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Abstract— With the increasing performance of machine
learning techniques in the last few years, the computer vision
and robotics communities have created a large number of
datasets for benchmarking object recognition tasks. These
datasets cover a large spectrum of natural images and object
categories, making them not only useful as a testbed for compar-
ing machine learning approaches, but also a great resource for
bootstrapping different domain-specific perception and robotic
systems. One such domain is domestic environments, where an
autonomous robot has to recognize a large variety of everyday
objects such as groceries. This is a challenging task due to
the large variety of objects and products, and where there is
great need for real-world training data that goes beyond product
images available online. In this paper, we address this issue
and present a dataset consisting of 5,000 images covering 25
different classes of groceries, with at least 97 images per class.
We collected all images from real-world settings at different
stores and apartments. In contrast to existing groceries datasets,
our dataset includes a large variety of perspectives, lighting
conditions, and degrees of clutter. Overall, our images contain
thousands of different object instances. It is our hope that
machine learning and robotics researchers find this dataset of
use for training, testing, and bootstrapping their approaches.
As a baseline classifier to facilitate comparison, we re-trained
the CaffeNet architecture (an adaptation of the well-known
AlexNet [20]) on our dataset and achieved a mean accuracy
of 78.9%. We release this trained model along with the code
and data splits we used in our experiments.

I. INTRODUCTION AND RELATED WORK

Object recognition is one of the most important and
challenging problems in computer vision. The ability to
classify objects plays a crucial role in scene understanding,
and is a key requirement for autonomous robots operating
in both indoor and outdoor environments. Recently, com-
puter vision has witnessed significant progress, leading to
impressive performance in various detection and recognition
tasks [10, 14, 31]. On the one hand, this is partly due to the
recent advancements in machine learning techniques such as
deep learning, fueled by a great interest from the research
community as well as a boost in hardware performance.
On the other hand, publicly-available datasets have been
a great resource for bootstrapping, testing, and comparing
these techniques.

Examples of popular image datasets include ImageNet,
CIFAR, COCO and PASCAL, covering a wide range of
categories including people, animals, everyday objects, and
much more [6, 8, 19, 22]. Other datasets are tailored to-
wards specific domains such as house numbers extracted
from Google Street View [24], face recognition [13], scene
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Fig. 1: Examples of images from our dataset. Each image
contains one or multiple instances of objects belonging to
one of 25 classes of groceries. We collected these images
in real-world settings at different stores and apartments.
We considered a rich variety of perspectives, degree of
clutter, and lighting conditions. This dataset highlights the
challenge of recognizing objects in this domain due to the
large variation in shape, color, and appearance of everyday
products even within the the same class.

understanding and place recognition [28, 34], as well as
object recognition, manipulation and pose estimation for
robots [5, 11, 17, 27].

One of the challenging domains where object recognition
plays a key role is service robotics. A robot operating in un-
structured, domestic environments has to recognize everyday
objects in order to successfully perform tasks like tidying up,
fetching objects, or assisting elderly people. For example, a
robot should be able to recognize grocery objects in order to
fetch a can of soda or to predict the preferred shelf for storing
a box of cereals [1, 30]. This is not only challenging due to
the difficult lighting conditions and occlusions in real-world
environments, but also due to the large number of everyday
objects and products that a robot can encounter.

Typically, service robotic systems address the problem of
object recognition for different tasks by relying on state-of-
the-art perception methods. Those methods leverage existing
object models by extracting hand-designed visual and 3D
descriptors in the environment [2, 12, 26] or by learning new
feature representations from raw sensor data [4, 7]. Others
rely on an ensemble of perception techniques and sources
of information including text, inverse image search, cloud
data, or images downloaded from online stores to categorize
objects and reason about their relevance for different tasks [3,
16, 18, 25].

However, leveraging the full potential of machine learning
approaches to address problems such as recognizing gro-
ceries and food items remains, to a large extent, unrealized.
One of the main reasons for that is the lack of training data
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Fig. 2: Number of images per class in our dataset.

for this domain. In this paper, we address this issue and
present the Freiburg Groceries Dataset, a rich collection of
5000 images of grocery products (available in German stores)
and covering 25 common categories. Our motivation for this
is twofold: i) to help bootstrap perception systems tailored for
domestic robots and assistive technologies, and to ii) provide
a challenging benchmark for testing and comparing object
recognition techniques.

While there exist several datasets containing groceries,
they are typically limited with respect to the view points
or variety of instances. For example, sources such as the
OpenFoodFacts dataset or images available on the websites
of grocery stores typically consider one or two views of
each item [9]. Other datasets include multiple view points
of each product but consider only a small number of ob-
jects. An example of this is the GroZi-120 dataset that
contains 120 grocery products under perfect and real lighting
conditions [23]. Another example is the RGB-D dataset
covering 300 object instances in a controlled environment, of
which only a few are grocery items [21]. The CMU dataset,
introduced by Hsiao et al., considers multiple viewpoints of
10 different household objects [12]. Moreover, the BigBIRD
dataset contains 3D models and images of 100 instances in
a controlled environment [29].

In contrast to these datasets, the Freiburg Groceries
Dataset considers challenging real-world scenes as depicted
in Fig. 1. This includes difficult lighting conditions with
reflections and shadows, as well as different degrees of
clutter ranging from individual objects to packed shelves.
Additionally, we consider a large number of instances that
cover a rich variety of brands and package designs.

To demonstrate the applicability of existing machine learn-
ing techniques to tackle the challenging problem of recogniz-
ing everyday grocery items, we trained a convolutional neural
network as a baseline classifier on five splits of our dataset,
achieving a classification accuracy of 78.9%. Along with
the dataset, we provide the code and data splits we used in
these experiments. Finally, whereas each image in the main
dataset contains objects belonging to one class, we include an

additional set of 37 cluttered scenes, each containing several
object classes. We constructed these scenes at our lab to
emulate real-world storage shelves. We present qualitative
examples in this paper that demonstrate using our classifier
to recognize patches extracted from such images.

II. THE FREIBURG GROCERIES DATASET

The main bulk of the Freiburg Groceries Dataset consists
of 4947 images of 25 grocery classes, with 97 to 370 images
per class. Fig. 2 shows an overview of the number of images
per class. We considered common categories of groceries that
exist in most homes such as pasta, spices, coffee, etc. We
recorded this set of images, which we denote by D1, using
four different smartphone cameras at various stores (as well
as some apartments and offices) in Freiburg, Germany. The
images vary in the degree of clutter and real-world lighting
conditions, ranging from well-lit stores to kitchen cupboards.
Each image in D1 contains one or multiple instances of one
of the 25 classes. Moreover, for each class, we considered
a rich variety of brands, flavors, and packaging designs. We
processed all images in D1 by down-scaling them to a size
of 256×256 pixels. Due to the different aspect ratios of the
cameras we used, we padded the images with gray borders
as needed. Fig. 7 shows example images for each class.

Moreover, the Freiburg Groceries Dataset includes an
additional, smaller set D2 with 74 images of 37 cluttered
scenes, each containing objects belonging to multiple classes.
We constructed these scenes at our lab and recorded them
using a Kinect v2 camera [32, 33]. For each scene, we
provide data from two different camera perspectives, which
includes a 1920×1080 RGB image, the corresponding depth
image and a point cloud of the scene. We created these scenes
to emulate real-world clutter and to provide a challenging
benchmark with multiple object categories per image. We
provide a “coarse” labeling of images in D2 in terms of
which classes exist in each scene.

We make the dataset available on this website:
http://www2.informatik.uni-freiburg.de/
%7Eeitel/freiburg_groceries_dataset.html.

http://www2.informatik.uni-freiburg.de/%7Eeitel/freiburg_groceries_dataset.html
http://www2.informatik.uni-freiburg.de/%7Eeitel/freiburg_groceries_dataset.html


Fig. 3: Example test images for candy and pasta taken from the first split in our experiments. All images were correctly
classified in this case. The classifier is able to handle large variations in color, shape, perspective, and degree of clutter.

There, we also include the trained classifier model we
used in our experiments (see Sec. III). Additionally, we
provide the code for reproducing our experimental results on
github: https://github.com/PhilJd/freiburg_
groceries_dataset.

III. OBJECT RECOGNITION USING
A CONVOLUTIONAL NEURAL NETWORK

To demonstrate the use of our dataset and provide a
baseline for future comparison, we trained a deep neural
network classifier using the images in D1. We adopted the
CaffeNet architecture [15], a slightly altered version of the
AlexNet [20]. We trained this model, which consists of five
convolution layers and three fully connected layers, using
the Caffe framework [15]. We initialized the weights of the
model with those of the pre-trained CaffeNet, and fine-tuned
the weights of the three fully-connected layers.

We partitioned the images into five equally-sized splits,
with the images of each class uniformly distributed over the
splits. We used each split as a test set once and trained on the
remaining data. In each case, we balanced the training data
across all classes by duplicating images from classes with
fewer images. We trained all models for 10,000 iterations
and always used the last model for evaluation.

We achieved a mean accuracy of 78.9% (with a standard
deviation of 0.5%) over all splits. Fig. 3 shows examples
of correctly classified images of different candy and pasta
packages. The neural network is able to recognize the cate-
gories in these images despite large variations in appearance,
perspectives, lighting conditions, and number of objects in
each image. On the other hand, Fig. 4 shows examples
of misclassified images. For example, we found products
with white, plain packagings to be particularly challenging,
often mis-classified as flour. Another source of difficulty is
products with “misleading” designs, e.g., pictures of fruit
(typically found on juice cartons) on cereal boxes.

Fig. 6 depicts the confusion matrix averaged over the five
splits. The network performs particularly well for classes
such as water, jam, and juice (88.1%-93.2%), while on the
other hand it has difficulties correctly recognizing objects

Class: Beans
Predicted: Sugar

Class: Chocolate
Predicted: Flour

Class: Cake
Predicted: Chocolate

Class: Cereal
Predicted: Juice

Class: Candy
Predicted: Coffee

Class: Nuts
Predicted: Beans

Fig. 4: Examples of misclassification that highlight some of
the challenges in our dataset, e.g., cereal boxes with drawings
of fruits on them are sometimes confused with juice.

from the class flour (59.9%). We provide the data splits
and code needed to reproduce our results, along with the a
Caffe model trained on all images of D1, on the web pages
mentioned in Sec. II.

Finally, we also performed a qualitative test where we
used a model trained on images in D1 to classify patches
extracted from images in D2 (in which each image contains
multiple object classes). Fig. 5 shows an example for clas-
sifying different manually-selected image patches. Despite a
sensitivity to patch size, this shows the potential for using
D1, which only includes one class per image, to recognize
objects in cluttered scenes where this assumption does not
hold. An extensive evaluation on such scenes is outside the
scope of this paper, which we leave to future work.

https://github.com/PhilJd/freiburg_groceries_dataset
https://github.com/PhilJd/freiburg_groceries_dataset


(a) (b)

(c)

Fig. 5: We used a classifier trained on D1 to recognize
manually-selected patches from dataset D2. Patches with a
green border indicate a correct classification whereas those
with a red border indicate a misclassification. We rescaled
each patch before passing it through the network. (a) depicts
the complete scene. (b) shows an example of the sensitivity
of the network to changes in patch size. (c) shows classifi-
cation results for some manually extracted patches.

IV. CONCLUSION

In this paper, we introduced the Freiburg Groceries
Dataset, a novel dataset targeted at the recognition of gro-
ceries. Our dataset includes ca 5000 labeled images, orga-
nized in 25 classes of products, which we recorded in several
stores and apartments in Germany. Our images cover a wide
range of real-world conditions including different viewpoints,
lighting conditions, and degrees of clutter. Moreover, we
provide images and point clouds for a set of 37 cluttered
scenes, each consisting of objects from multiple classes. To
facilitate comparison, we provide results averaged over five
train/test splits using a standard deep network architecture,
which achieved a mean accuracy of 78.9% over all classes.
We believe that the Freiburg Groceries Dataset represents
an interesting and challenging benchmark to evaluate state-
of-the-art object recognition techniques such as deep neural
networks. Moreover, we believe that this real-world training
data is a valuable resource for accelerating a variety of
service robot applications and assistive systems where the
ability to recognize everyday objects plays a key role.
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beans 78.1 0.5 0.5 1.9 0.0 1.5 0.0 3.1 0.0 1.8 2.8 0.8 0.8 0.8 0.5 0.8 0.8 0.0 1.0 0.8 0.8 1.1 0.0 0.0 0.8

cake 0.0 82.5 0.6 5.2 0.9 2.9 1.1 0.6 0.0 0.0 0.0 0.0 0.4 0.4 0.0 1.9 0.0 0.0 0.0 0.0 1.8 0.6 0.6 0.0 0.0

candy 0.0 0.5 82.9 1.1 1.7 1.9 0.8 0.0 0.2 0.2 0.5 1.0 1.1 1.9 0.0 0.2 0.2 0.0 0.0 0.2 1.9 1.6 0.6 0.0 0.8

cereal 0.3 4.8 2.9 78.2 0.3 1.0 0.6 0.3 0.7 0.0 0.0 1.1 0.6 1.8 0.4 1.3 0.7 0.0 1.0 0.6 1.4 0.4 0.3 0.0 0.4

chips 2.2 1.6 7.1 1.1 70.1 1.6 1.1 0.5 0.5 0.0 0.0 6.0 0.0 4.4 0.0 1.6 0.0 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.0

chocolate 0.0 3.1 2.0 4.0 1.0 70.4 4.7 0.0 1.3 0.9 0.3 0.6 0.9 3.3 0.0 0.6 0.0 0.7 0.0 0.2 4.8 0.3 0.0 0.0 0.0

coffee 0.0 0.3 0.3 1.3 1.7 5.1 71.9 0.0 0.7 1.0 3.9 1.3 1.0 0.9 1.5 0.3 0.0 0.6 2.4 0.3 2.2 0.3 0.9 0.0 1.3

corn 0.9 0.0 0.0 0.0 0.0 0.0 0.9 88.3 0.0 1.9 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.9 1.0 0.0 0.0 1.0

flour 2.0 1.7 3.2 5.2 0.0 0.8 0.9 0.8 59.9 0.8 0.0 1.7 3.8 0.8 0.8 6.4 0.8 0.0 0.9 2.5 5.4 0.0 0.0 0.0 0.8

honey 0.0 0.4 0.4 0.4 1.1 1.0 2.3 0.0 0.0 73.6 9.2 2.1 0.0 1.1 0.5 0.0 0.0 1.0 0.4 0.0 2.5 1.1 0.0 1.0 1.0

jam 0.0 0.0 0.4 0.0 0.3 0.0 2.5 0.0 0.0 0.8 91.4 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.7 0.0 0.7 1.5 0.4 0.0 0.0
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nuts 2.2 1.2 2.9 4.1 4.4 8.2 1.0 0.5 0.0 1.2 1.0 0.4 0.0 67.7 0.0 1.2 0.4 0.0 0.0 0.0 0.4 0.9 0.0 0.0 1.0

oil 0.6 0.0 0.0 0.5 0.8 0.0 0.0 0.0 0.6 0.0 1.3 4.1 0.6 0.0 78.0 0.0 0.0 1.6 0.5 0.0 1.4 0.0 0.0 9.3 0.0
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spices 0.4 0.0 0.4 1.0 0.5 0.6 1.3 0.0 0.4 0.5 2.4 2.1 1.8 0.4 0.6 0.0 0.0 0.9 80.1 1.3 0.8 1.0 0.9 0.8 1.0

sugar 0.7 0.7 1.3 0.0 0.6 0.0 0.7 0.0 2.3 0.0 0.7 0.7 2.8 2.0 0.0 0.0 1.4 0.0 1.1 82.0 1.1 1.1 0.0 0.0 0.0

tea 0.0 0.0 2.4 2.5 0.3 3.2 2.9 0.0 0.0 0.0 0.3 2.1 0.7 0.3 1.0 0.8 0.0 0.3 0.3 0.3 81.0 0.6 0.3 0.0 0.0

tomato sauce 1.1 0.0 0.6 0.6 0.5 1.0 0.5 0.0 0.5 0.5 3.5 1.8 1.1 0.6 0.0 1.2 0.0 0.5 1.8 0.0 0.0 82.9 0.6 0.0 0.0

tuna 0.0 0.0 0.0 0.9 0.0 3.1 1.6 1.1 0.0 0.7 0.0 0.0 0.7 1.1 0.0 0.7 0.0 0.0 0.0 0.0 3.5 0.0 85.3 0.0 0.8

vinegar 0.0 0.0 0.5 0.0 0.0 0.0 1.4 0.0 0.0 0.7 1.7 9.7 0.5 0.0 6.3 0.0 0.0 1.0 1.8 0.0 0.7 0.0 0.7 73.6 0.7

water 0.0 0.0 0.7 0.4 0.3 0.4 0.3 0.0 0.0 0.0 0.3 0.7 0.0 0.4 0.6 0.0 0.0 1.0 0.0 0.0 0.0 0.8 0.0 0.3 93.2

Fig. 6: The confusion matrix averaged over the five test splits. We achieve a mean accuracy of 78.9% over all classes.
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Fig. 7: Example images for each class.
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