are used to characterize an edge. All attributes are binary. In the experimental
evaluation we test different combinations of subsets (a–d) of these attributes.

Subset Att. No. Description

a 1 Edge already visited
a 2–197 Product pi ∈ P visible
a 198–217 Product of category ci ∈ C visible
a 218 Shelf of type NORMAL visible (short range)
a 219 Shelf of type COOLING visible (short range)
a 220 Shelf of type FREEZER visible (short range)
a 221 Shelf of type COUNTER visible (short range)
b 222 Leads to expected relative position
b 223 Has smallest avg. Euclidean distance to product
b 224 Has smallest avg. path distance to product
c 225 Current node belongs to a main aisle
c 226 Next node belongs to a main aisle
c 227 Next node belongs to a wall aisle
c 228–230 Leads to the entrance, exit, or back of the market
d 231 Shelf of type COOLING visible (long range)
d 232 Shelf of type FREEZER visible (long range)
d 233 Shelf of type GROCERY visible (long range)

distances. Likewise, we define an attribute that uses the path distance on the graph between
products instead of the Euclidean distance (attribute No. 224). As it is not easy to decide
beforehand whether the path distance or the Euclidean distance is a more reliable indicator
for product distances we use both attributes and let the learning algorithm decide which
one to use during the induction of the tree. A complete list of all attributes can be seen in
Tab. 4.1.

4.1.2.2 Generating Training Data

We use a fixed set of 15 target products. These are the same products that human partici-
pants had to find in a field study conducted in the very same supermarket in which we will
evaluate our strategy. We learn a separate decision tree for each of these 15 target products.

We determine for each node in a training supermarket the shortest path to a given target
product. Each node of an optimal path corresponds to a local decision for taking a certain
outgoing edge (the one that leads to the next node of the optimal path) and for rejecting all
other outgoing edges of that node. In this way, each optimal search path contributes a set of
positive and negative examples of edges to be taken or not, respectively. Fig. 4.3 illustrates
the basic idea. The positive and negative examples of all paths for all starting positions in

4.1 Reactive Search Strategy 79

Start

Goal

(a) Shortest path between starting location and goal location.

(b) Local decision at one of the nodes along the path.

Figure 4.3: (a) For generating training data, we compute the shortest path from every possible starting location
in the market for a given goal location of a target product. One such path is depicted above. (b) Each
node of an optimal path corresponds to a local decision for taking a certain outgoing edge (black
solid arrow) and for rejecting all other outgoing edges of that node (gray dashed arrows). In this
way, each optimal search path contributes a set of positive and negative examples of edges to be
taken or not, respectively.

80 Chapter 4 Searching for Objects

all training supermarkets then constitute the training data for learning the decision tree for
a given target product.

As there might exist more than one optimal path from a starting location to the target
location, we search for more than just a single shortest path to generate training data. Ad-
ditionally, as the decision points are placed manually, there might be small differences
between nearly optimal paths. For this reason, we also generate training data from paths,
which are not longer than a given small threshold when compared to the actual shortest
path.

4.1.2.3 Decision Tree Learning and Pruning

We use the well known ID3 algorithm [52] to learn a decision tree. As decision trees can
be prone to overfitting, we will therefore also investigate the influence of two pruning tech-
niques in the experimental evaluation. The two techniques are a restriction on the maximum
depth of the tree (max-depth-pruning, MDP) and reduced error pruning (REP) [8]. In MDP,
every subtree that has its root node at a given depth of the original tree will be collapsed into
a leaf node. For REP, we need to divide the training data set into an induction set, which
is used during induction of the decision tree, and a pruning set, which is used to evaluate
which part of the tree should be pruned. REP then replaces any subtree with a leaf node if
this does not lead to a higher classification error on the pruning data set.

The learned decision tree is then used to guide the search for the target product by classi-
fying each outgoing edge of the robot’s current location into promising and non-promising
directions. It may happen that more than one edge will be classified as promising. In
this case, we choose randomly among the promising candidates. If there are no promising
edges, we randomly choose among the unvisited edges. If all outgoing edges have been
visited already, the robot moves on the shortest path to the nearest known node, which has
at least one unvisited outgoing edge.

4.1.3 Variants of the Decision Tree Strategy

In total, we evaluate five variants of the decision tree strategy. The first four variants differ
by the set of attributes they are allowed to use. We start from a simple variant, which uses
only subset “a” of the attributes (see Tab. 4.1), while the three subsequent variants can use
increasingly more attributes (including subsets “b”, “c”, and “d”). The resulting decision
trees are not pruned in any way and therefore might be prone to overfitting. We therefore
also investigate the influence of the two above-mentioned pruning techniques. We tried

4.2 Inference-based Search Strategy 81

several alternatives by restricting the maximum depth of the trees to different levels (MDP)
or by applying reduced error pruning (REP), or a combination of both to any of the four
attribute subset variants. We found the best variant to be a combination of both pruning
techniques applied to a tree that uses the full set of attributes. We first applied MDP using
a maximum depth of four and then additionally applied REP. To do so, the training data set
was split into an induction set (75% of the data) and a pruning set (25% of the data). Two
examples of learned and pruned decision trees can be seen in Fig. 4.4 on the next page.

4.2 Inference-based Search Strategy

In this section, we describe our second approach, the inference-based search strategy. We
focus on the problem of how background knowledge about usual arrangements of objects
can be utilized to more efficiently find an object. The basic idea of this approach is to split
the action selection problem during the search process into two parts. First, we compute a
belief over possible locations of the target object based on the information about the objects
seen so far and the structure of the environment. Second, we utilize the belief to select the
next action, e.g., the next position the robot moves to.

The representation for encoding the background knowledge about object arrangements
is motivated by the fact that structured indoor environments exhibit meaningful spatial re-
lations between locations that influence the distribution of the objects. For example, one
might link two locations by relations like “the same room”, or “the same floor”. Further-
more, we think that in order to be able to generalize from previously seen environments to
new environments it is advantageous to represent objects by a list of attributes, instead of
thinking of them as atomic entities. For example, even if you have never seen an avocado in
a supermarket, it will be useful to know that it is a fruit and it is therefore probably located
somewhere where you will see other objects of the category “fruit”.

The definition of the object attributes and the types of spatial relations are the only
domain-specific parts of this second approach. It is therefore also applicable to other appli-
cation scenarios, like finding an object in an office environment or a domestic environment
as long as it is provided with the corresponding relevant attributes and spatial relations.

4.2.1 Modeling the Evironment

We collected real-world data from four supermarkets, including the market layout and the
products in each shelf. We defined a set of 181 products at the granularity of small cate-

82 Chapter 4 Searching for Objects

edge visited

not promising

true

to main aisle

cooling shelf visible
(long range)

promising

true

from main aisle

not promising

true

promising

false

false

true

not promising

false

false

(a) Decision tree for finding yogurt.

edge visited

not promising

true

to main aisle

from main aisle

leads to exp. rel. position

promising

true

not promising

false

true

promising

false

true

not promising

false

false

(b) Decision tree for finding UHT milk.

Figure 4.4: Two examples of pruned decision trees that have been learned from optimal search paths in the
training supermarkets. The trees use the attribute variant (a–d, pruned) mentioned in Tab. 4.2.

4.2 Inference-based Search Strategy 83

gories like pizza, apple, shampoo, etc. Additionally, each product is associated with one of
20 product categories with a coarser granularity like breakfast, dairy products, vegetables
& fruits, etc. Further attributes of products are the binary “edible” attribute, as well as the
attribute “shelf type”, that denotes in which shelf type the product is usually found in. This
can be normal, cooling, freezer, or counter. We consider the basic structural elements of
a supermarket to be approximately one meter wide shelves, which are depicted as boxes
in Fig. 4.5 and Fig. 4.6 on the next pages. Moreover, we will define a “shelf wall unit”
to be made up of adjacent shelves standing side by side, such as the red region marked in
Fig. 4.8 on page 89. Each shelf contains at least one product and a product might be placed
in several shelves.

Additionally, the representation of a market contains a graph that constrains the motion
of the robot. Each shelf is associated with an access node which is defined to be its nearest
graph node. The search process ends, if the robot is located at the access node of a shelf
that contains the target product. The robot does not know the environment beforehand but
rather has to explore it during the search. The structure of the environment – shelves and
graph nodes – can be observed from any distance within the market, as long as they are in
the line of sight. In contrast, the products of a shelf can only be detected within a distance
of two meters. These visibility constraints are motivated by taking into account the sensor
limitations of a real robot. The graph could be extracted from a grid map by constructing
a Voronoi graph and the shelf locations could be identified by assuming that each wall or
obstacle in the map is a shelf. For the actual detection of the objects, we assume that the
robot is equipped with an RFID sensor and the products are equipped with RFID tags. In
a supermarket environment the robot would then be able to reliably locate a product when
it is about two or three meters away. However, the model described here is not restricted
to these sensor modalities, we only require the robot to be able to sense the structure of the
environment and to detect and localize objects. The next section will introduce our model
for inferring the location of the target object that the robot is searching for.

4.2.2 A Model for Inferring Object Locations

We have a set O = {on}Non=1 of detectable objects and each object is described by a set
A = {Ai}Nii=1 of attributes, each with a finite domainD(Ai) of possible values ai ∈ D(Ai).
We wish to infer the location of a query object oq ∈ O, which we assume to be at one of
several possible locations X = {xl}Nll=1. We furthermore have a set of spatial relations
R = {rj}Nrr=1, that relate locations of detected objects to locations x ∈ X , like “same

84 Chapter 4 Searching for Objects

(a) Supermarket environment.

(b) Searching for a product.

Figure 4.5: (a) We model supermarket environments including shelves, products, and a graph. (b) The simu-
lated robot (red square), which does not know the environment, has to search for a product. The
search is adapted according to the robot’s belief over the possible product locations, which takes
background knowledge about usual object arrangements into account.

4.2 Inference-based Search Strategy 85

Figure 4.6: We collected real-world data from four supermarkets, including the market layout, the shelf types,
and the products in each shelf. The colors indicate the different shelf types, like normal shelf
(yellow), cooling shelf (light blue), freezer (dark blue), or counter (purple).

86 Chapter 4 Searching for Objects

x1 x2

object1 object2

category (fine) = shampoo
category (coarse) = hygiene
edible = no
shelf type = normal

category (fine) = pizza
category (coarse) = instant meal
edible = yes
shelf type = freezer

same aisle

neighboring aisle neighboring aisle

same aisle

Figure 4.7: Illustration of the basic idea for inferring object locations based on the detection of object attributes
in different spatial contexts. Possible locations of the query object we are searching for are linked
to already seen objects by different spatial relations.

room”, or “same aisle”. We also allow the definition of overlapping relations, like “same
room” and “same house”. The location of a detected object might be linked to several lo-
cations xl by different spatial relations rj . See Fig. 5.3 for an illustration of the basic idea.
An observation z in our model corresponds to a tuple z = (xl, rj , Ai, ai) that states that an
object with the attribute Ai = ai has been observed at a location that is related to xl by the
spatial relation rj . For example, in the supermarket xl may denote a certain shelf and the
robot could make an observation z = (xl, rj = "same aisle", Ai = "category (fine)", ai =

"pizza"), which corresponds to the situation that the robot has observed an object of cate-
gory “pizza” in the same aisle as shelf xl. But the same detection event would also generate
the observation z = (xl, rj = "same aisle", Ai = "edible", ai = "yes"), because by dis-
covering the pizza it thereby has also discovered an edible product. Thus, a single newly
detected object introduces several basic observations zi, because an object is described by
several attributes and is related to several other locations in the supermarket by several dif-
ferent spatial relations. Next, we denote by z all observations made so far and z[xl,rj ,Ai]

denotes the subset of observation that are constraint to have values xl, rj , and Ai.

Throughout the search process, we must update the belief p(x | z) over possible locations
x ∈ X of the query object oq that we are searching for, given the observations z made so far.
To model p(x | z), we rely on background knowledge about co-occurrences of objects and
object attributes in different spatial contexts. This knowledge is expressed by conditional
probability distributions p(Ai = ai | oq, rj) that specify the probability of the following

4.2 Inference-based Search Strategy 87

event: given that object oq exists at some location, then there will exist another object with
attribute Ai = ai at any location that is related to the location of oq by the spatial relation
rj . For example, we might ask that under the assumption that the “coffee cup” that we are
searching for is in room x, what would be the probability that we observe a “kitchen object”
in “the same room” as room x. Additionally, we need to model p(Ai = ai | ¬oq, rj) that
we will see the attribute in a related location, given the object is not present.

We follow a two step process to compute the desired final distribution p(x | z) based
on the above-mentioned conditional distributions. The idea is to use an ensemble of local
models, each considering only a certain aspect of the observations, and then to fuse the local
models in a combined model that computes the final distribution. This is motivated by the
assumption that the distribution of objects in real-world environments is too complex to be
faithfully captured by just a single model and it therefore would be beneficial to combine
a diverse set of more simple models. These local models compute the binary probability
pAi,rj (x | z) that the object exists at location x versus that it does not exist at this location
pAi,rj (¬x | z). Each local model considers only a certain attributeAi of those observations
z[x,rj ,Ai] that are related to x by the relation rj .

For example, in the supermarket a local model pAi,rj (x | z) computes the probability
for the presence or absence of the sought product in a certain shelf x. For computing
this probability, this local model considers all observations generated by objects that are
related to x by a certain spatial relation – for example, that are in the same aisle as x
and hence the model would consider all observations that have rj = "same aisle". The
objects that generated these observations are described by several attributes, but the local
model only takes into the information conveyed by a certain attribute Ai, for example,
Ai = "category (coarse)". In essence, such a model would compute the probability for the
presence or absence of the sought product in shelf x based on the fact that there are a certain
number of “instant meal” products, “hygiene” products, etc., in the same aisle as shelf x.

Now let a(z) denote the set of attribute values that occur in the observations z. Then we
model the local models as binary naive Bayes classifiers as follows:

pAi,rj (x | z) =
p(x)

∏
z ∈ z[x,rj ,Ai]

p(z | x)∑
x′∈{x,¬x} p(x

′)
∏
z ∈ z[x,rj ,Ai]

p(z | x′)
(4.9)

=

∏
a ∈ a(z[x,rj ,Ai])

p(Ai = a | oq, rj)∑
o′∈{oq ,¬oq}

∏
a ∈ a(z[x,rj ,Ai])

p(Ai = a | o′, rj)
. (4.10)

88 Chapter 4 Searching for Objects

In (4.10) we dropped the prior p(x), which we assume to be uniform. In total we will have
20 local models as we will be using four attributes and five relations, which we introduce
in the next section. The output of all local classifiers pAi,rj will be used as features fAi,rj
in the maxent model:

p(x | z) =
exp

(∑
Ai,rj

λAi,rjfAi,rj (x, z)
)

∑
x′ exp

(∑
Ai,rj

λAi,rjfAi,rj (x
′, z)

) . (4.11)

Thus, the maxent model is used as a way to combine an ensemble of base classifiers. In
the experimental section we will also evaluate two other methods for combining the local
models. The first method is a weighted average p(x | z) ∝

∑
i λiPi(x | z), which is

also known as the linear opinion pool. The second model is the logarithmic opinion pool
p(x | z) ∝

∏
i Pi(x | z)λi which applies exponential weights and corresponds to the

geometric mean if the weights are uniform and normalized [27, 65].

There are several possibilities of relating the probabilities pAi,rj (x | z) of the local
models with the features fAi,rj of the maxent model. One option is to use the probabilities
directly as the features. However, continuous features are usually discretized when used in
a maximum entropy approach. Thus, we will also consider to discretize the probabilities in
four equally sized bins. Each original feature is then represented by four binary features,
of which only exactly one feature can be non-zero at a time, depending on the probability
of the local model. A third option that we consider is to use the log-probability of the local
models – in this case the fusion of the local models resembles a logarithmic opinion pool
[27, 65], because exp(

∑
i λi log(Pi)) =

∏
i P

λi
i .

4.2.2.1 Application to the Supermarket Scenario

We wish to infer in which shelf wall unit the target product is located in, given the products
seen so far. To apply our model to this scenario, we need to define the object attributes and
the spatial relations that we consider to be meaningful in a supermarket. Fig. 4.8 illustrates
the five relations between shelf wall units that we will be using. This includes the relation
“same unit”, as well as different types of neighborhood relations, like a unit that shares
an access node on the graph with the reference unit, or that is adjacent to the reference
unit. Further, we consider relations based on the Euclidean distance and the path distance
between shelf wall units. Each relation is reflexive and thus also includes the reference unit.

4.2 Inference-based Search Strategy 89

(a) Same unit. (b) Adjacent unit.

(c) Shared access node unit. (d) Short Euclidean distance unit.

(e) Short path distance unit.

Figure 4.8: We use five relations between shelf wall units. The reference unit is marked in red (dark gray) and
the related units in blue (light gray). The relations are: (a) The same shelf wall unit. (b) Units
adjacent to the reference unit. (c) Units sharing an access node with the reference unit. (d) Units
within an Euclidean distance of four meters, or (e) within a path distance of four meters. All
relations are reflexive and thus also include the reference unit.

90 Chapter 4 Searching for Objects

The attributes we are using are the ones that already have been depicted in Fig. 5.3 on page
112. These are: fine category, coarse category, shelf type, and edible. Some examples of
the fine categories (pizza, shampoo, etc.) and coarse categories (instant meal, hygiene, etc.)
that we are using were given in Section 4.2.1 on page 81.

To learn the feature weights we set up the training data in the following way: first we
estimate the conditional probabilities p(Ai = ai | oq, rj) based on the data of three su-
permarkets by simply counting the basic events. The local models are then used in the
maximum entropy model as features to predict the locations of objects in the remaining
fourth supermarket. This is done for all four supermarket combinations and for all 141
products, that are available in all markets. Thus, in total we have 4 × 141 training exam-
ples. We train a single set of parameters. The learned weights therefore reflect the general
importance of each local model when being used to predict a new situation – independent
of a specific product or market. During the search process, we will only observe a small
fraction of all products in the market. The model is therefore trained on markets in which
only some of the shelves contain products. It takes less than two minutes to train the model
on a standard PC and each inference during the search takes less than 10 ms.

4.2.3 Selecting a Target Location

Once a belief over the possible location of the target object is computed, the robot needs to
decide which action to take next. However, we are facing two problems, when planning a
path based on the current belief. First, ideally we should take future observations into ac-
count, which will change the belief and the subsequent steps. Second, even if we ignore for
now that new evidence will change this belief, the problem of planning an optimal search
path that minimizes the expected search path length with respect to a given distribution is
still NP-hard [77, 5]. We will thus settle for a heuristic approach.

If the robot greedily plans the shortest path to the node with the highest detection prob-
ability, it will exhibit undesirable oscillating behavior when there is more than one mode
in the belief. We therefore use a strategy that computes a utility U(v) for each node v
that trades off the (relative) detection probability p(v) at this node with the (relative) path
distance d(v) needed to reach it:

U(v) = α
p(v)

maxv′ p(v′)
− (1− α)

d(v)

maxv′ d(v′)
. (4.12)

Selecting a target location by trading off the benefits and costs in a weighted sum has been

4.3 Experimental Evaluation 91

m

0 5 10

detection probability

0 > 0.1

node utility

-0.6 > 0.6

simulated robot

shampoo

Figure 4.9: Example run using the maxent search technique with log-probability features. The position of the
robot is marked by the big red square and the path taken is marked by the red line.

previously used in autonomous exploration [44, 67]. By adjusting the parameter α ∈ [0, 1]

we can alter the search behavior. We tried several parameters in 0.1 increments and found
α = 0.4 to result in the shortest paths. The robot moves on the shortest path to the unvisited
node with the highest utility until new observations are made and the belief and the node
utilities have to be re-evaluated. In Fig. 4.9 we illustrate several stages of an example run
in one of the supermarkets. This concludes the description of our second search strategy
proposed in this chapter. The next section presents the results of several experiments to
quantitatively evaluate both strategies.

4.3 Experimental Evaluation

The first experiment is aimed at comparing the performance of the different search strate-
gies in comparison to the performance of humans searching in a real supermarket envi-

92 Chapter 4 Searching for Objects

ronment. The second experiment is aimed at a more thorough evaluation of the search
strategies, though we do not have data from human participants for this setting. A third
experiment presents the results obtained by real-world experiments in which a robot au-
tonomously searched for a product using the decision tree strategy. Finally, we will present
further evaluations of the more efficient inference-based search strategy.

The supermarket data, including the layouts and the product placement, was collected in
real supermarkets. Three of the supermarkets were used as a training set for learning the
underlying models of the search strategies, such as the decision trees and the local models,
and the fourth supermarket was used for evaluation of the strategies.

As a baseline approach, we use an exploration strategy that selects randomly among the
unvisited edges at the current node. If all outgoing edges of a node have been visited al-
ready, an edge will be chosen that leads to the nearest node with at least one unvisited edge.
This strategy rapidly explores unvisited areas and avoids searching the known parts of the
environment. This is akin to the frontier-based exploration strategy [82] known in mobile
robot exploration. If a search technique does not perform better than the exploration tech-
nique, it obviously is not able to utilize domain-specific information, which is the ambition
of our strategy. As a baseline approach, the exploration strategy allows us to relate the
performance of the search strategies to an expected upper bound on the search path length,
defined by the average search path length of the exploration strategy. A strict lower bound
is defined by the shortest possible path.

4.3.1 Evaluation in Comparison to Humans

A field study involving 38 human participants was conducted in a real supermarket [35].
The participants had to find 15 products in a given order and we used the same 15 products
as target products in our simulated search. As the supermarket in which the study took place
was the same market that we used as a model for our evaluation market, we can compare the
path distances of the human participants to the path distances traveled by the robot in the
simulated environment. In order to assure that we have a metrically comparable model of
the real market, we first built an occupancy grid map of the supermarket using a laser-based
FastSLAM implementation [25] and then placed the shelves according to the grid-map, as
can be seen in Fig. 4.1 on page 74. The product placement in our virtual markets also
resembles the product locations in the real markets. The participants were tracked using
a RFID-based localization technique [33] and the resulting trajectories were then mapped
upon the graph for a fair comparison with the path distances of the simulated robot.

4.3 Experimental Evaluation 93

13

1

2

3

4

5

6

7

8

9 10 11

14

15

12

Start

Figure 4.10: In the first experiment the simulated robot and the human participants had to find 15 products in a
given order. They start at the entrance of the market in the lower left corner. The product locations
are connected to their respective target nodes on the graph. If the robot enters a target node of the
current product, the product is found and the robot will search for the next one.

The human participants had to find the 15 products in a given order shown in Fig. 4.10,
and so the location of a found target product was the starting location for the search for the
next target product. Therefore, each target product was associated with a certain starting
location and we evaluated the simulated search strategies for the same 15 pairs of starting
location and target product.

As a performance measure we consider the length of a complete search path, that is
the path length of a search for all 15 products. We simulated a thousand search trials
for the exploration strategy and the decision tree strategies. The MaxEnt search strategy
is deterministic. We only have a sample size of 26 complete search trials of the human
participants, because some search sub-trials (for a single product) have been canceled if
the search took too long or the participants gave up. This introduces a slight bias to the
comparison for the benefit of the human participants, because the simulated search trials
were not canceled if they took “too long”. Nevertheless, we think that the available data of
the human search paths still constitutes a usable basis for a comparison.

94 Chapter 4 Searching for Objects

Table 4.2: Mean and standard deviation (SD) of the overall search path lengths for different search strategies.
For further comparison we list the length of the optimal path and the path length ratio defined as the
average path length of a strategy divided by the length of the optimal path.

Strategy
Search Path Length

Ratio Samples
Mean (km) SD (km)

Exploration 1.959 0.297 7.9 1000

Dec. Tree (a–d, pruned) 1.176 0.211 4.8 1000
Dec. Tree (a) 1.609 0.263 6.5 1000
Dec. Tree (a–b) 1.425 0.193 5.8 1000
Dec. Tree (a–c) 1.620 0.257 6.6 1000
Dec. Tree (a–d) 1.717 0.238 7.0 1000

MaxEnt (single run) 0.342 – 1.4 –
MaxEnt (restarts) 0.911 – 3.7 –

Human Participants 0.565 0.110 2.3 26

Optimal Path 0.247 – 1.0 –

In Tab. 4.2 we present the mean and standard deviation of the search path lengths. We
performed a one-tailed paired t-test1 for the sampled strategies and found all improvements
indicated by the means to be significant at the 0.01 level, except for the difference between
the decision trees with attribute combinations (a) and (a–c).

The exploration strategy yielded search paths that are on average 7.9 times longer than
the optimal path. This can be improved to a ratio of 4.8 when the search was guided by
our proposed strategy based on the pruned decision trees. If we used unpruned decision
trees then the best ratio we achieved was 5.8. This seems to suggest that the unpruned
decision trees overfit the data of the three training supermarkets. The MaxEnt strategy
achieved the best result with a ratio of 1.4. However, by using the MaxEnt strategy the
robot built up a global map during the search that also included the locations of all products
seen so far. Thus, if a target product has been seen previously while searching for another
product, the product could later be approached directly on the shortest path. As the other
strategies lack the ability to memorize the global locations of previously seen products, we
also considered a modified version of the MaxEnt strategy (the “restart” version in Tab. 4.2)
in which the map was cleared when a product has been found. Thus, when searching for the
next product on the list, the robot could not utilize information about the market stemming

1If the sample sizes differed, we used the sample size of the smaller sample. We also applied Welch’s t-test,
which is applicable for unequal sample sizes and unequal variances, and got the same results regarding the
statistical significance at the 0.01 level.

4.3 Experimental Evaluation 95

from the search sub-trial for the previous product. This resulted in a ratio of 3.7, which is
still better than the decision tree strategy, though it now performs worse than the human
participants who achieved a ratio of 2.3. However, one might argue that humans certainly
do build up some kind of global map of the market during the search and thus are able
to utilize information from previous search sub-trials when searching for the next product.
Clearly, this information is less accurate and more sketchy than the map utilized in the
“single run” version of the MaxEnt strategy that memorizes the exact location of all seen
products.

Though the proposed strategies did not achieve the same performance as humans, the re-
sults clearly indicate that the utilization of background knowledge by our proposed strate-
gies leads to significantly shorter search paths when compared to an uninformed search
strategy. The exploration strategy performed significantly worse than our approaches, be-
cause it is not able to take domain-specific background knowledge into account, which is
the advantage of our proposed techniques.

4.3.2 Evaluation with Varying Starting Locations

The setting presented in the previous section was restricted to a single starting location for
each target product. This was motivated by the desired comparison to the performance of
the human participants, for which we had to replicate the conditions of the field study.

For a more thorough evaluation of the search strategies, we started the search for the
target products from several different locations. We randomly chose 20 starting locations
in the market. These are depicted in Fig. 4.11 on the next page. Each of the 15 products
from the previous experiment had to be searched for from each starting location, yielding
300 independent search trials per strategy. For the MaxEnt strategy, the map was cleared
between the individual search trials. As in the previous experiment, we considered the total
search path length of all individual search trials as a performance measure for the search
strategies. We repeated each experiment a thousand times and list the average total search
path length and its standard deviation in Tab. 4.3 on the next page.

Beside the exploration strategy we evaluated the variant of our decision tree strategy
that performed the best in the previous experiment. Though the improvement over the
exploration strategy was now less pronounced than in the previous setting, it still yields
significantly2 shorter search paths, as can be seen in Tab. 4.3. The MaxEnt strategy yields

2We performed one-tailed paired t-tests with p < 0.01 for the sampled strategies. The result of the MaxEnt
strategy also differs significantly (p < 0.01) from the results of the sampled strategies.

96 Chapter 4 Searching for Objects

Figure 4.11: For the second experiment we randomly chose 20 starting locations (filled nodes) for the search
trials. The target locations of the products remain the same as in the previous experiment (see
Fig. 4.10).

Table 4.3: Mean and standard deviation (SD) of the overall search path lengths for different search strategies.
For further comparison we list the length of the optimal path and the path length ratio defined as the
average path length of a strategy divided by the length of the optimal path.

Strategy
Search Path Length

Ratio Samples
Mean (km) SD (km)

Exploration 32.2 1.30 6.2 1000
Dec. Tree (a–d, pruned) 27.0 0.96 5.2 1000
MaxEnt 17.4 – 3.3 –

Optimal Path 5.2 – 1.0 –

4.3 Experimental Evaluation 97

Figure 4.12: We equipped a Pioneer 3DX with a SICK laser range scanner and a SICK RFID reader with two
antennas. The robot autonomously searched for a product in a supermarket using our proposed
search strategy.

a significant improvement over the decision tree strategy, which is now more pronounced
than in the previous experiment. To summarize, this second experiment confirms our find-
ing of the first experiment, that it is beneficial to integrate domain-specific background
knowledge when searching for an object.

4.3.3 Reactive Search Strategy – Searching with a Real Robot

As a proof of concept for the reactive search strategy, we let a mobile robot autonomously
search for a product in a real supermarket. We used a Pioneer 3DX equipped with a SICK
LMS 291 laser range scanner and a SICK RFI 641 RFID reader (Fig. 4.12). The target
product was marked with a passive UHF RFID tag and the robot stopped searching as soon
as it had detected the corresponding RFID tag of the product. For navigation purposes
the robot mapped its environment in a local occupancy grid-map with a side length of
16 meters. The local map was successively re-centered at the robots location if the robot
moved more than one meter. We used a virtual sensor for detecting the relevant edge
attributes and the location of the decision points in the reference frame of the local map.
Extracting this information directly from sensor data is a problem in its own right that we

98 Chapter 4 Searching for Objects

consider to be beyond the scope of this work which focuses on high-level decision making.

In the first experiment the robot started at the entrance of the market and had to find
yogurt by utilizing the decision tree depicted in Fig. 4.4 (a) on page 82. In Fig. 4.13 we
depict a sequence of snapshots3 of this search run. The small image in the upper right
corner shows the path taken by the robot as well as the current location of the robot and
the local map with respect to a map of the whole market. The rest of the image shows a
detail of the map with the current decision point and the possible successor nodes with their
respective edges. The successor nodes of which the robot may choose randomly are marked
by a black dot. These nodes either belong to edges that were classified as promising or to
unvisited edges if no edge was classified as promising. As can be seen in Fig. 4.13 (first
and second picture) the robot first proceeded straight down the main aisle, because at each
decision point there was only one promising edge in front of the robot: an unvisited edge
in a main aisle with a cooling shelf visible in its direction. At the end of the main aisle the
robot then selected the only unvisited edge, which led to the node to the robot’s left side.
After a few more meters it finally detected the product’s RFID tag and successfully ended
the search (Fig. 4.13, third picture).

In the second experiment the robot started in a side aisle located nearly in the center of
the market. At the beginning, it had two promising choices for leaving the side aisle and
entering a main aisle and randomly chose to enter the lower main aisle. Arriving there
(Fig. 4.14, first picture) it encountered only one promising direction: a node to its left side,
which lies in a main aisle with a cooling shelf visible at its end. It then proceeded down
the main aisle – encountering two similar situations – until it was left with a choice of two
non-promising but unvisited edges at the end of the main aisle (Fig. 4.14, second picture).
It randomly chose to turn right and successfully ended the search after detecting the RFID
tag of the product after a few meters (Fig. 4.14, third picture).

As in the previous experiment, the robot made an optimal decision at each decision
point. Of course, this will not always be the case. For example, in a replication of the
second experiment the robot chose to proceed to the upper node when it once again was
confronted with the situation depicted in the second picture of Fig. 4.14 in which it had
to choose randomly among two nodes. This resulted in the longer search path shown in
Fig. 4.15. In general, it is inevitable that the robot makes a suboptimal decision at some
point during the search. The purpose of our proposed technique is to learn heuristics that

3Note that some parts of the real market have been rearranged while we have been working on this technique.
This accounts for the differences in the market layout of Figs. 4.13–4.15 when compared to the previously
shown figures in this chapter.

4.3 Experimental Evaluation 99

Figure 4.13: In the first search run the robot started at the entrance of the market.

100 Chapter 4 Searching for Objects

Figure 4.14: The next search run began in a side aisle in the center of the market.

4.3 Experimental Evaluation 101

Figure 4.15: In a replication of the second search run the robot chose the upper node in the situation depicted
in the second picture of Fig. 4.14, which resulted in a longer search path.

support the robot in making the right decision such that on average the product is found
faster than with an uninformed search strategy. We believe that the results obtained both in
simulation and real-world experiments highlight the potential of this idea.

4.3.4 Inference-based Search Strategy – Further Evaluations

For further evaluation of the inference-based search strategy, we search for all 141 products
that are available in all four markets. Each product has to be searched for in each of the
four markets. When searching in one market, the conditional distributions that capture our
background knowledge were estimated from the remaining three markets. Thus, the market
is completely unknown to the robot, although the robot has some background knowledge
about the usual object arrangements stemming from the other three markets. The search
starts at the entrance and ends at the node where the product is reachable, i.e. at the access
node of the corresponding shelf. When searching for the next product the robot starts again
at the entrance without knowledge of the market from the previous run.

As a performance measure we use the sum of the path lengths of all 4 × 141 individual
search runs. The shortest path from the entrance to a product equals on average about

102 Chapter 4 Searching for Objects

Table 4.4: Overall search path lengths for different search strategies.

Strategy
Path Length Overhead Ratio

(103 m) (to best) (to short. path)

shortest path 13.4 −57.6% 1.0

maxent (log.) 31.6 0% 2.36
maxent (cont.) 32.3 2.2% 2.41
maxent (discr.) 32.5 2.9% 2.43

geom. mean 35.9 13.6% 2.68
weight. avg. 36.6 15.8% 2.73

geom. mean (mod. 1–3) 38.8 22.8% 2.90
weight. avg. (mod. 1–3) 39.4 24.7% 2.94

model 3 39.9 26.3% 2.98
model 2 40.8 29.1% 3.04
model 1 51.0 61.4% 3.81

exploration
61.3

94.0% 4.57
(σ = 1.4)

24 meters. The results are listed in Tab. 4.4, along with the path length ratio defined as the
search path length divided by the shortest path. Additionally, we list the overhead relative to
the best search strategy. As the exploration strategy chooses randomly among the directions
at junctions, we re-evaluate it ten times and list the mean and standard deviation of the
total path lengths. The other strategies are deterministic. We also evaluate the linear and
the logarithmic opinion pool with uniform and normalized weights (we will thus refer to
them as the weighted average and the geometric mean). Both fusion approaches are also
evaluated using either only three local models pAi,rj or just one model (in this case both
fusion approaches are equivalent). These three local models can be considered to be the
most specific ones: all use the “Category (fine)” attribute in combination with one of the
following spatial relations: “same unit” (model 1), “adjacent unit” (model 2), or “shared
path node unit” (model 3).

In general, the maxent search strategy achieves the shortest search path which is only
about half as long as the one of the exploration strategy and about 2.4 times longer than the
shortest possible path. The usage of different feature representations in the maxent model
has only a mild influence on the resulting path lengths. Tab. 4.4 also highlights that the
best performance is achieved by strategies that utilize all local models. In Fig. 4.16 we
additionally plot the percentage of found products versus the path length ratio. In Fig. 4.17
we plot the average path lengths to a product when searching for multiple products. For

4.4 Related Work 103

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

search path length [ratio]

fo
un

d
pr

od
uc

ts
[%

]

maxent (log.)
geometric mean

weighted average
exploration

Figure 4.16: Searching for a single product.

this, we computed distributions for each of the query products and replaced the detection
probability needed for computing the node utilities by the probability of finding any of
the query products. The products may be found in any order. As can be seen, employing
background knowledge also helps in this situation, though the benefits diminish as the
number of objects increase, which is an expected result: the more objects the robot has to
find, the more of the search area has to be visited anyway and a exploration strategy might
ultimately perform equally well.

4.4 Related Work

There exists theoretical work on general search problems in the fields of robotics and arti-
ficial intelligence [38] as well as operations research [5]. Finding an optimal search path
in a graph that either minimizes the expected time to detection [77] or the expected search
costs [81] is known to be NP-hard. Besides complexity considerations in theoretical work,
some prior work evaluated proposed search strategies in simulation. The approach pre-
sented in [41], for example, used a computationally involved dynamic programming tech-
nique for planning an optimal search path to find multiple stationary targets. In [9], a
framework was proposed that additionally allows to reason about the possible absence of

104 Chapter 4 Searching for Objects

1 2 3 5 7 9 11 13 15 17 19 21
0

50

100

150

200

250

300

number of products

av
er

ag
e

pa
th

le
ng

th
[m

]

exploration
maxent (log.)
shortest path

Figure 4.17: Searching for multiple products.

the target in the search area. In contrast to these works, we additionally assume that the
environment is initially unknown. Most of these approaches allow to incorporate back-
ground knowledge as a prior distribution over the target location. But this distribution is
assumed to be given in advance and then updated during the search based on simple pres-
ence or absence detections. Our work additionally aims at modeling such a distribution
based on object co-occurrences, or by implicitly incorporating background knowledge as
search heuristics.

Thus, a further related problem is how to model expectations about object arrangements
in indoor environments. In prior work this has been realized by modeling different types
of places in terms of object counts and inter-object distances [79], by utilizing object co-
occurrence statistics [39], by utilizing a full 3D constellation model [53], or by using a man-
ually designed ontology about indoor environments [83, 22]. Of these works, only [39], and
to some extent [22], also considered the search problem and used their model for improving
search efficiency.

Modeling background knowledge about indoor environments for improving search effi-
ciency has received far less attention in the literature so far. In [39], known object locations
in a given global map were used for efficiently finding another object at an unknown loca-
tion. A Markov random field based on statistics of object co-occurrences was used to infer

4.5 Conclusions 105

a likelihood map and to plan a search path that minimizes the expected search path length.
Again, this is a work that assumed that the structure of the environment, and some of the
objects therein, are known. In [10], the application scenario was to efficiently find the en-
trance hall in a hotel. A relational navigation policy was learned which utilized information
about the type of rooms and corridors that are directly connected to the robot’s current loca-
tion. The work presented in [22] aimed at improving the task planning of a mobile robot by
relying on semantic information about its domain. In particular, they defined an ontology
about typical home-like environments and generated plans to find unseen objects or type of
rooms, e.g. a bedroom.

4.5 Conclusions

We presented two approaches for efficiently finding an object in an unknown environment.
The first approach is a reactive search technique that only depends on local information
about the objects in the robot’s vicinity when deciding where to search next. This strategy
is based on search heuristics that can be learned from data of optimal search paths. As a
proof of concept, we presented real-world experiments in which a mobile robot searched
autonomously for a product using the proposed decision tree strategy. We furthermore pre-
sented a second, inference-based search strategy, that explicitly reasons about the location
of the target object given all observations made so far. It thereby takes more global infor-
mation into account. The underlying model of this MaxEnt search strategy can be learned
from object arrangements of similarly structured example environments.

The MaxEnt strategy achieved shorter search paths than the decision tree strategy. But
this advantage comes at additional cost as it needs to maintain and update a global map and
perform inference by taking into account all previously seen products. This has important
practical ramifications. The decision tree strategy can be implemented by using a local
grid-map as we have demonstrated in the real-world experiments. Thus, the mapping over-
head is constant in the size of the search area – the only exception being the decision point
graph, which is needed for backtracking to a node with an unvisited edge if all outgoing
edges of the current node have been visited already. However, this graph only needs to be
topologically correct and the computational overhead during the search can be considered
negligible compared to the maintenance of the local grid-map. The MaxEnt strategy, on the
other hand, needs to resort to a computationally much more demanding online SLAM ap-
proach for maintaining a consistent global map that preserves the spatial relations between

106 Chapter 4 Searching for Objects

all detected objects. On the downside the mapping overhead now grows linearly with the
size of the search area (or linearly with the length of the path the robot has taken). The up-
side is that more informed decisions can be made which eventually leads to shorter search
paths.

To summarize, in this chapter we presented two general approaches for modeling, learn-
ing, and utilizing background knowledge about indoor environments such that a mobile
robot is able to find an object in an initially unknown environment more efficiently than
would have been possible without such domain-specific knowledge. The choice between
these two approaches constitutes a trade-off between the complexity of the underlying
model and the resulting search efficiency. Extensive experiments showed that both strate-
gies significantly outperform an exploration strategy. This demonstrates the benefits of
utilizing background knowledge when searching for objects in unknown environments.

The inference-based search technique relied on object co-occurrence statistics. The pa-
rameters of the model can be learned based on the layout of supermarkets by generating
statistics about how often certain objects co-occur within a given spatial context. However,
these spatial contexts are induced by the local models which use manually defined spatial
relations – like objects being “in the same aisle” or “in the same shelf”. This motivates our
work in the next chapter, in which we wish to learn the relevant spatial relations between
objects in an unsupervised way. Thereby, we hope to increase the autonomy and adaptivity
of service robots by side-stepping the reliance on predefined spatial relations derived from
domain-specific expert knowledge.

CHAPTER 5

Unsupervised Learning of Object
Constellations

Robots operating in domestic environments need to deal with a variety of
different objects. Often, these objects are neither placed randomly, nor
independently of each other. For example, objects on a breakfast table
such as plates, knives, or bowls typically occur in recurrent configura-
tions. In this chapter, we propose a novel hierarchical generative model
to reason about latent object constellations in a scene. The proposed
model is a combination of a Dirichlet process and beta processes, which
allows for a probabilistic treatment of the unknown dimensionality of the
parameter space. We show how the model can be employed to address
a set of different tasks in scene understanding including unsupervised
scene segmentation and completion of partially specified scenes. We
describe how to sample from the posterior distribution of the model
using Markov chain Monte Carlo (MCMC) techniques and present
an experimental evaluation with simulated as well as real-world data
obtained with a Kinect camera.

Imagine a person laying a breakfast table and the person gets interrupted so that she
cannot continue with the breakfast preparation. A service robot, such as the one depicted
in Fig. 5.1 on the next page, should be able to proceed laying the table without receiving
specific instructions. It faces a series of questions: how to infer the total number of covers,
how to infer which objects are missing on the table, and how should the missing parts be

108 Chapter 5 Unsupervised Learning of Object Constellations

Figure 5.1: A scene typically contains several observable objects and the task is to infer the latent meta-objects
where a meta-object is considered to be a constellation of observable objects. At a breakfast table,
for example, the meta-objects might be the covers that consist of the observable objects plate, knife,
fork, and cup.

arranged? For this, the robot should not require any user-specific pre-programmed model
but should ground its decision based on the breakfast tables it has seen in the past.

In this chapter, we address the problem of scene understanding given a set of unlabeled
examples and generating a plausible configuration from a partially specified scene. The
key contribution of our technique is the definition of a novel hierarchical nonparametric
Bayesian model to represent the scene structure in terms of object groups and their spatial
configuration. We show how to infer the scene structure in an unsupervised fashion by using
Markov chain Monte Carlo (MCMC) techniques to sample from the posterior distribution
of the latent scene structure given the observed objects.

In our model, each scene contains an unknown number of latent object constellations or
meta-object instances. In the breakfast table example, a place cover can be seen as a meta-
object instance of a certain type that, for example, consists of the objects plate, knife, and
cup. An instance of a different type might consist of a cereal bowl and a spoon. These meta-
object instances are assumed to be sampled from a distribution over object constellations.

109

(a) Meta-object type. (b) Meta-object instance.

Figure 5.2: A meta-object type is modeled as a collection of parts, each having a Gaussian distribution, a
multinomial distribution over object types, and a binary activation probability. A meta-object type
is a distribution over object constellations, which we will call meta-object instances.

We will refer to these distributions as meta-object types (see Fig. 5.2) as we assume that
there are different types of constellations. Thus, not all meta-object instances of a given
type are the same, they differ in the sense that some objects may be missing and that the
objects may not be arranged in the exact same way.

When specifying a generative model for our problem, we have the difficulty that the
dimensionality of the model is part of the learning problem. This means, that besides
learning the parameters of the model, like the pose of a meta-object, we additionally need
to infer the number of involved meta-objects, meta-object parts, etc. The standard solution
would be to follow the model selection approaches, for example, learning several models
and then choosing the best one. Such a comparison is typically done by trading off the data
likelihood with the model complexity as, for example, done for the Bayesian information
criterion (BIC). The problem with this approach is the huge number of possible models,
which renders this approach intractable in our case.

To avoid this complexity, we follow another approach, motivated by recent developments
in the field of hierarchical nonparametric Bayesian models based on the Dirichlet process
and the beta process. These models are able to adjust their complexity according to the
given data, thereby sidestepping the need to select among several finite-dimensional model
alternatives. Based on a prior over scenes, which is updated by observed training scenes,
the model can be used for parsing new scenes or completing partially specified scenes by
sampling the missing objects.

Whereas in this chapter, we consider the problem of learning the object constellations
on a breakfast table as depicted in Fig. 5.1, our model is general and not restricted to this
scenario.

110 Chapter 5 Unsupervised Learning of Object Constellations

5.1 Generative Scene Model

In this section, we describe the proposed generative scene model. We assume that the reader
is familiar with the basics of nonparametric Bayesian models [23], especially with the Chi-
nese restaurant process (CRP) and the Dirichlet process (DP) [70], the (two-parameter)
Indian buffet process (IBP) and the beta process (BP) [24, 73], and the concepts of hierar-
chical [71] and nested [57] processes in this context.

In the following, we consider a scene as a collection of observable objects represented
as labeled points in the 2D plane. The 2D assumption is due to our motivation to model
table scenes. However, the model is not specifically geared towards 2D data and could in
principle also be applied to 3D data. Basically, we assume that each scene contains an
unknown number of latent object constellations (place covers). An object constellation is
called a meta-object instance (or simply meta-object) and corresponds to a sample from
a meta-object type, which is a distribution over object constellations and is represented as
a part-based model with infinitely many parts. As illustrated in Fig. 5.2, each part has a
binary activation probability, a Gaussian distribution over the relative object position, and
a multinomial distribution over the object type (knife, fork, etc.). To sample from a meta-
object type, one first samples the activation of each part. For each activated part, one then
samples the relative position and the object type to be generated at this location. Each
activated part generates exactly one object per meta-object instance. Thus, the objects of a
scene can be grouped into clusters. Each cluster corresponds to a meta-object instance and
the objects of a cluster can be associated to the parts of the corresponding meta-object type.
Please note, that we will use the terms “meta-object” and “cover” interchangeably.

5.1.1 Description of the Generative Process

Following the example given in the introduction, imagine that our robot’s goal is to set a ta-
ble for a typical family breakfast. At the beginning, it enters a room with an empty breakfast
table and an infinite number of side tables, each holding a prototypical cover. It estimates
the area A of the breakfast table surface and boldly decides that n ∼ Pois(Aλ) covers are
just right. The robot chooses one of the side tables and finds a note with the address of a
Chinese restaurant where it can get the cover. Arriving there, it sees again infinitely many
tables each corresponding to a particular cover type and each displaying a count of how
often someone took a cover from this table. It is fine with just about any cover type and
decides randomly based on the counts displayed at the tables, even considering a previously

5.1 Generative Scene Model 111

unvisited table. At that table there is another note redirecting to an Indian restaurant. In this
restaurant, it is being told that the cover needs to be assembled by choosing the parts that
make up this cover. The robot randomly selects the parts based on their popularity and even
considers to use a few parts no one has ever used before. For each chosen part its relative
position is sampled from the part’s Gaussian distribution and then the robot samples the
object from the part’s multinomial distribution over types (plate, knife, fork, etc.). Having
assembled the cover this way, the robot returns to the breakfast table and puts it randomly
on it. The process is then repeated for the remaining n− 1 covers. See also Fig. 5.3 on the
next page for an overview of the model structure in terms of the various CRPs and IBPs.

More formally, we have a hierarchical model with a high-level Dirichlet process DPt, a
low-level beta process BPc and a further independent beta process BPε. First, we draw Gt

from the high-level DPt

Gt ∼ DPt(αt,BPp(cp, αp,Dir×NW)), (5.1)

where the base distribution of DPt is a beta process BPp modeling the parts’ parameters.
This is done only once and all scenes to be generated will make use of the same draw
Gt. This draw describes the distribution over all possible meta-object types (cover types)
and corresponds to the Chinese restaurant mentioned above. The base distribution of the
beta process is the prior distribution over the part parameters. The parameters are a 2D
Gaussian distribution over the relative location and a multinomial over the observable object
types. The parameters are sampled independently and we use their conjugate priors in the
base distribution, i.e., a (symmetric) Dirichlet distribution Dir for the multinomial and the
normal-Wishart distribution NW [45] for the 2D Gaussian. The mass parameter αp of
BPp is our prior over the number of activated parts of a single meta-object instance and
the concentration parameter cp influences the total number of instantiated parts across all
instances of the same type. Likewise, the parameter αt influences the expected number of
meta-object types. Each scene s has its own meta-object IBP and the meta-object instances
are determined by a single draw from the corresponding beta-Bernoulli process as follows:

G(s)
c ∼ BPc(1, |As|αc, Gt × U(As × [−π, π])) (5.2)

{Gtj , Tj}j ∼ BeP(G(s)
c) (5.3)

{µk,Σk,γk}k ∼ BeP(Gtj) for each j (5.4)

{x,ω} ∼ p(z | µk,Σk,γk, Tj) for each k (5.5)

112 Chapter 5 Unsupervised Learning of Object Constellations

Scene 1

IBP

CRP

IBP

IBP

Scene 2

IBP IBP

IBP

Figure 5.3: Basic structure of our model: The Indian buffet processes (IBP) on top are nested within the tables
(represented as circles) of the Chinese restaurant process (CRP) below them. The blocks within the
IBP frames represent the relevant part of the IBP matrix (see Fig. 5.4). Clusters in the scenes are
meta-object instances and objects (colored points) of the clusters need to be associated to entries
in the IBPs shown on top. This is explicitly shown for one cluster in the first scene. For visibility
reasons, the rest of the associations are drawn as a single thick line. At the lowest level, each scene
has a meta-object IBP (shown on the left) and a noise IBP (on the right) from which the meta-object
instances and the noise objects of a scene are drawn.

In Eq. (5.2), the concentration parameter is irrelevant and arbitrarily set to one. The
reason for this is, that the scene-specific IBPs only have a single customer which selects
a Poisson distributed number of dishes (meta-objects). This distribution for the first cus-
tomer is only influenced by the mass parameter and not the concentration parameter. While
the concentration parameters is set to one, the mass parameter |As|αc is the mean of the
said Poisson distribution and therefore corresponds to the expected number of meta-object
instances in a scene. Here, |As| is the table area in scene s. Thus, the greater the table
area, the more meta-object instances we expect a priori. The base distribution of BPc in
Eq. (5.2) samples the parameters of a instance j: its type tj and its pose Tj . The type tj
is drawn from the distribution over meta-object types Gt from Eq. (5.1). The pose Tj is

5.1 Generative Scene Model 113

Figure 5.4: A more detailed view on a part IBP representing a meta-object type. This would correspond to one
of the IBPs at the very top in Fig. 5.3. The rows represent customers and the columns represent
dishes (parts). The customers of this IBP are the meta-object instances associated to this meta-
object type in any of the scenes. The objects of the instances must be associated to one of the parts.
They thereby update the posterior predictive distribution (illustrated at the bottom) over the objects
of a new customer. Remember, that the actual part parameters are integrated out due to the usage
of conjugate priors.

drawn from a uniform distribution U over the pose space As × [−π, π] where As is the
table area. Each atom selected by the Bernoulli process in Eq. (5.3) corresponds to a meta-
object instance and this selection process corresponds to the side table metaphor mentioned
above. The meta-object type tj basically references a draw Gtj from the nested beta pro-
cess in Eq. (5.1) which models the parts of a meta-object type. Thus, in Eq. (5.4) we need
another draw from a Bernoulli process to sample the activated parts for this instance, which
yields the Gaussians (µk,Σk) and the multinomials (γk) for each active part k. Finally, in
Eq. (5.5) we draw the actual observable data from the data distribution as realizations from
the multinomials and the (transformed) Gaussians, which yields an object z = {x, ω} on
the table with location x and type ω for each activated part.

114 Chapter 5 Unsupervised Learning of Object Constellations

Each scene has an additional independent beta process BPε

G(s)
ε ∼ BPε(1, αε,M × U(As)) (5.6)

{xi, ωi}i ∼ BeP(G(s)
ε) (5.7)

that directly samples objects (instead of meta-objects) at random locations in the scene.
Here, M is a multinomial over the observable object types and U(As) is the uniform dis-
tribution over the table area As. This beta-Bernoulli process will mainly serve as a “noise
model” during MCMC inference to account for yet unexplained objects in the scene. Ac-
cordingly, we set the parameter αε to a rather low value to penalize scenes with many
unexplained objects. Figs. 5.3 and 5.4 illustrate the overall structure of the model.

5.1.2 Posterior Inference in the Model

Some model parameters are integrated out analytically. This holds true for the draws from
the various processes, which means that we are only working in terms of posterior predic-
tive distributions as modeled by the Chinese restaurant and Indian buffet representations.
Further, some of the atoms (table and dish parameters) are also integrated out. For example,
the dish parameters of the part IBPs consist of Gaussians and multinomials, which can be
integrated out analytically due to the usage of conjugate prior. What remains to be explic-
itly represented are the poses and types of the meta-object instances and the associations of
the observable objects to either the noise process or to a part of a meta-object instance.

We now describe how to sample from the posterior distribution over the latent variables
{C,a} given the observations z. We use the following notation: The observations are the
objects of all scenes and a single object zi = {xi, ωi} has a 2D location xi on the table
and a discrete object type ωi. A meta-object instance j has parameters Cj = {Tj , tj ,dj},
where Tj denotes the pose and tj denotes the meta-object type, which is an index to a table
in the type CRP, and dj denotes part activations and associations to the observable objects.
If dj,k = 0 then part k of meta-object instance j is inactive, where k is an index to a dish
in the corresponding part IBP (which is nested in the CRP table tj). Otherwise, the part
is active and dj,k 6= 0 is a reference to the associated observable object, i.e., dj,k = i if it
generated the object zi. Next, for each scene we have the associations a to the noise IBP,
i.e., the list of objects currently not associated to any meta-object instance. For ease of
notation, we will use index functions [·] in an intuitive way, for example, t[−j] denotes all
type assignments except the type assignment tj of meta-object j, and T[tj] denotes all poses

5.1 Generative Scene Model 115

of meta-objects that have the same type tj as meta-object j, and z[d] are all observations
referenced by the associations d, etc.

We employ Metropolis-Hastings (MH) moves to sample from the posterior [2], which
allows for big steps in the state space by updating several strongly correlated variables at a
time. In the starting state of the Markov chain, all objects are assigned to the noise IBP of
their respective scene and thus are interpreted as yet unexplained objects. We sample for a
fixed yet sufficiently high number of iterations to be sure that the Markov chain converged.
We use several types of MH moves, which we will explain in detail after describing the
joint distribution.

5.1.2.1 Joint Distribution

The joint distribution p(C,a, z) = p(T, t,d,a, z) is defined in terms of the CRP and IBP
representation where the draws from the processes have been integrated out. It includes
the poses T of all meta-object instances, their types t (table indices of the type CRP), their
active parts d (dish indices of the corresponding part IBP), the associations a of objects to
the noise process, and the observed data z.

p(C,a, z) = p(T, t,d,a, z) (5.8)

=

(
S∏
s=1

p(ns,ε)p(ns,m)

)
p(t)

(
nt∏
t=1

p(d[t] | t)

)

p(T)

(
nt∏
t=1

Kt∏
k=1

p(z[d[t,k]] | T[t],d[t,k], t)

)
(5.9)

Here, ns,m is the number of meta-object instances and ns,ε is the number of noise objects
in scene s. Each dish parameter of the noise IBP directly corresponds to the parameters
zi = {xi, ωi} of the associated noise object, as we assumed that there is no data distribution
associated with these dishes. The base distribution for the dish parameters consists of
independent and uniform priors over the table area and the object types, and so each dish
parameter has the likelihood (nω |As|)−1, where nω is the number of observable object
types and |As| is the area of the table in scene s. Thus, the probability of the objects z[a[s]]

associated to a scene’s noise IBP only depends on the number of noise objects and not
on the particular type or position of these objects. However, it would be straightforward
to use a non-uniform base distribution. Denoting the Poisson distribution with mean λ as

116 Chapter 5 Unsupervised Learning of Object Constellations

Pois(· | λ) we thus have

p(ns,ε) = p(z[a[s]],a[s]) = ns,ε! Pois(ns,ε | αε)(nω |As|)−ns,ε . (5.10)

Next, p(ns,m) = ns,m! Pois(ns,m | αm |As|) is the prior probability for having ns,m meta-
objects in scene s. The dish parameters of a meta-object IBP are the meta-object parameters
Cj , consisting of the pose, type, and part activations. The likelihood for sampling a pose
p(Tj) = (|As| 2π)−1 is uniform over the table surface and uniform in orientation, hence
p(T) =

∏S
s=1(|As| 2π)−ns,m . Next, p(t) is the CRP prior for the meta-object types of all

meta-object instances. The factors p(d[t] | t) are the IBP priors for the part activations for
all meta-object instances of type t and there are nt different types currently instantiated.
During MCMC sampling, we will only need the conditional for a single meta-object j

p(tj ,dj | t[−j],d[−j]) = p(dj | d[−j,tj], t)p(tj | t[−j]). (5.11)

Here, p(tj | t[−j]) is the CRP predictive distribution

p(tj = i | t[−j]) =


ni

αc +
∑

i′ ni′
i is an existing type

αc
αc +

∑
i′ ni′

i is a new type
, (5.12)

and ni is the number of meta-object instances of type i (not counting instance j) and αc
is the concentration parameter of the CRP. Further, p(dj | d[−j,tj], t) is the predictive
distribution of the two-parameter IBP, which factors into activation probabilities for each
of the existing parts and an additional factor for the number of new parts, denoted as n+.
An existing part is a part that has been activated by at least one other meta-object instance
of this type in any of the scenes. The activation probability for an existing part k is

p(dj,k 6= 0 | d[−j,tj], t) =
nk

ntj + cp
, (5.13)

where cp is the concentration parameter of the part IBP, nk is the number of meta-object
instances that have part k activated in any of the scenes, and ntj is the total number of
meta-object instances of type tj in all scenes (the counts exclude the meta-object j itself).
The probability for having n+ associations to new parts is

p(d[j,+] | d[−j,tj], t) = n+! Pois

(
n+

∣∣∣∣ cpαp
ntj + cp

)
, (5.14)

5.1 Generative Scene Model 117

where αp is the mass parameter of the part IBP, and d[j,+] denotes the associations to new
parts.

As stated in Eq. (5.8), the data likelihood p(z[d] | T,d, t) for the objects associated
to meta-objects factors into likelihoods for each individual part k. Further, it factors into
a spatial component and a component for the observable object type. As the meta-object
poses T are given, we can transform the absolute positions x[d[t,k]] of the objects associ-
ated to a certain part k of meta-object type t into relative positions x̃[d[t,k]] with respect to
a common meta-object reference frame. The relative positions are assumed to be sampled
from the part’s Gaussian distribution which in turn is sampled from a normal-Wishart dis-
tribution. As the Gaussian and the normal-Wishart distribution form a conjugate pair, we
can analytically integrate out the part’s Gaussian distribution which therefore does not have
to be explicitly represented. Hence, the joint likelihood for x̃[d[t,k]] of part k is computed as
the marginal likelihood under a normal-Wishart prior. During MCMC inference, we only
need to work with the posterior predictive distribution

p(x̃[dj,k] | x̃[d[−j,tj ,k]]
) = tν(x̃[dj,k] | µ,Σ) (5.15)

for a single relative position given the rest. This is a multivariate t-distribution tν with pa-
rameters µ,Σ depending both on x̃[d[−j,tj ,k]]

and the parameters of the normal-Wishart prior
– for details see [45] and Section A.1 in the appendix. Similarly, the part’s multinomial dis-
tribution over the observable object types can be integrated out as it forms a conjugate pair
with the Dirichlet distribution. The posterior predictive distribution for a single object type
is

p(ω[dj,k] | ω[d[−j,tj ,k]]
) =

nω + αω∑
ω′(nω′ + αω′)

, (5.16)

where nω is the number of times an object of type ω has been associated to part k of this
meta-object type tj , and αω is the pseudo-count of the Dirichlet prior. When describing
the MCMC moves, we will sometimes make use of the predictive likelihood for all objects
z[dj] associated to a single meta-object instance j. This likelihood factors into the posterior
predictive distributions of the individual parts and their spatial and object type components,
as described above. In the following, we will describe the various MCMC moves in detail.

5.1.2.2 Death (Birth) Move (Tj , tj ,dj ,a)→ (a?)

A death move selects a meta-object j uniformly at random, adds all of its currently asso-
ciated objects to the noise process and removes the meta-object j from the model. The

118 Chapter 5 Unsupervised Learning of Object Constellations

proposal probability for this move is qd(C−j ,a? | Cj ,C−j ,a) = (nm)−1 where nm de-
notes the number of instantiated meta-objects in this scene before the death move. To
simplify notation, we will just write qd(Cj) for the probability of deleting meta-object j.
The reverse proposal is the birth proposal qb(C?j ,C−j ,a

? | C−j ,a, z) that proposes new
parameters C?j = {T ?j , t?j ,d

?
j} for an additional meta-object: the pose T ?j , the type t?j ,

and the associations d?j . The new meta-object may reference any of the objects previously
associated to the noise process and any non-referenced noise objects remain associated to
the noise process. We will describe the details of the birth proposal in detail later on. To
simplify notation, we will just write qb(Cj) for the birth proposal. Plugging in the model
and proposal distributions in the MH ratio and simplifying we arrive at the acceptance ratio
of the death move

Rd =
1

p(z[dj] | z[d[−j,tj]]
,T[tj],d[tj], t)p(tj ,dj | t[−j],d[−j])

1

p(Tj)

p(nm − 1)

p(nm)

p(nε + nj)

p(nε)

qb(Cj)

qd(Cj)
. (5.17)

The counts nj , nm, and nε refer to the state before the death move, and nm denotes the
number of meta-objects in this scene, nj are the number of objects currently associated to
meta-object j, and nε is the number of noise objects. The ratio of a birth move is derived
similarly.

5.1.2.3 Switch Move (Tj , tj ,dj ,a)→ (T ?j , t
?
j ,d

?
j ,a

?)

This move is a combined death and birth move. It removes a meta-object and then proposes
a new meta-object using the birth proposal. Thus, the number of meta-objects remains the
same but one meta-object simultaneously changes its type tj , pose Tj , and part associations
dj . The death proposals cancel out and the acceptance ratio of this move is

Rs =
p(z[d?j] | z[d[−j,t?

j
]]
, T ?j ,T[−j,t?j],d

?
j ,d[−j,t?j], t

?
j , t[−j])

p(z[dj] | z[d[−j,tj]]
, Tj ,T[−j,tj],dj ,d[−j,tj], tj , t[−j])

p(t?j ,d
?
j | t[−j],d[−j])p(T

?
j)p(n?ε)qb(Cj)

p(tj ,dj | t[−j],d[−j])p(Tj)p(nε)qb(C
?
j)
. (5.18)

5.1 Generative Scene Model 119

5.1.2.4 Shift Move (Tj)→ (T ?j)

This move disturbs the pose Tj of a meta-object by adding Gaussian noise to it while the
type and part associations remain unchanged. The acceptance ratio depends only on the
spatial posterior predictive distributions of the objects associated to this meta-object. The
proposal likelihoods cancel due to symmetry and the final ratio is

RT =
p(x[dj] | x[d[−j,tj]]

, T ?j ,T[−j,tj],d[tj], t)p(T ?j)

p(x[dj] | x[d[−j,tj]]
, Tj ,T[−j,tj],d[tj], t)p(Tj)

. (5.19)

5.1.2.5 Association Move (Existing Part) (dj ,a)→ (d?j ,a
?)

This move samples the part activation and object association of an existing part k of a
single meta-object j. In the IBP metaphor, this corresponds to sampling the selection of a
single existing dish (part) for a single customer (meta-object instance). If the existing part
is already associated with an object, we consider this object to be temporarily re-associated
to the noise process (such that there are now nε noise objects). We then use Gibbs sampling
to obtain one of nε + 1 possible associations: either the part k is inactive (dj,k = 0) and
not associated with any object on the table, or it is active (dj,k 6= 0) and associated with
one out of nε currently available noise objects of this scene (e.g. zi when dj,k = i). The
probabilities for these cases are proportional to

p(dj,k = i) ∝
p(dj,k = 0 | d[−j,tj ,k], t)p(nε) i = 0

p(zi | z[d[−j,tj ,k]]
,T[tj], dj,k,d[−j,tj ,k], t)

p(dj,k 6= 0 | d[−j,tj ,k], t)p(nε − 1)
i 6= 0

(5.20)

5.1.2.6 Association Move (New Parts) (dj ,a)→ (d?j ,a
?)

This move samples the associations of objects to new parts. For this, we use two comple-
mentary Metropolis-Hastings moves: one move increases the number of new parts by one
by assigning a noise object to a new part, while the other move decreases the number of
new parts by one by assigning an associated object (of a new part) to the noise process. The
acceptance ratio for removing object zi from a new part k of meta-object j that currently

120 Chapter 5 Unsupervised Learning of Object Constellations

has n+ new parts is

R− =
1

p(zi | Tj , dj,k)
p(d?[j,+] | d[−j,tj], t)

p(d[j,+] | d[−j,tj], t)

p(nε + 1)

p(nε)

q+

q−
(5.21)

The proposal q− = (n+)−1 chooses one of the new parts to be removed uniformly at
random, while the reverse proposal q+ = (nε + 1)−1 chooses uniformly at random one of
then nε + 1 noise objects to be associated to a new part. The MH move that increases the
number new parts is derived similarly.

5.1.2.7 Birth Proposal qb(Tj , tj ,dj)

The birth, death, and switch moves rely on a birth proposal that samples new meta-object
parameters Cj = {Tj , tj ,dj}. The general idea is to sample the pose Tj and type tj in a
first step. We then proceed to sample the associations dj given Tj and tj , i.e., the potential
assignment of noise objects to the parts of this meta-object.

Sampling Tj and tj is done in either of two modes: the object mode or the matching
mode. In object mode, we choose an object uniformly at random and center the meta-object
pose Tj at the object’s location (with random orientation) and add Gaussian noise to it. The
type tj is sampled from the current predictive distribution of the type CRP. In contrast, the
matching mode was inspired by bottom-up top-down approaches and aims to propose Tj
and tj in a more efficient way by considering the currently instantiated meta-object types
in the model. However, in contrast to the object mode, it cannot propose new meta-object
types (new tables in the type CRP). It selects two objects and associates them to a suitable
part pair. This suffices to define the pose Tj as the corresponding transformation of these
parts into the scene. In detail, we first sample one of the objects zi at random and choose
its nearest neighbor zj . We match this ordered pair 〈zi, zj〉 against all ordered part pairs
〈ki′ , kj′〉 of the meta-object types to obtain their matching probabilities pm with respect
to the parts’ posterior predictive means, µi′ and µj′ , of the spatial distribution, and their
posterior predictive distributions, Mi′ and Mj′ , over the observable object types ωi and ωj

pm(〈ki′ , kj′〉 | 〈zi, zj〉) ∝ N (d∆ | 0, σ2
m)Mi′(ωi)Mj′(ωj). (5.22)

Here, d∆ = ‖xi − xj‖ − ‖µi′ − µj′‖ is the residual of the objects’ relative distance w.r.t.
the distance of the posterior means and σ2

m is a fixed constant. We then sample a part pair
〈ki′ , kj′〉 according to its matching probability to define, together with the objects zi and

5.2 Experiments 121

zj , the pose Tj . Finally, we add Gaussian noise to Tj . The sampled part pair implicitly
defines the meta-object type tj .

After having sampled Tj and tj using either of these two modes, the next step is to sample
the associations dj . For this, we randomly choose, without repetition, a noise object and
use Gibbs sampling to obtain its association to either: (a) a yet unassociated part of the
meta-object instance; (b) a new part of the meta-object instance; or (c) be considered a
noise object. The probabilities for (a) and (b) are proportional to the spatial and object
type posterior predictive distributions of the respective parts, while (c) is based on the noise
IBP’s base distribution.

Besides sampling from the proposal distribution we also need to be able to evaluate the
likelihood qb(Cj) for sampling a given parameter set Cj . For this, we need to marginalize
over the latent variables of the proposal, e.g. the binary mode variable (object mode or
matching mode), the chosen object zi, and the chosen part pair of the matching mode.

5.2 Experiments

We tested our model on both synthetic data and on real-world data acquired with a Kinect
camera.

5.2.1 Synthetic Data

In the synthetic data experiment, table scenes were generated automatically using a differ-
ent, hand-crafted generative model. We generated 25 training scenes ranging from two to
six covers. The cover types represent two different breakfast types. The first type consists
of a cereal bowl and a spoon, while the second type consists of a plate with a glass, a fork
and a knife. A fork can be randomly placed at the right or the left of a plate or being absent.

The latent parameters are inferred using all the generated training scenes and setting the
hyperparameters to αε = 0.5, cp = 0.25, αp = 2.5, αt = 5, and αc = 1. As a first test, we
wanted to show that the model is able to segment the scenes in a consistent and meaningful
way. The results of this test are shown in Fig. 5.5a. A set of different scenes are segmented
by using the learned model. We see that each scene has been segmented with the same
cover types and objects are correctly clustered. Note that the color of the meta-objects and
of the parts can change in every run, since the ordering of types and meta-objects is not
relevant in our model. What is important is that the topological and metrical configuration
are respected.

122 Chapter 5 Unsupervised Learning of Object Constellations

(a) Examples of parsed scenes of the synthetic data set.

(b) Examples of parsed scenes of the real-world data set.

Figure 5.5: The picture shows the inferred meta-objects with their part relationships. Each picture shows a
different scene from a different MCMC run. The color of the spheres correspond to the meta-object
type. The color of the vertical lines indicates the part of the corresponding meta-object type that
the object on the table is currently associated with.

A second test is to see if the model can infer the meta-objects in incomplete scenes and
if it is able to complete them. To this end, we artificially eliminated objects from already
generated scenes and segmented the altered scene again using the learned model. We dis-
covered that the approach was able to infer the correct cover type even in the absence of
the missing object. As can be seen in Fig. 5.6a, the approach correctly segmented and rec-
ognized the meta-objects and is aware of the missing plate (the red branch of the hierarchy
that is not grounded on an existing object). The missing object can then be inferred by
sampling from the part’s posterior predictive distribution over the location and type of the
missing object, as the one shown in Fig. 5.7 (left) on page 124.

5.2.2 Real-world Data

We used a Microsoft Kinect depth camera to identify the objects on the table by, first,
segmenting the objects by subtracting the table plane in combination with a color-based

5.2 Experiments 123

plate?

(a) Incomplete scene of the synthetic data set.

plate?

(b) Incomplete scene of the real-world data set.

Figure 5.6: Inferred meta-objects in an incomplete scene of the synthetic data set (a) and the real-world data
set (b). The color of the spheres indicate the meta-object type and the line colors indicate the part
of the meta-object type. In both scenes one plate has been removed. The model is still able to
correctly segment the incomplete scenes and infer the missing objects. To enhance readability the
pictures have been modified with human readable labels.

124 Chapter 5 Unsupervised Learning of Object Constellations

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

[m]

[m
]

part 1
0.99 activation prob.
0.99 glass

part 2
0.99 activation prob.
0.99 knife

part 3
0.99 activation prob.
0.99 plate

part 4
0.62 activation prob.
0.99 fork

−0.2 −0.1 0 0.1 0.2

[m]

part 2
0.97 activation prob.
0.99 cup

part 1
0.97 activation prob.
0.99 knife

part 3
0.86 activation prob.
0.99 plate

Figure 5.7: Examples of spatial posterior predictive distributions of several parts of a cover type and their
activation probabilities and most likely observable object types. The cover type on the left was
learned on synthetic data, while the one on the right was learned on the real-world data set.

segmentation. Second, we detect the objects based on the segmented pointclouds using a
straight forward feature-based object detection system with a cascade of one-vs-all classi-
fiers. An example for the segmentation and object identification is shown in Fig. 5.8. Note
that there are likely to be better detection systems, however, the task of detecting the objects
on the table is orthogonal to the scientific contribution of our proposed technique.

The same tests performed on the synthetic data have been performed also in this case,
showing basically the same results. In particular, Fig. 5.5b shows the segmentation results,
Fig. 5.6b shows a modified scene where a plate has been removed and Fig. 5.7 (right) shows
the posterior predictive distribution for location and type, as for the synthetic case, that can
be used to complete an incomplete scene.

To better illustrate the inference process, we plot the log-likelihood, the total number of
parts, and the total number of meta-object types in Fig. 5.9 on page 126 as they evolve
during MCMC sampling.

5.3 Related Work

In this section we describe the relevant works on unsupervised scene analysis. A first family
of approaches, and the most related to our model, employs nonparametric Bayesian models

5.3 Related Work 125

knife

plate cup

cup knife

plate

spoon

bowl

Figure 5.8: Segmentation (left) and classification (right) results on the point cloud segments visualized in the
Kinect image.

to infer spatial relations. Sudderth et al. [68] introduced the transformed Dirichlet process,
a hierarchical model which shares a set of stochastically transformed clusters among groups
of data. The model has been applied to improve object detection in visual scenes, given the
ability of the model to reason about the number of objects and their spatial configuration.
Following his paper, Austerweil and Griffiths [4] presented the transformed Indian buffet
process, where they model both the features representing an object and their position rel-
ative to the object center. Moreover, the set of transformations that can be applied to a
feature depends on the object’s context.

A complementary approach is the use of constellation models [16, 17, 53]. These mod-
els explicitly consider parts and structure of objects and can be learned efficiently and in
a semisupervised manner. The star model [17], which is the more efficient variant of con-
stellation models, uses a sparse representation of the object consisting of a star topology
configuration of parts modeling the output of a variety of feature detectors. The main lim-
itations of these methods, however, lies in the fact that the number of objects and parts
must be defined beforehand and thus cannot be trivially used for scene understanding and
object discovery. Ranganathan and Dellaert [53] used a 3D constellation model for rep-
resenting indoor environments as object constellations. A closely related approach [50]
to constellation models uses a hierarchical rule-based model to capture spatial relations. It
also employs a star constellation model and a variant of the expectation maximization (EM)
algorithm to infer the structure and the labels of the objects and parts.

Another family of approaches relies on discriminative learning and unsupervised model
selection techniques. One approach is to automatically discover object part representa-

126 Chapter 5 Unsupervised Learning of Object Constellations

−1,000

0

1,000

lo
g-

lik
el

ih
oo

d

0

10

20

m
et

a-
ob

je
ct

pa
rt

s

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500

0

2

4

6

MCMC sampling iteration

m
et

a-
ob

je
ct

ty
pe

s

Figure 5.9: The plots depict the log-likelihood, the total number of meta-object parts (summed over all meta-
object types), and the number of meta-object types as they evolve during MCMC sampling. The
red lines corresponds to the synthetic data set and the blue lines to the real-world data set.

5.4 Conclusion 127

tions [61]. In this work, the authors introduced a latent conditional random field (CRF)
based on a flexible assembly of parts. Individual part labels are modeled as hidden nodes
and a modified version of the EM algorithm has been developed for learning the pairwise
structure of the underlying graphical model. Triebel et al. [76] presented an unsupervised
approach to segment 3D range scan data and to discover objects by the frequency of the
appearance of their parts. The data is first segmented using graph-based clustering, then
each segment is treated as a potential object part. The authors used CRFs to represent
both the part graph to model the interdependence of parts with object labels, and a scene
graph to smooth the object labels. Spinello et al. [66] proposed an unsupervised detection
technique based on a voting scheme of image descriptors. They introduced the concept of
latticelets: a minimal set of pairwise relations that can generalize the patterns connectiv-
ity. Conditional random fields are then used to couple low level detections with high level
scene description. Jiang et al. [32] used an undirected graphical model to infer the best
placement for multiple objects in a scene. Their model considers several features of object
configurations, such as stability, stacking, and semantic preferences.

A different approach is the one of Fidler and Leonardis [20]. They construct a hierar-
chical representation of visual input using a bottom-up strategy. They learn the statistically
most significant compositions of simple features with respect to more complex higher level
ones. Parts are learned sequentially, layer after layer. Separate classification and grouping
technique are used for the bottom and top layers to account for the numerical difference
(sensor data) and semantical ones (object category).

The novelty of the approach presented in this chapter lies in the combination of a Dirich-
let process and beta-Bernoulli processes which provides us with a prior for sampling or
completing entire scenes.

5.4 Conclusion

In this chapter, we presented a novel and fully probabilistic generative model for unsuper-
vised scene analysis. Our approach is able to model the spatial arrangement of objects. It
maintains a nonparametric prior over scenes, which is updated by observing scenes and can
directly be applied for parsing new scenes and for model completion by inferring missing
objects in an incomplete scene. Our model applies a combination of a Dirichlet process and
beta processes, allowing for a probabilistic treatment of the model complexity. In this way,
we avoid a model selection step, which is typically intractable for the models considered

128 Chapter 5 Unsupervised Learning of Object Constellations

here. To evaluate our approach, we successfully used our approach to infer missing objects
in complex scenes.

This chapter concludes the technical description of the main contributions of this thesis.
In the next chapter, we will shortly recapitulate the achieved results and discuss directions
for future research.

CHAPTER 6

Discussion

We recapitulate the main contributions of this thesis: (a) RFID-based
object localization, (b) searching for objects in unknown environments,
and (c) learning spatial relations between objects. Further, we describe
several open research questions that we have identified during our work
on the techniques presented in this thesis and discuss directions for
future research.

In this thesis, we presented several novel techniques for (a) localizing objects, (b) search-
ing for objects in unknown environments, and (c) learning spatial relations between objects
in an unsupervised way. Our initial motivation for addressing these topics was the assump-
tion that if robots should be able to perform useful tasks in domestic environments in an
adaptive and efficient manner, then they need to be aware of the object-related concepts that
influence the structural organization of these environments. That is, robots should be able
to acquire and utilize a representation of their environment that takes into account the spa-
tial context and interdependencies between objects. We showed that such representations
enable a robot to perform tasks more efficiently or to address completely new tasks. For
example, a robot might reason about missing or misplaced objects or it can search more
efficiently for an object if it has some prior knowledge about usual object arrangements.
Further, we argued that it would be desirable that a robot is able to acquire this knowledge
in an unsupervised way.

However, as a precondition for the ability to search for objects or to learn relevant object
relations, a robot needs to localize the objects in the first place. As future retail products
may already be equipped with RFID tags, we considered the problem of RFID-based object

130 Chapter 6 Discussion

localization. For this, we presented a novel combined sensor model that utilizes both the
received signal strength and tag detections of RFID systems for localizing the RFID tags.
Further, we showed that this sensor model can also be employed in a particle filter for
self-localization of the robot when given a map of tag locations. The manual acquisition
of calibration data for setting up the sensor model can be a tedious and time-consuming
task in practice. We therefore proposed a technique to learn such a model in an iterative
and unsupervised way, which greatly simplifies this calibration phase. The learning phase
iterates between two steps: (a) localizing the RFID tags with a given sensor model and
(b) learning a sensor model with a given list of tag locations. As a side effect, this iterative
procedure thereby not only learns a sensor model in an unsupervised way, but also estimates
the tag locations. Once we have learned a sensor model we can localize RFID tags in a
non-iterative way. For further evaluation of our technique, we implemented a sensor model
that has been shown to be effective for WiFi localization and we compared the accuracy
of both techniques. Further, we described how the WiFi model can be improved in the
context of RFID localization by mapping the signal strength in pose space rather than in
2D. We performed experiments in several real-world settings and compared our approach
to other state-of-the-art techniques. The results showed that our approach achieves the
computational efficiency of existing sensor-centric models and an accuracy of a state-of-
the-art approach that learns a location-dependent model for each tag.

Given that we can localize objects, we moved on to address the question how knowledge
about usual object arrangements can be learned and represented in such a way that a robot
is able to more efficiently find an object in an unknown but similarly structured environ-
ment. For this, we proposed and evaluated two novel techniques and considered the search
for a product in a supermarket as an illustrative example. The first approach is a reactive
search technique and emphasizes the sequential nature of the search process, which is a
sequential decision making process. Being in a certain state the robot must choose among a
set of available actions, i.e., at junctions in the supermarket the robot has to decide where to
search next. For this, we learned a state-to-action mapping, a policy, where a state includes
the currently observed objects in direction of the different aisles and the available actions
correspond to the aisle the robot may choose to visit next. To learn this state-to-action map-
ping, we draw on ideas from imitation learning. We generated examples of optimal search
behavior by computing the shortest path from a starting location to the product. In each
visited state of a demonstrated example path, the robot takes a certain action and discards
the other available actions in this state. Thereby, it provides positive and negative examples
of state-action pairs to be taken or not, respectively. We used this data to learn a decision

131

tree for state-action pairs, which yields a classifier-based policy representation. This re-
sulted in compact policy representations that resemble search heuristics. These heuristics
were learned on a training set of three supermarkets and were then evaluated in a fourth
supermarket.

Our second approach treats the search problem as an inference problem. Thus, instead
of reactively mapping observations to actions as in our first approach, we first compute
a distribution over the possible locations of the target object given the thus far observed
objects and the partially known structure of the environment. The robot then chooses the
next goal location by trading off the probability of finding the object there with the costs of
moving to this location. Each time new information becomes available, i.e., newly detected
objects or newly discovered parts of the environment, the robot recomputes the distribution.
Basically, this approach encodes the relevant background knowledge as expectations about
how objects co-occur. However, co-occurrence of objects can only be defined with regard
to a spatial context – like objects being “in the same aisle”, or one object being “in the
neighboring aisle” of the other. Each particular spatial context induces a different local
co-occurrence model. Motivated by the idea of combining an ensemble of base classifiers
to form a more robust classifier, we used a diverse set of local co-occurrence models, each
considering a different spatial relation, and fused their outcomes as features in a maximum
entropy model, which in our case models the discrete distribution over all possible locations
of the target object.

We performed extensive experiments and compared both of our search techniques to a
baseline approach and to the performance of humans. Our evaluation showed, that the
inference-based search technique yielded shorter search paths than the approach based on
search heuristics. Both search techniques significantly outperform a baseline strategy that
explores the environment until it finds the product but does not consider any other infor-
mation except the distinction between visited and non-visited areas. This demonstrates the
benefits of utilizing background knowledge when searching for objects in unknown envi-
ronments. We additionally compared our approaches to the search efficiency of human
subjects in a real supermarket. Roughly speaking, our inference-based search technique
was able to halve the average search path length when compared to the exploration strat-
egy, while the humans were able to top our approaches by again halving the average search
path length when compared to our inference-based search technique.

Our inference-based search technique basically relied on object co-occurrence statistics.
However, the spatial context within which objects could co-occur was manually given by
the predefined spatial relations – like objects being “in the same aisle” or “in the same

132 Chapter 6 Discussion

shelf”. In our last contribution of this thesis, we took the learning scenario one step further
by simultaneously learning both the spatial context and the co-occurrence of objects within
a spatial context. That is, we learned spatially coherent object constellations in multi-object
scenes in an unsupervised way. As an application scenario we considered tabletop scenes
and our goal was to learn the different object constellations that correspond to the place cov-
ers consisting of, e.g., a plate, a knife, and a mug. For this, we presented a novel and fully
probabilistic generative model for unsupervised scene analysis. Our approach maintains a
nonparametric prior over scenes, which is updated by observing scenes and can directly be
applied for parsing new scenes and for model completion by inferring missing objects in
an incomplete scene. Our model is based on nonparametric Bayesian models in form of the
Dirichlet process and the beta-Bernoulli process. This allows for a probabilistic treatment
of the model complexity and we thereby avoided a model selection step, which is typically
intractable for the models considered here. Further, this also has practical benefits in the
context of lifelong learning for service robots. As the number of constellation types is not
fixed in our model, the robot is able to recognize and integrate previously unseen constel-
lations into its model in an open-ended fashion and within a single coherent probabilistic
framework. Finally, we evaluated our approach and successfully used our approach to infer
missing objects in complex scenes.

6.1 Outlook

During our work on the techniques presented in this thesis, we identified several open
research question and directions for future work that we did not address within the scope
of this thesis and that we would like to discuss in the following.

6.1.1 RFID-based Object Localization and Self-Localization

The results of our RFID-based localization technique showed that the combined consider-
ation of signal strength information along with tag detection events lead to an improved
sensor-centric model. On the other hand, signal strength maps based on Gaussian pro-
cess regression resulted in a comparable accuracy as our combined sensor-centric model.
Therefore, it would be interesting to see if the accuracy of signal strength maps could also
be improved in just the same way by combining them with tag detection maps that would
model the probability of detecting a tag at a specific location.

We only considered 2D localization of the RFID tags and we placed the RFID tags at the

6.1 Outlook 133

same height above the ground. It is straightforward to extend our technique to the case of
3D localization by learning a 3D sensor model and estimating the position of the tags in
3D. It would be interesting to see if this leads to new challenges and how this would affect
the accuracy.

Moreover, the assumption that the tags remain static could be alleviated. For example,
we could also assume that some tags are semi-static and change their location every now
an then, such as a coffee cup in an office building. This would pose new challenges to our
estimation technique and, on a technical level, resembles the kidnapped robot problem in
which a robot is suddenly relocated and has to adapt its belief over its position accordingly.

Further, it would be interesting to incorporate priors derived from other sensor modalities
when localizing RFID tags. For example, we could use a grid map estimated from laser
range data to incorporate a prior that models the assumption that tags are attached to walls,
similar as done in [58]. Or we could use visual information if we have prior information
about how the tags look like. However, the reliance on visual information would impair
one of the benefits of using RFID tags, namely the fact that they can be detected without
being in the line-of-sight.

6.1.2 Searching for Objects

The reactive search strategy learned the decision trees based on isolated examples of aisles
that have been taken or not at junctions during demonstrated optimal search paths. Con-
sidering isolated examples of positive and negative edges facilitated data generation and
learning the decision trees was straightforward. The learned search heuristics achieved sig-
nificantly shorter search paths. However, our actual goal is not to minimize the error rate of
a classifier that classifies aisles into promising or non-promising directions, but to minimize
the overall search path length. Hence, during the learning phase, it would be interesting to
directly search in the space of heuristics, i.e., the space of decision trees. A given search
heuristic could be evaluated by simulating several search runs in the training markets. This
could lead to improved search heuristics as they are directly optimized in terms of the re-
sulting path lengths rather than the error rate of a classifier. Further, the application of a
learned search heuristic during the actual search would remain unchanged and thus would
be equally efficient.

For the inference-based strategy, we fused the outcomes of several basic models in a
maximum entropy model. It would be interesting to evaluate another approach that directly
uses the features of the base models in the maxent model. Further, we currently select

134 Chapter 6 Discussion

a target location and then plan the shortest path to this location. While we argued that
planning optimal search paths is in general computationally infeasible, we might at least
consider to sample a few paths to a target location and trade-off the distance and occurrence
probabilities along the sampled paths, instead of just considering the occurrence probability
at the final location.

6.1.3 Learning Object Constellations

There are also several ways to extend our work on learning object constellations. First of
all, we only modeled 2D constellations due to our motivation to learn objects arrangements
on a table which inherently is a 2D problem. However, our model is quite general and is not
specifically geared towards 2D data. In our current implementation, the spatial constraints
are modeled as 2D Gaussian distributions. The inclusion of an additional third dimension
would therefore pose no relevant computational overhead. However, it would be necessary
to adapt the birth proposal, which indeed would affect the computational efficiency. The
birth proposal proposed a transformation of the meta-object’s reference frame into the scene
by randomly selecting two objects on the table and associating them to two parts of a meta-
object. For the 3D case, we would need to select three reference objects to efficiently
propose a transformation into the scene. This impacts the computational efficiency, because
the birth proposal relies on computing a matching probability between the selected objects
and the parts of meta-objects. By increasing the number of the to-be-matched objects by
one we thereby increase the complexity for computing the matching probabilities from
quadratic to cubic with respect to the number of parts of a meta-object. However, the
complexity will stay linear with respect to the number of meta-object types, as we require
that the matched parts all stem from the same meta-object type and we therefore only have
to evaluate all part-triplets “within” each meta-object type.

Next, we could extend the learning scenario to multiple levels and learn one layer at a
time. That is, the learned constellations could be the input for the next level which then
learns meta-meta-objects as constellations of constellations. However, this again would
require a slight change in the model, because we assumed that the objects are labeled 2D
points, but the learned meta-objects are labeled 2D poses. If we aim at extending the
work towards a hierarchical layer-wise learning framework, we therefore are in need of a
spatial distribution defined over the pose space. A simple approach would be to assume
independence between the location and orientation of an object, and to place a von Mises
prior on the orientation.

6.1 Outlook 135

Further, instead of extending the model to a higher level that learns constellations of
objects constellations, we could also try the opposite direction and try to detect objects
as constellations of object parts. It particular, it would be interesting to start from basic
sensory information such as pixels or point clouds. In this case, we would have to rework
our prior over the input vocabulary. In our case, this was a Dirichlet distribution over the
observable object types, such as plates and knifes. For dealing with basic sensory input,
we would have to replace this prior with an appropriate distribution over pixel patches or
small subsets of colored point clouds. Another idea would be to extend our approach to
a spatio-temporal model for unsupervised activity recognition, such as waving one’s hand,
walking, jumping, etc.

Next, we could add more global moves to our sampler to avoid that the Markov chain
gets stuck in local modes of the posterior distribution. In our current implementation, the
MCMC moves operate on the level of individual meta-object instances by adding, chang-
ing, or removing instances. While this means that we are already changing the associations
of several objects at once, one could image even more global moves that operate at the
level of meta-object types. We could thereby influence all of the corresponding meta-object
instances across all scenes. One idea would be to simultaneously change the pose of all
meta-object instances of the same type. In effect, this would correspond to translating and
rotating the reference frame of a meta-object type with respect to its parts. Roughly speak-
ing, if the reference frames of meta-object type is shifted towards the center of mass of
its parts, then this would increase the data likelihood. That is because the normal-Wishart
prior gives higher likelihood to parts close to the origin of the reference frame and a lower
likelihood to the ones further away. If the reference frame is closer to the center of mass
of its parts then this would also decrease the likelihood of wrongly associating objects of
other nearby object constellations during subsequent MCMC moves. Another idea for in-
troducing more global moves would be to add split-and-merge moves that either merge
all instances of two types into one type, or, for the reverse case, split the instances of a
certain type into two types. In the CRP metaphor this would correspond to redistributing
the customers (meta-object instances) of one table of the type CRP on two tables (split
move), or to joining the customers of two tables at one table (merge move). Methods for
general conjugate [28] and nonconjugate [29] DP mixture models have already been pub-
lished. However, without going into details, we like to stress that it is quite likely that
split-and-merge moves entail a high computational burden for our model, because each af-
fected meta-object instance during such a move requires a re-assignment of its objects to
the parts of its newly assigned meta-object type.

136 Chapter 6 Discussion

Next, our current model does not consider dependencies between the poses of meta-
object instances across scenes. However, if a robot would see two scenes of the very same
place, say from two different days, then it certainly makes sense to assume a dependency
between these related scenes. For example, if at day one a cover is placed at a certain
location on the breakfast table, e.g., in front of a chair, then it is quite likely that at day two
the robot will again observe a cover at roughly the same place and with probably the same
type. Hence, the model of a scene should include “places” at which meta-object instances
might occur. Formally, a place should be modeled as a distribution over the poses and types
of the meta-object instances that we expect to see there and, further, it should include a
binary probability for the existence or non-existence of an instance at this place in a given
scene. Luckily, this can easily be incorporated into our model. Remember, that in our
current model the type and pose of the meta-objects for a scene are sampled from a scene-
specific Indian buffet process and there is just a single customer in this IBP: the scene itself.
This basically means that we are drawing the number of meta-objects of this scene from a
Poisson distribution, the individual types from the global type CRP, and the poses from a
uniform distribution that depends on the table area. To introduce the desired dependencies,
scenes would become customers in a IBP that is shared among related scenes. The dish
parameters of this IBP would need to be defined differently and would then correspond to
the parameters of a place instead of the parameters of a meta-object instance. That is, a dish
parameter would no longer directly correspond to the type and pose of a single meta-object
instance in one scene but rather to a distribution over the poses and types of meta-object
instances at this place in any of the related scenes. Further, we need a prior from which
these distributions are sampled. The prior for a pose distribution should again depend on the
table surface, but we will not go into details here. The prior for a type distributions could
be a Dirichlet process where the base distribution is the global distribution over types. As
usual, the draws from this process can be integrated out which results in each place having
its own type CRP. This corresponds to a hierarchical CRP in which a table of a type CRP
of a place references a table in the global type CRP.

6.2 Concluding Remarks

In this thesis, we presented several techniques that enable service robots to represent, learn,
and utilize the immanent object-related concepts of domestic environments. We mainly
focused on three topics: (a) RFID-based object localization and self-localization, (b) mod-

6.2 Concluding Remarks 137

eling and utilizing background knowledge about usual object arrangements to more ef-
ficiently find objects in unknown environments, and (c) unsupervised learning of object
arrangements from everyday scenes.

These techniques are preliminary steps towards the long-term goal of building autonomous
service robots. We believe, that especially nonparametric Bayesian models can be a use-
ful tool towards this long-term goal. The rationale for this is, that these models enable an
autonomous service robot to deal with lifelong learning scenarios in which a robot has to
classify each new observation as being an instance of either a known concept or of a com-
pletely new concept, which in the latter case could then be integrated into the model. In
principle, this enables a robot to learn new concepts in an open-ended fashion and within a
single coherent probabilistic framework.

APPENDIX A

Appendix

A.1 Posterior Predictive Distribtion w.r.t. a Normal-Wishart
Prior

The following description is based on the formulas given in [45]. We have a data set
{x1:n} of n points with xi ∈ Rd. We assume that these points have been sampled from a
Gaussian distribution which in turn has been sampled from a normal-Wishart distribution.
The Gaussian is parametrized by an unknown mean and an unknown precision matrix.
We analytically integrate out the parameters of the Gaussian to yield a posterior predictive
distribution p(x∗ | x1:n) over a new data point x∗ given the previously seen points and
the parameters of the normal-Wishart prior, which are µ0 ∈ Rd, ν0 ∈ R, κ0 ∈ R, and
T0 ∈ Rd×d, where the latter is a prior covariance matrix. We denote the mean of the data
points by

x =
1

n

n∑
i=1

xi (A.1)

and the scatter matrix of the data points by

S =
n∑
i=1

(xi − x)(xi − x)T. (A.2)

140 Appendix A Appendix

Then the updated parameters of the normal-Wishart prior based on the data set are

µn =
κ0µ0 + nx

κ0 + n
(A.3)

Tn = T0 + S +
κ0n

κ0 + n
(µ0 − x)(µ0 − x)T (A.4)

κn = κ0 + n (A.5)

νn = ν0 + n. (A.6)

Then the posterior predictive distribution, that we are interested in, is

p(x∗ | x1:n) = tνn−d+1

(
µn,

Tn(κn + 1)

κn(νn − d+ 1)

)
. (A.7)

Here, tm(µ,Σ) denotes a d-dimensional multivariate t-distribution withm degrees of free-
dom, location parameter µ ∈ Rd, and scale matrix Σ ∈ Rd×d. This distribution has the
following analytical form

tm(x | µ,Σ) =
Γ(m2 + d

2)

Γ(m2)

|Σ|−
1
2

(mπ)
d
2

(
1 +

1

m
(x− µ)TΣ−1(x− µ)

)−m+d
2

, (A.8)

where Γ(·) is the gamma function.

A.2 Derivations for the MaxEnt Model (Part 1)

We need to find the parameters of h(q,λ) by setting its gradient to zero. Setting the partial
derivation for the Lagrange multiplier λ0 of the normalization constraint to zero recovers
the original constraint

∂

∂λ0
h(q,λ) = 0 (A.9)

⇔ −

(∑
i

qi − 1

)
= 0 (A.10)

⇔
∑
i

qi = 1. (A.11)

A.2 Derivations for the MaxEnt Model (Part 1) 141

Likewise, setting the partial derivation for a feature weight λj to zero recovers the constraint
that the expected value of this feature function should match the value Ej

∂

∂λj
h(q,λ) = 0 for each j = 1, . . . ,m (A.12)

⇔ −

(
Ej −

∑
i

qifj(xi)

)
= 0 (A.13)

⇔
∑
i

qifj(xi) = Ej . (A.14)

The partial derivation for each probability parameter qi is

∂

∂qi
h(q,λ) = −

(
∂

∂qi
(qi log qi)

)
−
(
∂

∂qi
(λ0qi)

)
+

 ∂

∂qi

∑
j

∑
i′

λjqi′fj(xi′)


(A.15)

= − log qi − qi
1

qi
− λ0 +

∑
j

λjfj(xi) (A.16)

= − log qi − 1− λ0 +
∑
j

λjfj(xi). (A.17)

Setting this to zero leads to

− log qi − 1− λ0 +
∑
j

λjfj(xi) = 0 (A.18)

⇔ log qi = −1− λ0 +
∑
j

λjfj(xi) (A.19)

⇔ qi = exp

−1− λ0 +
∑
j

λjfj(xi)

 . (A.20)

We can use the result of Eq. (A.20) to expand the normalization constraint of Eq. (A.11)
which leads to ∑

i

qi = 1 (A.21)

142 Appendix A Appendix

⇔
∑
i

exp

−1− λ0 +
∑
j

λjfj(xi)

 = 1 (A.22)

⇔ exp(−1− λ0)
∑
i

exp

∑
j

λjfj(xi)

 = 1 (A.23)

⇔ exp(−1− λ0) =
1∑

i exp
(∑

j λjfj(xi)
) (A.24)

Now we can use the result of Eq. (A.24) to expand Eq. (A.20) which leads to

qi = exp

−1− λ0 +
∑
j

λjfj(xi)

 (A.25)

= exp (−1− λ0)︸ ︷︷ ︸
see Eq. (A.24)

exp

∑
j

λjfj(xi)

 (A.26)

=
exp

(∑
j λjfj(xi)

)
∑

i′ exp
(∑

j λjfj(xi′)
) . (A.27)

With Eq. (A.27) we now have the final analytic form for the discrete probability distribution.

A.3 Derivations for the MaxEnt Model (Part 2)

The gradient of `(λ1:m) is

∇`(λ1:m) = ∇ 1

ns

∑
s

(
logψ(x(s))− log

∑
x

ψ(x)

)
(A.28)

=
1

ns

∑
s

(
∇ logψ(x(s))−

∇
∑

x ψ(x)∑
x′ ψ(x′)

)
(A.29)

=
1

ns

∑
s

(
f(x(s))−

∑
x ψ(x)f(x)∑
x′ ψ(x′)

)
(A.30)

=
1

ns

∑
s

f(x(s))−
∑
x

ψ(x)∑
x′ ψ(x′)︸ ︷︷ ︸
p(x)

f(x)

 (A.31)

A.3 Derivations for the MaxEnt Model (Part 2) 143

=
1

ns

∑
s

(
f(x(s))−

∑
x

p(x)f(x)

)
(A.32)

=
1

ns

∑
s

(
f(x(s))− Ep(x) [f(x)]

)
(A.33)

=
1

ns

((∑
s

f(x(s))

)
− nsEp(x) [f(x)]

)
(A.34)

= Ep̃(x)[f(x)]− Ep(x) [f(x)] . (A.35)

List of Figures

1.1 A Pioneer 3DX equipped with a laser range scanner and an RFID reader. . . 3
1.2 Supermarket overview. 5
1.3 The PR2 observing a typical breakfast table scene. 7

2.1 Examples of Bayesian networks. 17
2.2 Bayesian network for mobile robot localization. 23
2.3 Bayesian network representing a finite Gaussian mixture model. 33
2.4 A visual representation of a sample β(i). 33
2.5 Example run of a collapsed Gibbs sampler for a DPGMM. 37
2.6 Stick-breaking construction for the Dirichlet process. 39
2.7 Stick-breaking construction for the beta process (with c = 1) 44
2.8 An illustration of an Indian buffet process. 46
2.9 Hierarchical Chinese restaurant process 48
2.10 Nested Chinese restaurant process . 49

3.1 The proposed RFID sensor model. 55
3.2 Instances of the inverse sensor model. 58
3.3 Tag locations during different bootstrapping iterations. 59
3.4 Localizing RFID tags in an office corridor. 61
3.5 The shopping cart with an RFID reader and a laser range scanner. 63
3.6 Convergence of the bootstrapping process. 65
3.7 Estimated and ground truth trajectories. 66
3.8 Evaluation of several sensor models for RFID-based localization. 67

4.1 Example map of a real supermarket environment. 74
4.2 Example situations illustrating the short range visibility. 75
4.3 Shortest paths and local decisions at nodes of the graph. 79
4.4 Examples of learned and pruned decision trees. 82
4.5 The supermarket layout and its partial view during the search run. 84
4.6 Four layouts of real supermarkets. 85
4.7 Illustration of the basic idea for inferring object locations. 86

146 List of Figures

4.8 The five relations between shelf wall units. 89
4.9 Example search run using the maxent technique. 91
4.10 The 15 product locations and their target nodes. 93
4.11 The 20 starting locations for the second experiment. 96
4.12 A Pioneer 3DX equipped with a laser range scanner and an RFID reader. . . 97
4.13 First search run with the real robot. 99
4.14 Second search run with the real robot. 100
4.15 Replication of the second search resulting in a longer search path. 101
4.16 Searching for a single product. 103
4.17 Searching for multiple products. 104

5.1 The PR2 observing a typical breakfast table scene. 108
5.2 Meta-object type and meta-object instance. 109
5.3 Basic structure of the generative scene model. 112
5.4 A more detailed view on a part IBP. 113
5.5 Examples of table scenes with inferred meta-objects. 122
5.6 Inferred meta-objects in an incomplete scene. 123
5.7 Spatial posterior predictive distributions of a cover type. 124
5.8 Segmentation and classification results. 125
5.9 The log-likelihood and the number of meta-object parts and types. 126

List of Tables

1.1 Some notational conventions used in this thesis. 12

4.1 The attributes that are used to characterize an edge. 78
4.2 Search path lengths for different search strategies (first experiment). 94
4.3 Search path lengths for different search strategies (second experiment). . . . 96
4.4 Overall search path lengths for different search strategies. 102

Bibliography

[1] Cesare Alippi, Dario Cogliati, and Giovanni Vanini. A statistical approach to lo-
calize passive RFIDs. In Proc. of the IEEE Int. Symp. on Circuits and Systems
(ISCAS), pages 843–846, Island of Kos, Greece, 2006. ISBN 0-7803-9389-9.
doi:10.1109/ISCAS.2006.1692717.

[2] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An
introduction to MCMC for machine learning. Machine Learning, 50(1–2):5–43, 2003.
doi:10.1023/A:1020281327116.

[3] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey
of robot learning from demonstration. Robotics and Autonomous Systems, 57(5):469–
483, 2009. doi:10.1016/j.robot.2008.10.024.

[4] Joseph L. Austerweil and Thomas L. Griffiths. Learning invariant features using the
transformed Indian buffet process. In Advances in Neural Information Processing
Systems (NIPS), pages 82–90, 2010. URL http://books.nips.cc/papers/files/nips23/
NIPS2010_0437.pdf.

[5] Stanley J. Benkoski, Michael G. Monticino, and James R. Weisinger. A survey of
the search theory literature. Naval Research Logistics (NRL), 38(4):469–494, 1991.
doi:10.1002/1520-6750(199108)38:4<469::AID-NAV3220380404>3.0.CO;2-E.

[6] Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A maximum
entropy approach to natural language processing. Computational Linguistics, 22(1):
39–71, 1996.

[7] David M. Blei, Thomas L. Griffiths, and Michael I. Jordan. The nested Chinese
restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal
of the ACM, 57(2), 2010. doi:10.1145/1667053.1667056.

[8] Leonard A. Breslow and David W. Aha. Simplifying decision trees: A survey. The
Knowledge Engineering Review, 12(1):1–40, 1997.

http://dx.doi.org/10.1109/ISCAS.2006.1692717
http://dx.doi.org/10.1023/A:1020281327116
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://books.nips.cc/papers/files/nips23/NIPS2010_0437.pdf
http://books.nips.cc/papers/files/nips23/NIPS2010_0437.pdf
http://dx.doi.org/10.1002/1520-6750(199108)38:4%3C469::AID-NAV3220380404%3E3.0.CO;2-E
http://dx.doi.org/10.1145/1667053.1667056

150 Bibliography

[9] Thimothy H. Chung and Joel W. Burdick. A decision-making framework for
control strategies in probabilistic search. In Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA), pages 4386–4393, Roma, Italy, 2007.
doi:10.1109/ROBOT.2007.364155.

[10] Alexandru Cocora, Kristian Kersting, Christian Plagemann, Wolfram Burgard, and
Luc De Raedt. Learning relational navigation policies. In Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), pages 2792–2797, Beijing, China,
2006. doi:10.1109/IROS.2006.282061.

[11] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Monte Carlo
localization for mobile robots. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), volume 2, pages 1322–1328, 1999. ISBN 0-7803-5180-0.
doi:10.1109/ROBOT.1999.772544.

[12] Travis Deyle, Charles C. Kemp, and Matthew S. Reynolds. Probabilistic UHF RFID
tag pose estimation with multiple antennas and a multipath RF propagation model.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages
1379–1384, Nice, France, 2008. doi:10.1109/IROS.2008.4651170.

[13] Travis Deyle, Hai Nguyen, Matt Reynolds, and Charles C. Kemp. RF vision: RFID
receive signal strength indicator (RSSI) images for sensor fusion and mobile manipu-
lation. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
pages 5553–5560, St. Louis, MO, USA, 2009. doi:10.1109/IROS.2009.5354047.

[14] Arnaud Doucet, Nando de Freitas, and Neil Gordon, editors. Sequential Monte Carlo
Methods in Practice. Springer, 2001.

[15] Isaac Ehrenberg, Christian Floerkemeier, and Sanjay Sarma. Inventory management
with an RFID-equipped mobile robot. In Proc. of the IEEE Int. Conf. on Automation
Science and Engineering (CASE), pages 1020–1026, 2007. ISBN 978-1-4244-1154-
2. doi:10.1109/COASE.2007.4341838.

[16] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised
scale-invariant learning. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages II–264–II–271, 2003. doi:10.1109/CVPR.2003.1211479.

http://dx.doi.org/10.1109/ROBOT.2007.364155
http://dx.doi.org/10.1109/IROS.2006.282061
http://dx.doi.org/10.1109/ROBOT.1999.772544
http://dx.doi.org/10.1109/IROS.2008.4651170
http://dx.doi.org/10.1109/IROS.2009.5354047
http://dx.doi.org/10.1109/COASE.2007.4341838
http://dx.doi.org/10.1109/CVPR.2003.1211479

Bibliography 151

[17] R. Fergus, P. Perona, and A. Zisserman. A sparse object category model for efficient
learning and exhaustive recognition. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 380–387, 2005. doi:10.1109/CVPR.2005.47.

[18] Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. The
Annals of Statistics, 1(2):209–230, 1973. doi:10.1214/aos/1176342360.

[19] Brian Ferris, Dirk Hähnel, and Dieter Fox. Gaussian processes for signal strength-
based location estimation. In Proc. of Robotics: Science and Systems (RSS), Philadel-
phia, PA, USA, 2006.

[20] Sanja Fidler and Aleš Leonardis. Towards scalable representations of object cate-
gories: Learning a hierarchy of parts. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 1–8, 2007. doi:10.1109/CVPR.2007.383269.

[21] Dieter Fox, Sebastian Thrun, Wolfram Burgard, and Frank Dellaert. Particle filters
for mobile robot localization. In Arnaud Doucet, Nando de Freitas, and Neil Gordon,
editors, Sequential Monte Carlo Methods in Practice, chapter 19. Springer, 2001.

[22] Cipriano Galindo, Juan-Antonio Fernández-Madrigal, Javier González, and Alessan-
dro Saffiotti. Robot task planning using semantic maps. Robotics and Autonomous
Systems, 56(11):955–966, 2008. doi:10.1016/j.robot.2008.08.007.

[23] Samuel J. Gershman and David M. Blei. A tutorial on Bayesian non-
parametric models. Journal of Mathematical Psychology, 56(1):1–12, 2012.
doi:10.1016/j.jmp.2011.08.004.

[24] Thomas L. Griffiths and Zoubin Ghahramani. Infinite latent feature models and the
Indian buffet process. In Advances in Neural Information Processing Systems (NIPS),
pages 475–482. 2006. URL http://books.nips.cc/papers/files/nips18/NIPS2005_0130.
pdf.

[25] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved techniques for
grid mapping with Rao-Blackwellized particle filters. IEEE Trans. on Robotics, 23
(1):34–46, 2007. doi:10.1109/TRO.2006.889486.

[26] Dirk Hähnel, Wolfram Burgard, Dieter Fox, Ken Fishkin, and Matthai Philipose.
Mapping and localization with RFID technology. In Proc. of the IEEE Int. Conf.

http://dx.doi.org/10.1109/CVPR.2005.47
http://dx.doi.org/10.1214/aos/1176342360
http://dx.doi.org/10.1109/CVPR.2007.383269
http://dx.doi.org/10.1016/j.robot.2008.08.007
http://dx.doi.org/10.1016/j.jmp.2011.08.004
http://books.nips.cc/papers/files/nips18/NIPS2005_0130.pdf
http://books.nips.cc/papers/files/nips18/NIPS2005_0130.pdf
http://dx.doi.org/10.1109/TRO.2006.889486

152 Bibliography

on Robotics and Automation (ICRA), volume 1, pages 1015–1020, New Orleans, LA,
USA, 2004. doi:10.1109/ROBOT.2004.1307283.

[27] Tom Heskes. Selecting weighting factors in logarithmic opinion pools. In Advances
in Neural Information Processing Systems (NIPS), pages 266–272, 1998.

[28] Sonia Jain and Radford M. Neal. A split-merge Markov chain Monte Carlo procedure
for the Dirichlet process mixture model. Journal of Computational and Graphical
Statistics, 13(1):158–182, 2004. doi:10.1198/1061860043001.

[29] Sonia Jain and Radford M. Neal. Splitting and merging components of a noncon-
jugate Dirichlet process mixture model. Bayesian Analysis, 2(3):445–472, 2007.
doi:10.1214/07-BA219.

[30] Edwin T. Jaynes. Information theory and statistical mechanics. The Physical Review,
106(4):620–630, 1957.

[31] Edwin T. Jaynes. Probability Theory: The Logic of Science. Cambridge University
Press, 2003.

[32] Yun Jiang, Marcus Lim, Changxi Zheng, and Ashutosh Saxena. Learning to place
new objects in a scene. Int. Journal of Robotics Research (IJRR), 31(9):1021–1043,
2012. doi:10.1177/0278364912438781.

[33] Dominik Joho, Christian Plagemann, and Wolfram Burgard. Modeling RFID sig-
nal strength and tag detection for localization and mapping. In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), pages 3160–3165, Kobe, Japan, May
2009. ISBN 978-1-4244-2788-8. doi:10.1109/ROBOT.2009.5152372.

[34] Michael I. Jordan. Hierarchical models, nested models and completely random mea-
sures. In Ming-Hui Chen, Dipak K. Dey, Peter Müller, Dongchu Sun, and Keying Ye,
editors, Frontiers of Statistical Decision Making and Bayesian Analysis: In Honor of
James O. Berger, chapter 6.3, pages 207–218. Springer, 2010.

[35] Christopher Kalff and Gerhard Strube. Where is the fresh yeast? The use of back-
ground knowledge in human navigation. In Spatial Cognition 2008: Poster Presenta-
tions, pages 17–20, Freiburg, Germany, 2008.

http://dx.doi.org/10.1109/ROBOT.2004.1307283
http://dx.doi.org/10.1198/1061860043001
http://dx.doi.org/10.1214/07-BA219
http://dx.doi.org/10.1177/0278364912438781
http://dx.doi.org/10.1109/ROBOT.2009.5152372

Bibliography 153

[36] Takayuki Kanda, Masahiro Shiomi, Laurent Perrin, Tatsuya Nomura, Hiroshi Ishig-
uro, and Norihiro Hagita. Analysis of people trajectories with ubiquitous sen-
sors in a science museum. In Proc. of the IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), pages 4846–4853, Roma, Italy, 2007. ISBN 1-4244-0601-3.
doi:10.1109/ROBOT.2007.364226.

[37] Alexander Kleiner, Christian Dornhege, and Sun Dali. Mapping disaster areas jointly:
RFID-coordinated SLAM by humans and robots. In Proc. of the IEEE Int. Workshop
on Safety, Security and Rescue Robotics (SSRR), Roma, Italy, 2007.

[38] Sven Koenig. Agent-centered search. AI Magazine, 22(4):109–131, 2001. ISSN
0738-4602.

[39] Thomas Kollar and Nicholas Roy. Utilizing object-object and object-scene
context when planning to find things. In Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA), pages 2168–2173, Kobe, Japan, 2009.
doi:10.1109/ROBOT.2009.5152831.

[40] Niels Landwehr, Bernd Gutmann, Ingo Thon, Matthai Philipose, and Luc De Raedt.
Relational transformation-based tagging for human activity recognition. Fundamenta
Informaticae, 89(1):111–129, 2008. ISSN 0169-2968.

[41] Haye Lau, Shoudong Huang, and Gamini Dissanayake. Optimal search for multi-
ple targets in a built environment. In Proc. of the IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS), pages 3740–3745, Edmonton, AB, Canada, 2005.
doi:10.1109/IROS.2005.1544986.

[42] Jane Liu and Mike West. Combined parameter and state estimation in simulation-
based filtering. In Arnaud Doucet, Nando de Freitas, and Neil Gordon, editors, Se-
quential Monte Carlo Methods in Practice, chapter 10. Springer, 2001.

[43] Xiaotao Liu, Mark Corner, and Prashant Shenoy. Ferret: RFID localization for per-
vasive multimedia. In Proc. of the Int. Conf. on Ubiquitous Computing (UbiComp),
2006.

[44] Alexei A. Makarenko, Stefan B. Williams, Frederic Bourgault, and Hugh F. Durrant-
Whyte. An experiment in integrated exploration. In Proc. of the IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), pages 534–539, Lausanne, Switzerland,
2002. doi:10.1109/IRDS.2002.1041445.

http://dx.doi.org/10.1109/ROBOT.2007.364226
http://dx.doi.org/10.1109/ROBOT.2009.5152831
http://dx.doi.org/10.1109/IROS.2005.1544986
http://dx.doi.org/10.1109/IRDS.2002.1041445

154 Bibliography

[45] Kevin P. Murphy. Conjugate Bayesian analysis of the Gaussian distribution. Self-
published notes, 2007. URL http://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf.

[46] Radford M. Neal. Probabilistic inference using Markov chain Monte Carlo meth-
ods. Technical Report CRG-TR-93-1, Department of Computer Science, University
of Toronto, 1993.

[47] Radford M. Neal. Markov chain sampling methods for Dirichlet process mixture
models. Journal of Computational and Graphical Statistics, 9(2):249–265, 2000.
doi:10.1080/10618600.2000.10474879.

[48] Lionel M. Ni, Yunhao Liu, Yiu Cho Lau, and Abhishek P. Patil. LANDMARC:
Indoor location sensing using active RFID. In Proc. of the IEEE Int. Conf.
on Pervasive Computing and Communications (PerCom), pages 407–415, 2003.
doi:10.1109/PERCOM.2003.1192765.

[49] John Paisley, David M. Blei, and Michael I. Jordan. Stick-breaking beta processes and
the Poisson process. In Proc. of the Int. Conf. on Artificial Intelligence and Statistics
(AISTATS), 2012. URL http://jmlr.org/proceedings/papers/v22/paisley12/paisley12.
pdf.

[50] Devi Parikh, C. Lawrence Zitnick, and Tsuhan Chen. Unsupervised learn-
ing of hierarchical spatial structures in images. In Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pages 2743–2750, 2009.
doi:10.1109/CVPR.2009.5206549.

[51] M. Philipose, K.P. Fishkin, M. Perkowitz, D.J. Patterson, D. Fox, H. Kautz, and
D. Hähnel. Inferring activities from interactions with objects. IEEE Pervasive Com-
puting, 3(4):50–57, October 2004. doi:10.1109/MPRV.2004.7.

[52] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
doi:10.1007/BF00116251.

[53] Ananth Ranganathan and Frank Dellaert. Semantic modeling of places using objects.
In Proc. of Robotics: Science and Systems (RSS), Atlanta, GA, USA, 2007. URL
http://www.roboticsproceedings.org/rss03/p01.pdf.

[54] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. MIT Press, 2006. ISBN 0-262-18253-X.

http://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
http://dx.doi.org/10.1080/10618600.2000.10474879
http://dx.doi.org/10.1109/PERCOM.2003.1192765
http://jmlr.org/proceedings/papers/v22/paisley12/paisley12.pdf
http://jmlr.org/proceedings/papers/v22/paisley12/paisley12.pdf
http://dx.doi.org/10.1109/CVPR.2009.5206549
http://dx.doi.org/10.1109/MPRV.2004.7
http://dx.doi.org/10.1007/BF00116251
http://www.roboticsproceedings.org/rss03/p01.pdf

Bibliography 155

[55] Ioannis Rexakis and Michail G. Lagoudakis. Classifier-based policy representation.
In Proc. of the Int. Conf. on Machine Learning and Applications (ICMLA), pages
91–98, San Diego, CA, USA, 2008. doi:10.1109/ICMLA.2008.31.

[56] Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster back-
propagation learning: The RPROP algorithm. In Proc. of the IEEE Int. Conf.
on Neural Networks (ICNN), pages 586–591, San Francisco, CA, USA, 1993.
doi:10.1109/ICNN.1993.298623.

[57] Abel Rodríguez, David B. Dunson, and Alan E. Gelfand. The nested Dirichlet pro-
cess. Journal of the American Statistical Association, 103(483):1131–1154, 2008.
doi:10.1198/016214508000000553.

[58] Karsten Rohweder, Philipp Vorst, and Andreas Zell. Improved mapping of RFID tags
by fusion with spatial structure. In Proc. of the European Conf. on Mobile Robots
(ECMR), 2009.

[59] Stuart Russell and Peter Norvig. Artificial Intelligence – A Modern Approach. Pren-
tice Hall, 2nd edition, 2003. ISBN 978-0-13-790395-5.

[60] Sebastian Schneegans, Philipp Vorst, and Andreas Zell. Using RFID snapshots for
mobile robot self-localization. In Proc. of the European Conf. on Mobile Robots
(ECMR), Freiburg, Germany, 2007.

[61] Paul Schnitzspan, Stefan Roth, and Bernt Schiele. Automatic discovery of meaningful
object parts with latent CRFs. In Proc. of the IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR), pages 121–128, 2010. doi:10.1109/CVPR.2010.5540220.

[62] Anton Schwaighofer, Marian Grigoras, Volker Tresp, and Clemens Hoffmann. GPPS:
a Gaussian process positioning system for cellular networks. In Advances in Neural
Information Processing Systems (NIPS), 2003.

[63] Martin Senk. Vergleich von Suchstrategien für die Navigation in annotierten Karten.
Bachelor’s thesis, University of Freiburg, Germany, 2009.

[64] Vinay Seshadri, Gergely V. Záruba, and Manfred Huber. A Bayesian sampling ap-
proach to in-door localization of wireless devices using received signal strength indi-
cation. In Proc. of the IEEE Int. Conf. on Pervasive Computing and Communications
(PerCom), pages 75–84, 2005. ISBN 0-7695-2299-8. doi:10.1109/PERCOM.2005.1.

http://dx.doi.org/10.1109/ICMLA.2008.31
http://dx.doi.org/10.1109/ICNN.1993.298623
http://dx.doi.org/10.1198/016214508000000553
http://dx.doi.org/10.1109/CVPR.2010.5540220
http://dx.doi.org/10.1109/PERCOM.2005.1

156 Bibliography

[65] Andrew Smith, Trevor Cohn, and Miles Osborne. Logarithmic opinion pools for
conditional random fields. In Proc. of the 43rd Annual Meeting of the Assoc. for
Computational Linguistics (ACL), pages 18–25, 2005.

[66] Luciano Spinello, Rudolph Triebel, Dizan Vasquez, Kai O. Arras, and Roland Sieg-
wart. Exploiting repetitive object patterns for model compression and completion. In
Proc. of the European Conf. on Computer Vision (ECCV), 2010. doi:10.1007/978-3-
642-15555-0_22.

[67] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Burgard. Information gain-based ex-
ploration using Rao-Blackwellized particle filters. In Proc. of Robotics: Science and
Systems (RSS), pages 65–72, Cambridge, MA, USA, 2005.

[68] Erik B. Sudderth, Antonio Torralba, William T. Freeman, and Alan S. Willsky. De-
scribing visual scenes using transformed objects and parts. Int. Journal of Computer
Vision, 77(1–3):291–330, 2008. doi:10.1007/s11263-007-0069-5.

[69] Yee Whye Teh and Dilan Görür. Indian buffet processes with power-law behavior. In
Advances in Neural Information Processing Systems (NIPS), 2009.

[70] Yee Whye Teh and Michael I. Jordan. Hierarchical Bayesian nonparametric models
with applications. In Nils Lid Hjort, Chris Holmes, Peter Müller, and Stephen G.
Walker, editors, Bayesian Nonparametrics: Principles and Practice. Cambridge Uni-
versity Press, 2010. ISBN 9780521513463. doi:10.1017/CBO9780511802478.006.

[71] Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical
Dirichlet processes. Journal of the American Statistical Association, 101(476):1566–
1581, 2006. doi:10.1198/016214506000000302.

[72] Yee Whye Teh, Dilan Görür, and Zoubin Ghahramani. Stick-breaking construction for
the Indian buffet process. In Proc. of the Int. Conf. on Artificial Intelligence and Statis-
tics (AISTATS), pages 556–563, 2007. URL http://jmlr.csail.mit.edu/proceedings/
papers/v2/teh07a/teh07a.pdf.

[73] Romain Thibaux and Michael I. Jordan. Hierarchical beta processes and the Indian
buffet process. In Proc. of the Int. Conf. on Artificial Intelligence and Statistics (AIS-
TATS), pages 564–571, 2007. URL http://jmlr.csail.mit.edu/proceedings/papers/v2/
thibaux07a/thibaux07a.pdf.

http://dx.doi.org/10.1007/978-3-642-15555-0_22
http://dx.doi.org/10.1007/978-3-642-15555-0_22
http://dx.doi.org/10.1007/s11263-007-0069-5
http://dx.doi.org/10.1017/CBO9780511802478.006
http://dx.doi.org/10.1198/016214506000000302
http://jmlr.csail.mit.edu/proceedings/papers/v2/teh07a/teh07a.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v2/teh07a/teh07a.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v2/thibaux07a/thibaux07a.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v2/thibaux07a/thibaux07a.pdf

Bibliography 157

[74] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT
Press, 2005.

[75] Philip A. Titus and Peter B. Everett. Consumer wayfinding tasks, strategies, and
errors: An exploratory field study. Psychology and Marketing, 13(3):265–290, 1996.
doi:10.1002/(SICI)1520-6793(199605)13:3<265::AID-MAR2>3.0.CO;2-A.

[76] Rudolph Triebel, Jiwon Shin, and Roland Siegwart. Segmentation and unsupervised
part-based discovery of repetitive objects. In Proc. of Robotics: Science and Systems
(RSS), Zaragoza, Spain, 2010. URL http://roboticsproceedings.org/rss06/p09.pdf.

[77] K. E. Trummel and J. R. Weisinger. The complexity of the optimal searcher path
problem. Operations Research, 34(2):324–327, 1986. doi:10.1287/opre.34.2.324.

[78] Peter Orbanz und Yee Whye Teh. Bayesian nonparametric models. In Claude Sam-
mut and Geoffrey I. Webb, editors, Encyclopedia of Machine Learning, pages 81–89.
Springer, 2010. doi:10.1007/978-0-387-30164-8_66.

[79] Shrihari Vasudevan and Roland Siegwart. Bayesian space conceptualization and place
classification for semantic maps in mobile robotics. Robotics and Autonomous Sys-
tems, 56(6):522–537, 2008. doi:10.1016/j.robot.2008.03.005.

[80] Philipp Vorst and Andreas Zell. European Robotics Symposium 2008, volume
44/2008 of Springer Tracts in Advanced Robotics, chapter Semi-Autonomous Learn-
ing of an RFID Sensor Model for Mobile Robot Self-localization, pages 273–282.
Springer, 2008. ISBN 978-3-540-78315-2. doi:10.1007/978-3-540-78317-6.

[81] Ingo Wegener. Optimal search with positive switch cost is NP-hard. Information
Processing Letters, 21(1):49–52, 1985. doi:10.1016/0020-0190(85)90108-5.

[82] Brian Yamauchi. A frontier-based approach for autonomous exploration. In Proc.
of the IEEE Int. Symp. on Computational Intelligence in Robotics and Automation
(CIRA), pages 146–151, 1997. doi:10.1109/CIRA.1997.613851.

[83] Hendrik Zender, Oscar Martínez Mozos, Patric Jensfelt, Geert-Jan M. Krui-
jff, and Wolfram Burgard. Conceptual spatial representations for indoor
mobile robots. Robotics and Autonomous Systems, 56(6):493–502, 2008.
doi:10.1016/j.robot.2008.03.007.

http://dx.doi.org/10.1002/(SICI)1520-6793(199605)13:3%3C265::AID-MAR2%3E3.0.CO;2-A
http://roboticsproceedings.org/rss06/p09.pdf
http://dx.doi.org/10.1287/opre.34.2.324
http://dx.doi.org/10.1007/978-0-387-30164-8_66
http://dx.doi.org/10.1016/j.robot.2008.03.005
http://dx.doi.org/10.1007/978-3-540-78317-6
http://dx.doi.org/10.1016/0020-0190(85)90108-5
http://dx.doi.org/10.1109/CIRA.1997.613851
http://dx.doi.org/10.1016/j.robot.2008.03.007

	Introduction
	Contributions
	RFID-based Localization and Mapping
	Object Search in Unknown Environments
	Scene Analysis

	Publications
	Collaborations
	Notation

	Basics
	Basics of Probability Theory
	Monte Carlo Methods
	Importance Sampling
	Markov Chain Monte Carlo
	Monte Carlo Localization for Mobile Robots

	Decision Tree Learning
	Maximum Entropy Models
	Bayesian Nonparametrics
	Dirichlet Process and Chinese Restaurant Process
	Finite Gaussian Mixture Models
	Dirichlet Process Gaussian Mixture Models
	Definition of the Dirichlet Process
	Stick-breaking Construction
	Chinese Restaurant Process
	Dirichlet Process Gaussian Mixture Models Revisited

	Beta-Bernoulli Process and Indian Buffet Process
	Hierarchical Processes
	Nested Processes
	Gaussian Process Regression

	RFID-based Object Localization and Self-Localization
	The Sensor Model
	Learning the Model from Data
	Semi-Autonomous Learning
	Bootstrapping the Sensor Model

	Mapping Tags from Known Sensor Poses
	Localizing a Mobile Agent
	Experimental Evaluation
	Localizing the RFID Tags
	Localizing a Mobile Agent

	Future Work
	Related Work
	Conclusions

	Searching for Objects
	Reactive Search Strategy
	Modeling the Environment
	Learning Search Heuristics
	Defining Edge Attributes
	Generating Training Data
	Decision Tree Learning and Pruning

	Variants of the Decision Tree Strategy

	Inference-based Search Strategy
	Modeling the Evironment
	A Model for Inferring Object Locations
	Application to the Supermarket Scenario

	Selecting a Target Location

	Experimental Evaluation
	Evaluation in Comparison to Humans
	Evaluation with Varying Starting Locations
	Reactive Search Strategy – Searching with a Real Robot
	Inference-based Search Strategy – Further Evaluations

	Related Work
	Conclusions

	Unsupervised Learning of Object Constellations
	Generative Scene Model
	Description of the Generative Process
	Posterior Inference in the Model
	Joint Distribution
	Death (Birth) Move
	Switch Move
	Shift Move
	Association Move (Existing Part)
	Association Move (New Parts)
	Birth Proposal

	Experiments
	Synthetic Data
	Real-world Data

	Related Work
	Conclusion

	Discussion
	Outlook
	RFID-based Object Localization and Self-Localization
	Searching for Objects
	Learning Object Constellations

	Concluding Remarks

	Appendix
	Posterior Predictive Distribtion w.r.t. a Normal-Wishart Prior
	Derivations for the MaxEnt Model (Part 1)
	Derivations for the MaxEnt Model (Part 2)

