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Abstract— To operate intelligently in domestic environments,
robots require the ability to understand arbitrary spatial
relations between objects and to generalize them to objects
of varying sizes and shapes. In this work, we present a
novel end-to-end approach to generalize spatial relations based
on distance metric learning. We train a neural network to
transform 3D point clouds of objects to a metric space that
captures the similarity of the depicted spatial relations, using
only geometric models of the objects. Our approach employs
gradient-based optimization to compute object poses in order to
imitate an arbitrary target relation by reducing the distance to
it under the learned metric. Our results based on simulated and
real-world experiments show that the proposed method enables
robots to generalize spatial relations to unknown objects over
a continuous spectrum.

I. INTRODUCTION

Understanding and leveraging spatial relations between
objects is a desirable capability of service robots to function
in human-centered environments. However, our environments
are rich with everyday objects of various shapes and sizes,
making it infeasible to pre-program a robot with sufficient
knowledge to handle all arbitrary relations and objects it
might encounter in the real world. Instead, we should equip
robots with the ability to learn arbitrary relations in a lifelong
manner and to generalize them to new objects, see Fig. 1. For
example, having learned how to place a book inside a drawer,
a robot should be able to generalize this spatial relation to
place a toy inside a basket.
In this work, we propose a novel, neural-network-based
approach to generalize spatial relations from the perspective
of distance metric learning. Rather than considering a pre-
specified set of relations and learning an individual model
for each, our approach considers a continuous spectrum
of pairwise relations and learns a metric that captures the
similarities between scenes with respect to the relations
they embody. Accordingly, we use this metric to generalize
a relation to two new objects by minimizing the distance
between the corresponding scenes in the learned metric as
shown in Fig. 2. Following the metric-learning approach
by Chopra et al. [1], we use a variation of the siamese
architecture [2] to train a convolutional neural network as a
function that maps an input point cloud of a scene consisting
of two objects to the metric space such that the Euclidean
distance between points in that space captures the similarity
between the spatial relations in the corresponding scenes.
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Fig. 1: The goal of our work is to enable a robot to imitate
arbitrary spatial relations between pairs of objects and to
generalize them to objects of different shapes and sizes.
Top: three consecutive, arbitrary relations we presented our
approach with, which we perceive using a Kinect2 camera.
Bottom: the corresponding generalization of the relations
using two new objects as computed by our approach.

Our deep metric learning approach allows the robot to
learn rich representations of spatial relations directly from
point cloud input and without the need for manual feature
design. Furthermore, to generalize spatial relations in an
end-to-end manner, we introduce a novel, gradient-descent
based approach that leverages the learned distance metric to
optimize the 3D poses of two objects in a scene in order
to imitate an arbitrary relation between two other objects in
a reference scene, see Fig. 2. For this, we backpropagate
beyond the first convolution layer to optimize the translation
and rotation of the object point clouds. Our gradient-based
optimization enables the robot to imitate spatial relations
based on visual demonstrations in an online and intuitive
manner. In summary, we make the following contributions
in this work: (1) an end-to-end approach to learning a metric
for spatial relations from point clouds, (2) a differentiable
projection to depth images to reduce the input dimensionality
of point clouds, (3) a network architecture that models a
differentiable metric function using a gradient approximation
that allows for optimization beyond the first convolution
layer, and (4) a demonstration that this technique enables
gradient-based optimization in the learned feature space to
optimize 3D translations and rotations of two new objects in
order to generalize a demonstrated spatial relation.

II. RELATED WORK

Learning spatial relations provides a robot with the neces-
sary capability to carry out tasks that require understanding
object interactions, such as object manipulation [3], human-
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Fig. 2: An overview of our approach to generalize a relation. The transformation to the metric space consists of a function
applying the 3D transformations, a projection of the point clouds to depth images, and a convolutional network pre-trained on
pairs of relations. During test time, we backpropagate the error of the euclidean distance between the test scene’s embeddings
and the reference scene’s embeddings, to optimize 3D translation and rotation of two objects to resemble the reference scene’s
spatial relations. Supplementary video: http://spatialrelations.cs.uni-freiburg.de

robot interaction [4], [5], [6] and active object search in com-
plex environments [7]. In the context of robotics, learning
spatial relations between objects has previously been phrased
as a supervised classification problem based on handcrafted
features such as contact points and relative poses [8], [9],
[10]. Spatial relations can also be learned from human-
robot interaction using active learning, where the robot
queries a teacher in order to refine a spatial model [11].
However, the above techniques require learning an individual
model for each relation and are thus limited in the number
of relations they can handle. In contrast to these works,
our metric learning approach allows us to reason about a
continuous spectrum of known relations. Learning of object
interactions from contact distributions has been addressed in
the context of object grasping [12] and object placing [13].
While those approaches perform classification, our metric
learning approach enables generation of spatial relations be-
tween objects solely based on visual information and without
explicit modeling of contacts or physical object interaction.
Visuospatial skill learning can imitate goal configurations
with objects based on spatial relations, but the imitation does
not generalize to objects of various sizes and shapes [14].

In our previous work we introduced a novel method that
leverages large margin nearest neighbor metric learning in
order to generalize spatial relations to new objects [15].
For this, we relied on hand-crafted 3D features to describe
a scene. In contrast to this, we learn representations in
an end-to-end fashion based on 2D image projections of
scenes. Additionally, the previous work employed a grid
search-based optimization with one object kept fixed whereas
our approach optimizes on the full continuous spectrum of
possible poses for both objects.

Our approach is related to deep learning techniques
that learn similarity metrics directly from images, such as

siamese [16] and triplet networks [17]. In comparison, our
network takes point clouds as input and processes them using
our differentiable point cloud to depth image projection layer
for input dimensionality reduction. In addition, we leverage
the gradient of the metric to optimize the translation and
rotation of objects in the point cloud space. This strategy is in
spirit similar to previous works that manipulate input images
by backpropagating with respect to the input to visualize
representations [18], and trick neural networks into making
wrong classifications [19]. We explore and analyze the utility
of the metric’s gradient for optimization of 3D translation
and rotation in Section V-B.

III. PROBLEM FORMULATION

We aim to learn a continuous representation for spatial
relations between everyday objects in the form of a metric
function, i.e., a representation that is not restricted to a finite
set of relations, and to use this metric to enable a robot to
imitate these spatial relations with new objects. Our goal is to
learn this representation directly from geometric information
in the form of raw point clouds, without requiring any
semantics and without relying on handcrafted features.
For this, we consider pairwise spatial relations between ob-
jects. We denote these objects by om and on and we represent
them as point clouds Pm and Pn. Together with the respec-
tive translation vectors tm, tn expressed relative to a global
world frame and rotation quaternions qm, qn, we define a
scene si as the tuple si = 〈om,i, on,i, tm,i, tn,i,qm,i,qn,i〉.
As a reference frame, we assume that the gravity vector g is
known and oriented in the opposite direction of the global
z-axis.

To learn the metric, we require a set of training scenes S =
{s0, ..., sn} accompanied by labels in the form of a similarity
matrix Y where the entry Yij denotes the similarity of the
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spatial relation between scenes si ∈ S and sj ∈ S. That
is Yij should be small for similar relations and large for
dissimilar relations. Note that we do not require all possible
scene combinations to be labeled, i.e., Y does not need to
be fully specified. To ease labeling, we allow the entries of
Y to be binary, i.e., Yij ∈ {0, 1}, where 0 means similar
and 1 dissimilar.
Our goal is to learn a metric function f(si, sj) = d that
maps two scenes to a distance d such that the following
properties hold: (1) d captures the similarity of the spatial
relations depicted in scenes si and sj , that is d is small for
similar relations and large for dissimilar relations, and (2)
f is differentiable. The latter ensures that we can employ
gradient based optimization on the metric function.
Instead of directly learning the metric function f , we learn a
mapping function Γ that maps each input scene into a low-
dimensional space such that the Euclidean distance captures
the similarity of spatial relations. Concretely, we define our
metric function f as

f(si, sj) = ||Γ(si)− Γ(sj)||2. (1)

As a smaller distance denotes higher similarity, we for-
mulate the problem of generalizing a spatial relation in a
reference scene sr to a test scene st as finding the translations
and rotations of both objects in st which minimize the
distance between the two scenes under the learned metric,
i.e., we seek to solve the following problem:

minimize
tm,t,tn,t,qm,t,qn,t

f(sr, st). (2)

In this work, we focus on computing the poses of both
objects to imitate the semantics of a reference relation, and
do not consider the physical feasibility of the resulting scene,
e.g., collision checks.

IV. APPROACH

Our method consists of two phases. In the first, we learn
a distance metric function to capture the semantics of spatial
relations. In the second, we leverage the gradient of this
function to imitate spatial relations in a continuous manner
via optimization of the object poses. The key challenges are
to learn a rich representation from high dimensional input
and to backpropagate the gradient information into the raw
point cloud.

A. Distance Metric Learning: Metric Composition and
Training

The goal of learning the distance metric is to express the
similarity between spatial relations. As input we use high-
dimensional 3D point cloud data.
Therefore we seek a mapping function Γ that reduces
the dimensionality from the point cloud space to a low-
dimensional metric space. We implement Γ as a composition
of three functions, which we will now outline briefly and
then describe two of the functions more detailed. First, the
transformation function ψ applies the corresponding rotation
q and translation t to each object point cloud. Second, we
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Fig. 3: Projections to three orthogonal planes. We project
each point cloud to the three orthogonal planes defined by
y = 0, x = 0, and z − 1 = 0. We create a depth image
by setting the value of a pixel to the smallest distance of all
points that are projected on this pixel multiplied by 100. To
contrast the objects from the background we add a bias of
100 to all object pixels. Each projection of the two objects is
in a separate channel and we randomly choose which object
is positioned in the first channel. For this visualization, we
added an all-zero third channel.

project the point clouds to three orthogonal planes to create
three depth images. We denote this projection function by ρ.
Third, we apply a mapping function GW parameterized by
W, which maps the three projections to the metric space,
see Fig. 2 for an overview. More formally, we compose the
mapping Γ as

Γ := GW ◦ ρ ◦ ψ. (3)

We tackle the dimensionality of the input data using a
function ρ that projects the point clouds to three depth
images. This serves as a non-parameterized reduction of the
input dimensionality in comparison to 3D representations
such as octrees or voxels. Concretely, we scale the scene
to fit in a unit cube, see Fig. 3. We then project each point
to three orthogonal image planes of size 100 × 100 pixels
fit to the top, front, and side faces of the cube such that the
image plane normals are either parallel or orthogonal to the
gravity vector g. We place the projection of each object in
a separate channel. In this work, we will refer to a single
orthogonal projection of one object as projection image.
To learn the parameters W of the mapping function GW

we use a triplet network [17], a variation of the siamese
convolutional network that features three identical, weight-
sharing networks GW. We train the network on input triplets
of projections 〈(ρ ◦ ψ)(si), (ρ ◦ ψ)(s+j ), (ρ ◦ ψ)(s−k )〉 where
si ∈ S is a reference scene and s+j , s

−
k ∈ S are similar

and dissimilar to si, respectively, that is, in the case of
binary labels, Yij = 0 and Yik = 1. We run each plane
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Fig. 4: The hyperparameters of the subnet of a sibling
GW, found with random search. Each subnet receives one
projection of one plane. The convolution layers of each
subnetwork share the weights. All three subnets are fused
with a fully connected layer. The sibling network GW is then
cloned three times into a triplet network when training the
distance metric and cloned two times into a siamese network
when generalizing a relation at test time.

of the projection through its own sub-network with the sub-
networks also sharing the weights and we fuse them with a
fully-connected layer, see Fig. 4 for architecture details.

In contrast to an actual triplet network we do not employ
a ranking loss but adapt the hinge loss function as in the
approach by Chopra et al. to enforce an upper bound on
the distance [1]. This upper bound ensures that the learning
rate used for optimizing the poses of a test scene can be
tuned independently of a specific set of learned parameters
W . Concretely, we compute the loss function

C
(
Γ(s),Γ(s+),Γ(s−)

)
=

1

2
(d+)2 +

1

2

(
max(0, 1− d−)

)2
,

(4)

where Γ(s) denotes the embedding of the scene s, i.e.,
Γ(s) = GW

(
(ρ ◦ ψ)(s)

)
, and d+, d− denote the Euclidean

distance of Γ(s+) and Γ(s−) to the embedding Γ(s) of
the reference scene, respectively. During optimization, this
results in d+ being minimized towards 0 and d− being
maximized towards 1.

B. Generalizing Spatial Relations Using the Backward Pass

Having learned the neural network mapping function
GW, we can now leverage the backpropagation algorithm
to imitate a relation by optimizing the parameters of the
3D transformations applied to the point clouds. As stated
in (2), we formulate the generalization of a spatial relation
as a minimization problem with respect to the rotations
and translations in the scene. Note that this differs from
the representation learning process in that we keep the
parameters W fixed and instead optimize the transformation
parameters t,q.
To employ gradient based optimization, the transformation
Γ must be differentiable. While the functions GW and ψ are
differentiable, the gradient of the projection ρ needs a more
thorough consideration. When backpropagating through the
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Fig. 5: Implementation of the partial derivative w.r.t. the
world z-axis. For each projection we compute the partial
derivatives w.r.t. pixels, U′. For both projections 1U,2 U the
world z-axis corresponds to the image axis yU. We compute
the partial derivatives w.r.t. yU by convolving 1U′,2 U′ and
the Sobel kernel Sy . We then sum the resulting errors over
the yU-axis and add them to the top projection, propagated
over the axis of 0U that corresponds to the resepctive depth
axis of 1U,2 U. Then, for each pixel, we assign this error
to the z-coordinate of the closest point the pixel in 0U
originated from. Note that, assuming a solid point cloud
with uniformly-distributed points, this is equivalent to the
computation described in IV-A.

input layer of the first convolutional operation of GW, we
need to consider that an input pixel not only contains depth
information, but also discrete spatial information. Projecting
a point onto the image plane discretizes two dimensions,
which makes gradient-based optimization on these two axes
impractical. Although projecting a scene to three sides sus-
tains one continuous gradient for each axis, in our application
the important information is contained in the location of the
pixel, i.e., in the discretized dimensions.

As an example, consider a top-view projection image 0U
of a ‘cup on top of a can’, i.e., a pixel value uy,x corresponds
to the z-value of the point in the world frame, see Fig. 5.
With only the depth information one cannot conclude if the
cup is resting on the can or if it is hovering above it, as
no information of the bottom of the cup is available. In
contrast, the side view captures this information on the yU-
axis of the image which also corresponds to the z-axis in
the world coordinate frame. However, the gradient of the
loss with respect to yU is not well defined. The crux here is
that the function GW, expressed as a convolutional neural
network, only computes partial derivatives with respect to the
input δC

δuy,x
, i.e., the partial derivative only depends on the

magnitude uy,x but not on the position of a pixel. However,
the hierarchical structure of GW retains the spatial context
of the error, which we will use to propagate the error of a
single projection image back to all three coordinates of the
3D points.

Therefore, we convolve the matrix containing the error
with respect to the input image of GW with a Sobel-derived
kernel. This procedure approximates the rate of change of



Method 3-out-of-5 acc. 5-out-of-5 acc.
LMNN [15] 86.52%± 1.98 N/A

GBLMNN [15] 87.6%± 1.94 N/A
Our NN-based metric 91.21%± 2.78% 76.25%± 7.21%

TABLE I: Nearest neighbor performance on the Freiburg
Spatial Relations dataset. We report results for correctly
retrieving 3-out-of-5 and 5-out-of-5 target neighbors of a
query scene.

the error of the input image with respect to xU and with
respect to yU. That is, we approximate the change of the
error with respect to shifting a pixel on the xU and yU axis
and use this as the error of the respective spatial coordinates
of the pixel. This error can then be backpropagated to the
3D point it resulted from via applying the inverse orthogonal
projection and all three coordinates of the point are updated.
More formally, for a projection image U, i.e., one input
channel of the function GW, the partial derivative can
be formulated as follows. Let U′ be the gradient of this
projection image with respect to the loss where the entry
u′y,x = δC

δuy,x
denotes the partial derivative of the loss with

respect to the input pixel at position (x, y). We compute the
matrices of partial derivatives with respect to the y and x
position U′y and U′x as U′y = Sy ∗U′ and U′x = Sx ∗U′
with Sy,Sx being the Sobel kernels
Sy =

[
1 2 1
0 0 0
−1 −2 −1

]
and Sx =

[
1 0 −1
2 0 −2
1 0 −1

]
. In practice, we

found that using a larger Sobel-derived kernel to approximate
the derivatives achieves better results, which likely results
from the gradients being sparse due to maxpooling. Once
we have computed an error on the pixel uy,x with respect
to xU and yU we assign the error values to the respective
coordinates of all points whose projection would result in the
pixel y, x, assuming the object is solid. For each point, we
sum all the errors associated with it. In summary, this ensures
that each coordinate of a point is assigned an error from each
projection. The remaining partial derivatives for the transla-
tion and rotation have an analytical solution. Fig. 5 depicts
an overview of the gradient implementation for a single axis
of the points. Our code is available at https://github.
com/philjd/generalize_spatial_relations.

V. EXPERIMENTAL RESULTS

In this section we conduct several quantitative and qual-
itative experiments to benchmark the performance of our
approach. Hereby, we demonstrate the following: 1) our
learned feature representation is able to generalize over a
rich set of different spatial relations and yields improved
performance for a spatial nearest neighbor retrieval task
with respect to a state-of-the-art method, 2) using our novel
gradient-based optimization method we are able to generalize
spatial relations to new objects and to capture the intention
of the reference scenes being imitated without prior semantic
knowledge about the relation they embody.

A. Nearest Neighbor Retrieval
We train the distance metric function on the Freiburg

Spatial Relations dataset [15], which features 546 scenes

Reference Initial Generalized

(a) successful generalizations

(b) successful, but physically less reasonable general-
izations

(c) unsuccessful generalizations

Fig. 6: Examples for successful (Fig. 6a), successful but
physically infeasible (Fig. 6b), and unsuccessful generaliza-
tions (Fig. 6c). In each row, the leftmost scene depicts the
reference scene, the test scene before optimizing, and the
rightmost scene depicts the generalized result.

each containing two out of 25 household objects. The
dataset contains seven labeled relations, which we transform
into a binary similarity matrix. As stated before, we train
the metric using a triplet network. The network parameters
W are optimized for 14, 000 iterations with a batch size of
100 triplets. We sample the batches such that the provided
class annotations of the scenes are uniformly distributed.
Further, we apply data augmentation in a way that does
not change the underlying ground truth spatial relation, i.e.,
we add a small amount of noise on the transformations
of the objects and rotate the full scene around the z
axis. Additionally, we apply dropout with a probability
of 50% on the fully-connected layer. For training we use
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Fig. 7: This figure shows an example of an optimization run to imitate a ‘next-to’ relation in a reference scene consisting
of a box and a can and to generalize it using two new objects: a bowl and a smaller box. We show the intermediate scenes
obtained during the optimization and their corresponding distance to the reference scene. Despite the very different shapes,
the produced relation resembles the spatial relation of the reference scene.

stochastic gradient descent with a momentum of 0.9 and
warm restarts [20] with an initial learning rate of 0.001
and a period length of 1500 steps, which is doubled
after each restart. We cross-validate the nearest neighbor
performance of our learned metric on the 15 train/test splits
of the Freiburg Spatial Relations Dataset provided with the
dataset. As performance measure, we compute the mean
3-out-of-5 and 5-out-of-5 accuracy for nearest neighbor
retrieval over the fifteen splits. Table I shows that our
method yields an accuracy of 91.21% ± 2.78%, which is a
relative improvement of 3.6% compared to the GBLMNN
approach by Mees et al. [15]. Our results show that the
learned metric allows us to retrieve similar scenes from
a continuous spectrum of relations in the learned space
with high accuracy. Further, they suggest that the learned
feature representation of the metric, captured in the last
fully-connected layer of the network siblings (see Fig. 4), is
rich enough to be leveraged for gradient-based optimization
in the next experiments.

B. Generalizing Relations to Known Objects

Next, we quantitatively evaluate the capability of our
approach to imitate spatial relations. For testing we randomly
selected 13 scenes including 15 different objects such that
every scene was similar to at most one other scene. We then
considered all 156 combinations of these 13 scenes excluding
31 scenes that cannot be transformed into each other, e.g., a
plate and a cup cannot be generalized to an inside relation.
From the remaining 125 combinations, we used one scene
as a reference to generalize the other scene, as qualitatively
depicted in Fig. 6. To compute the generalization, we used
the Adam Optimizer with a learning rate of 0.1 to minimize
the metric distance by optimizing tm, tn and qm,qn of
the test scene. Overall, 70 of the imitations successfully
generalized the reference scene. 41 of these imitated scenes
were physically infeasible scenes, e.g., containing objects
placed on their edges. However, we do not account for scene
stability or feasibility in this work and therefore consider
them successful. 55 of the generalizations converged to a
non-optimal solution. Fig. 6 qualitatively depicts exemplary
results for each. Among successful generalizations the figure
shows a bowl that is correctly optimized into a tray and
several inclined object relations. Note that both object trans-

formations are optimized in a continuous manner, without
specifying any semantic knowledge, see Fig. 7. Despite
the fact that we do not provide knowledge about physical
concepts such as collisions during the training process and
despite the fact that we approximate the 3D world using our
2D projection technique, our approach is able to leverage the
learned metric to generalize relations in the 3D domain.

In addition, we conducted a real-world experiment
with a Kinect2 camera, where we demonstrated reference
scenes containing common spatial relations, see Fig. 1. To
retrieve the point clouds and the poses of the reference
objects we used the Simtrack framework [21]. In this
experiment we demonstrate the capability of our method to
successfully generalize spatial relations in real-time. In a
further experiment, we employed our framework on a real
PR2 robot and used the robot to manipulate the objects
of the test scene, using out-of-the-box motion planning.
A video of these experiments is available at http:
//spatialrelations.cs.uni-freiburg.de.

C. Generalizing Relations to Unknown Objects

To evaluate how well our approach handles previously
unseen objects, we chose five common 3D models such as
the Utah tea pot and the Stanford bunny, as shown in Fig. 8.
We emphasize that the shapes of these objects differ notably
from the objects of the Freiburg Spatial Relations dataset
used during training. As reference scenes we used a subset
of the 13 previously used scenes. As test scenes we used
all two-permutations without replacement of the five new
objects, sampled next to each other. We then considered all
160 transformable combinations of training and test scenes,
excluding the test object combinations that cannot form an
inside relation. Our approach was able to successfully gener-
alize 68 scenes and failed on 92 scenes. As expected, this is a
more challenging task compared to the previous experiment
since none of the test object shapes were used in training.
Additionally, the dataset used for training covers only a small
subset of the space of possible object arrangements, posing a
challenge on dealing with intermediate relations the approach
encounters during optimization. Nonetheless, our approach is
able to imitate the semantics of a given spatial relation with
considerably different objects and generalize them without
the need for prior knowledge.
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Reference Initial Generalized

Fig. 8: Examples of four successfully and one unsuccessfully
generalized relations to objects unseen during training. De-
spite the complex, unknown shapes, the optimized scenes
capture the semantic of the relation. The last example is
counted as unsuccessful because the opening of the cube
should point upwards.

VI. CONCLUSIONS

In this paper, we presented a novel approach to learn-
ing the similarity between pairwise spatial relations in 3D
space and to imitate arbitrary relations between objects.
Our approach learns a metric that allows reasoning over
a continuous spectrum of such relations. In this way, our
work goes beyond the state of the art in that we do not
require learning a model for each new spatial relation.
Furthermore, our work enables learning the metric and using
it to generalize relations in an end-to-end manner and without
requiring pre-defined expert features. For this, we introduced
a novel approach for backpropagating the gradient of the
metric to optimize the 3D transformation parameters of two
objects in a scene in order to imitate an arbitrary spatial
relation between two other objects in a reference scene. We
evaluated our approach extensively using both simulated and
real-world data. Our results demonstrate the ability of our
method to capture the similarities between relations and to
generalize them to objects of arbitrary shapes and sizes,
which is a crucial requirement for intelligent service robots
to solve tasks in everyday environments. To incorporate
physical constraints such as object collisions, it would be
interesting to add differentiable physics in the future [22].
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