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Abstract— Current state-of-the-art methods for panoptic
segmentation require an immense amount of annotated training
data that is both arduous and expensive to obtain posing a
significant challenge for their widespread adoption. Concurrently,
recent breakthroughs in visual representation learning have
sparked a paradigm shift leading to the advent of large
foundation models that can be trained with completely unlabeled
images. In this work, we propose to leverage such task-agnostic
image features to enable few-shot panoptic segmentation by
presenting Segmenting Panoptic Information with Nearly 0 labels
(SPINO). In detail, our method combines a DINOv2 backbone
with lightweight network heads for semantic segmentation and
boundary estimation. We show that our approach, albeit being
trained with only ten annotated images, predicts high-quality
pseudo-labels that can be used with any existing panoptic seg-
mentation method. Notably, we demonstrate that SPINO achieves
competitive results compared to fully supervised baselines while
using less than 0.3% of the ground truth labels, paving the
way for learning complex visual recognition tasks leveraging
foundation models. To illustrate its general applicability, we
further deploy SPINO on real-world robotic vision systems
for both outdoor and indoor environments. To foster future
research, we make the code and trained models publicly available
at http://spino.cs.uni-freiburg.de.

I. INTRODUCTION

Panoptic segmentation [1] poses an important contribution

to holistic scene understanding by enabling robots to assign

semantic meaning to their environment while delineating in-

dividual objects. However, most previous methods addressing

panoptic segmentation rely on supervised training [2], [3],

hence requiring a large amount of ground truth labels. This

hinders their widespread adoption as generating panoptic

annotations is both expensive and time-consuming, e.g.,

manually labeling a single high-resolution image of urban

scenarios takes approximately 1.5 h [4]. Therefore, it is

paramount to reduce the number of required labels [5], e.g., by

advancing weakly- and unsupervised methods or by leveraging

task-agnostic pretraining strategies [6].

Facing similar issues, the domain of natural language

processing (NLP) has recently seen a rise of large foundation

models [7]. This paradigm shift in NLP also inspired the

vision community to propose similar methods such as

CLIP [8] or Segment Anything [9]. While both still require

some supervision signal, e.g., from image captions or coarse

object masks, DINO [10] learns visual representation in a

fully unsupervised manner allowing to significantly extend the
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Fig. 1. SPINO enables few-shot panoptic segmentation by exploiting
descriptive image features from unsupervised task-agnostic pretraining. We
generate panoptic pseudo-labels by learning from only k ≈ 10 annotated
images in an offline manner. We can then leverage these pseudo-labels to
train any panoptic segmentation model enabling online deployment.

amount of usable resources. Prior works have shown that one

can bootstrap such general representations for several tasks

including depth estimation [11], semantic segmentation [11],

[12], and object detection [13]. Based on these findings, we

argue that it is time for a fundamental paradigm switch for

vision tasks that exploit task-agnostic foundation models

to enable few-shot training. In contrast to unsupervised

techniques [12], [14], we show that such an approach can yield

results competitive with fully supervised learning methods.

In this work, we present a method for Segmenting Panoptic

Information with Nearly 0 labels (SPINO), illustrated in Fig. 1.

First, we leverage a frozen DINOv2 [11] backbone to extract

visual features. Subsequently, we train two task-specific

heads for semantic segmentation and boundary estimation

with as few as ten annotated images to perform few-shot

panoptic segmentation. To enable real-time inference and to

further boost the quality of our predictions, we generate

panoptic pseudo-labels in an offline manner for a larger

bag of raw images that can then be used to train any

existing panoptic segmentation model. We perform extensive

evaluations on several public [4], [15] and in-house datasets

that demonstrate that our SPINO approach yields results that

are highly competitive with fully supervised learning models.

In particular, our extensive evaluations suggest that few-shot

panoptic segmentation provides the means to soon become

on par with supervised state-of-the-art methods.

To summarize, the main contributions are as follows:

1) We propose the first method for few-shot panoptic

segmentation based on unsupervised foundation models.

http://spino.cs.uni-freiburg.de


2) We present a novel pseudo-label generation scheme that

can be trained with as few as ten annotated images.

3) We show that SPINO yields results that are competitive

to supervised training with ground truth labels.

4) In extensive evaluations, we illustrate the effect of

various architectural design choices and apply our

method to real-world robotic vision platforms.

5) We make the code and trained models publicly available

at http://spino.cs.uni-freiburg.de.

II. RELATED WORK

In this section, we present an overview of panoptic segmen-

tation, visual representation learning, and both unsupervised

and weakly-supervised image segmentation techniques.

Panoptic Segmentation: Panoptic segmentation [1] combines

semantic and instance segmentation into a single task with

two categories of scene elements. The static background

comprises the so-called “stuff” classes such as buildings,

whereas dynamic objects such as cars belong to the “thing”

category. While “stuff” classes only receive a semantic label,

“thing” classes are further separated on an instance level.

Since the introduction of this task, several deep learning-based

methods [2], [16]–[19] have been proposed requiring a large

amount of data for training. Recently, the focus has shifted

towards more challenging variants, e.g., open-vocabulary

methods such as from Ding et al. [20] leveraging insights

from foundation models [8]. Removing the need for labels,

CoDEPS [21] addresses unsupervised domain adaptation from

a source to a previously unseen target domain. In this work,

we propose a method for few-shot panoptic segmentation

requiring as few as ten annotated images.

Visual Representation Learning: Breakthroughs in natural

language processing (NLP) [7] have shown that task-agnostic

pretraining can yield feature representations that, fine-tuned

to specific applications, become competitive with prior state-

of-the-art methods [22]. A common approach to obtaining

similar representations in the visual domain is contrastive

learning [23]. However, although not using human annotations,

the choice of the dataset still introduces a significant bias on

the learned representation that can be mitigated by extensive

data augmentation [24]. Masked autoencoders (MAE) [25]

represent another type of self-supervised learners that learn

to reconstruct areas in an image that have been masked. After

pretraining, MAEs can be fine-tuned for various downstream

tasks. More recently, the usage of foundation models in NLP

has also started to influence computer vision. For instance,

CLIP [8] leverages insights from constrastive learning by

exploiting textual supervision to guide the learning of visual

features. However, this text-guided supervision strategy limits

the choice of training data. SAM [9] removes the need

for captions and relies on a self-iterative training scheme

starting from coarse object masks. While showing impressive

zero-shot performance for semantic segmentation on unseen

domains, it lacks the ability to assign class labels to the

segments. Finally, DINO [10] represents a new family of

foundation models that can be trained only from raw images.

In particular, DINO demonstrates that such unsupervised

pretraining can achieve even more explicit features for

semantic segmentation than their supervised counterparts.

Further advances have been shown by DINOv2 [11] that

combines several prior insights with training on a curated

dataset. In this work, we exploit descriptive image features

from a DINOv2 backbone to generate panoptic pseudo-labels.

Unsupervised and Weakly-Supervised Segmentation: Since

obtaining pixel-wise annotations for supervised training

of image segmentation tasks is expensive, in the last few

years research has shifted towards reducing the number of

human annotations. Recent methods build on the observation

that features from unsupervised pretraining are semantically

consistent across images from differing domains [12]. For

instance, LOST [26] uses DINO [10] features for bounding

box extraction to bootstrap supervised training of an object de-

tector. Objects can be assigned to the same class via k-means

clustering in the feature space. Similarly, TokenCut [27]

relies on Normalized Cut (NCut) [28] to group self-similar

image regions based on DINO features. While these previous

methods work well for foreground/background segmentation,

FreeSOLO [29] addresses multi-object detection by

enhancing coarse masks via one-stage self-training in a weakly

supervised manner. However, requiring in-domain data results

in a lack of generalization. In contrast, CutLER [13] achieves

impressive zero-shot performance leveraging DINO features

to generate coarse masks followed by weakly supervised train-

ing of a separate instance segmentation network. Although

applicable to multi-object scenarios, relying on iterative

NCut requires specifying the number of expected objects.

With respect to semantic segmentation, MaskContrast [30]

and PiCIE [14] are notable methods from before the advent

of large pretraining models. While MaskContrast contrasts

learned features within and across saliency masks, PiCIE

searches for descriptive image features guided by pho-

tometric invariance and geometric equivariance. Recently,

both MaskDistill [31] and STEGO [12] leverage features

from a frozen DINO [10] backbone. To further refine the

pretrained features, STEGO adds a task-specific segmentation

head followed by clustering. Other examples of exploiting

foundation models include CLIP-ES [32], which relies on

contrastive language-image pretraining [8], and SEPL [33]

that combines the class-agnostic masks from SAM [9] with

class activation maps for class assignment. To the best of

our knowledge, our proposed SPINO constitutes the first

attempt to directly exploit fully unsupervised representation

pretraining for panoptic segmentation.

III. TECHNICAL APPROACH

In this section, we present our proposed approach SPINO

for few-shot panoptic segmentation. As illustrated in Fig. 2,

we leverage the recent foundation model DINOv2 [11]

to extract descriptive image features for both semantic

segmentation and boundary estimation. In particular, we

propose a novel pseudo-label generation scheme that separates

semantic regions of “thing” classes into individual instances

http://spino.cs.uni-freiburg.de
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Fig. 2. Overview of our proposed SPINO approach for few-shot panoptic segmentation. SPINO consists of two learning-based modules for semantic
segmentation and boundary estimation that leverage features from the recent foundation model DINOv2 [11]. A panoptic fusion scheme combines their
outputs using connected component analysis (CCA) and multiple small instance filtering steps. SPINO creates pseudo-labels for a large number of unlabeled
images using only k ≈ 10 images with ground truth annotations. These pseudo-labels can then be utilized to train any panoptic segmentation model.
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Fig. 3. Our proposed pseudo-label generator comprises two learnable
modules for semantic segmentation and boundary estimation that exploit
descriptive image features from the recent DINOv2 [11] foundation model,
enabling training with only k ≈ 10 ground truth panoptic annotations.

by predicting object boundaries. With this approach, SPINO

can bootstrap very few ground truth annotations for generating

high-quality panoptic pseudo-labels. To enable real-time

inference and to further boost the quality of our panoptic

predictions, we train a panoptic segmentation model using

the generated pseudo-labels.

A. Few-Shot Pseudo-Label Generation

We propose a novel panoptic segmentation scheme to

generate panoptic pseudo-labels in an offline manner while

requiring very few ground truth annotations for training. Our

label generator consists of three main building blocks shown

in Fig. 2, namely learnable modules for semantic segmentation

and boundary estimation as well as a static component to

fuse their predictions. The semantic segmentation module

is comprised of a frozen DINOv2 [11] backend, a bilinear

14x-upsampling layer, and a final n-class MLP with 4 layers.

Here, n denotes the number of semantic classes as specified

in Sec. IV-A. In detail, we use the DINOv2 weights of the

ViT-B/14 variant provided by the authors. For the boundary

estimation module, we employ a similar design but use

4x-upsampling and set n = 2 for binary classification.

Training the Label Generator: A key idea of SPINO is to

train our proposed pseudo-label generator with only k ground

truth annotations, where k denotes numbers as small as 10.

Notably, the unsupervised training procedure of DINOv2

does not further increase this number even when considering

the pretraining. We illustrate the training of our pseudo-label

generator in Fig. 3. First, to stabilize the training with such few

samples, we employ various data augmentation techniques on

the input RGB image including random cropping, horizontal

flipping, and color jitter. Subsequently, we feed the augmented

image to the two task-specific heads and compute the

respective loss functions.

We supervise the semantic segmentation head with the

bootstrapped cross-entropy loss function LBCE [34] to

account for rare classes.

LBCE = −
1

K

N∑

i=1

1 [pi,yi
< tK ] · log(pi,yi

) , (1)

where pi,yi
denotes the posterior probability of pixel i ∈

[1, N ] for its ground truth class yi ∈ {1, ..., c} with N and

c being the number of pixels and classes, respectively. The

indicator function 1(·) is 1 if pi,yi
is below a threshold tK

and 0 otherwise. Following previous works [2], [21], we set

tK = 0.2 such that only those pixels with top-K highest losses

contribute to LBCE . In order to train the boundary estimation

module, we generate ground truth boundary maps as follows:

If the instance ID of a pixel is different from any of its eight

neighbors, we assign 1 to this pixel. Otherwise, we set the

value of the center pixel to 0. During training, we compute

the binary cross-entropy loss L2CE as the supervision signal.

L2CE = −
1

N

N∑

i=1

yi · log(pi) + (1− yi) · log(1− pi) , (2)

where yi ∈ {0, 1} is the binary boundary label of pixel i and

pi denotes the probability of the pixel i being a boundary.

Employing the Label Generator: In the next step, we

leverage the aforementioned trained modules for semantic

segmentation and boundary estimation to generate panoptic

pseudo-labels for a large number of unlabeled images. In the

following, we describe the procedure as depicted in Fig. 2.

Inspired by ensemble learning, we use multi-scale test-time

augmentation for both semantic segmentation and boundary



estimation. For instance, for scale s = 2, we divide the image

into four equally sized regions, upsample each region to the

size of the original input image (s = 1), and obtain their

softmax features. In the scale fusion block, we downsample

these feature maps to the original size of the region, join the

features of all regions in a single s = 1 map, and compute

the mean across the considered scales. In detail, we use

scales {1, 2, 3} for the semantic head and scales {3, 4, 5} for

the boundary estimation head. Next, we feed the predicted

semantic map and the estimated object boundary map to

our panoptic fusion module. First, for each “thing” class,

we perform connected component analysis (CCA) yielding

disconnected blobs. If a blob consists of fewer pixels than

a threshold, we assign the semantic void class to its pixels.

Otherwise, we subtract the predicted border for this blob

from the semantic map followed by CCA to detect separate

instances within a blob. If the number of pixels of an instance

is below another threshold, we add it to its nearest neighbor

which fulfills the minimum size requirement. If all instances of

a blob are below this threshold, we combine them into a single

instance. Finally, due to the top-down approach, the inferred

instance maps already contain semantic information leading

to the desired pseudo-labels for panoptic segmentation.

B. Training a Panoptic Segmentation Model

After creating pseudo-labels for a large set of unlabeled

images, we train a panoptic segmentation model as illustrated

in Fig. 2. In contrast to the offline label generator, such

a model allows for online panoptic segmentation while

further enhancing the overall performance. Although this

approach is generally applicable to any panoptic segmentation

model, in this work, we follow the spirit of our pseudo-label

generator. In detail, our bottom-up panoptic segmentation

network consists of a frozen DINOv2 [11] backbone with

an adapter module [35] and three task-specific heads [2] for

semantic segmentation, instance center prediction, and pixel

offset regression, respectively. In Fig. 4, we visualize this

architecture. The semantic head predicts a semantic class for

each pixel and is trained with the bootstrapped cross-entropy

loss with hard pixel mining [2].

LBCEH = −
1

K

N∑

i=1

wi · 1 [pi,yi
< tK ] · log(pi,yi

) , (3)

which builds upon Eq. (1) but adds weights wi > 1 for

pixels that belong to small instances. For other instances and

“stuff” classes, the pixel weight remains at wi = 1. Similar to

Eq. (1), we set tK = 0.2. Addressing instance segmentation,

the center head generates a probability map with high values

for instance centers and the offset head estimates the 2D

offset of a pixel to the nearest instance center. To train these

heads, we utilize the MSE loss LMSE for the center head

and the L1 loss LL1 for the offset head. Consequently, we

compute the total loss as a weighted sum:

LPAN = λsemLBCEH + λcenLMSE + λoffLL1 (4)

To increase the learning speed, we propose to further exploit

the k annotated images, which were used to train the pseudo-
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Fig. 4. To enable online predictions and to further boost the performance
compared to the pseudo-label generator, we train a bottom-up panoptic
segmentation model using our generated pseudo-labels. The network consists
of a frozen DINOv2 [11] backbone with an adapter [35] and three task-
specific heads, whose output is merged by a panoptic fusion module [2].

label generator, also when training the panoptic segmentation

model. In particular, we construct batches that contain both

pseudo-labels and one ground truth sample. Formally, a batch

b of size n is given by

b = {Î1, . . . , În−1, IGT} , (5)

where Îi denote pseudo-labeled images and IGT is from the

set of k images with ground truth labels. We further apply

data augmentation via color jitter and horizontal flipping.

During test-time, a panoptic fusion module [2] predicts

the final panoptic segmentation map from the output of the

individual heads, shown in Fig. 4. In detail, it assigns a

semantic label to the class-agnostic instance predictions using

majority voting over the semantic predictions of all pixels

within an instance.

IV. EXPERIMENTAL EVALUATION

In this section, we demonstrate that our proposed SPINO

outperforms unsupervised methods for semantic segmentation

and yields competitive results compared to fully supervised

setups for panoptic segmentation that require a huge number

of ground truth annotations. We provide both quantitative and

qualitative results on multiple public and in-house datasets.

Finally, we extensively evaluate several design choices for

our pseudo-label generator.

A. Datasets

We present results on various datasets including the public

Cityscapes [4] and KITTI-360 [15] as well as our in-

house data for automated driving and from an indoor office

environment.

Cityscapes: The Cityscapes dataset [4] contains RGB images

and fine panoptic annotations for automated driving in 50

cities across Germany and bordering regions. We select k

images from the train split to train our label generator and

generate pseudo-labels for the remaining images. In a separate

experiment, we also generate pseudo-labels on the entire

train_extra split. To evaluate the performance, we report

metrics on the val split. When creating the pseudo-labels, we

mask out the hood of the ego car as it remains static and

hence can be inferred from the k annotated images [5]. We

report metrics using 19 classes as per the official Cityscapes

evaluation protocol.



Cityscapes KITTI-360 In-house automated driving In-house office environment

Fig. 5. Qualitative performance of our pseudo-label generator in four diverse domains from both public and in-house data sources. From left to right, we
show two samples each for Cityscapes [4], KITTI-360 [15], in-house automated driving, and an in-house office environment.

TABLE I

PANOPTIC/SEMANTIC SEGMENTATION ON CITYSCAPES

Method Train. data Acc mIoU PQ SQ RQ

Fully supervised

DINOv2 + Adapt. + PH GT 91.9 77.0 51.4 78.9 63.1

Unsupervised

Modified DC [38] n/a 35.3 6.8 – – –

PiCIE [14] n/a 72.7 13.8 – – –

STEGO [12] n/a 89.1 38.0 – – –

Few-shot supervision

ResNet-50 + PH 10 GT 74.9 32.1 16.8 45.6 20.8

DINOv2 + PH 10 GT 81.6 49.4 20.6 49.9 25.8

DINOv2 + Adapt. + PH 10 GT 82.8 52.5 22.0 60.9 27.0

Pseudo-labels (ours) 10 GT 86.0 61.5 35.9 73.7 45.9

SPINO (ours) PL 86.3 60.6 36.4 73.5 46.7

+ Mixed-batch PL 86.6 61.2 36.5 74.8 46.3

SPINO (ours) PL++ 86.6 61.8 37.2 74.5 47.5

PH refers to the panoptic heads as shown in Fig. 4. GT and PL
indicate training with ground truth annotations and pseudo-labels,
where the “PL++” marks pseudo-labels on the train_extra split. The
architecture of SPINO corresponds to “DINOv2 + Adapt. + PH”.

KITTI-360: The KITTI-360 dataset [15] was recorded in

Karlsruhe, Germany, and provides RGB images and panoptic

annotations for sequential data. Following prior works [36],

[37], we use sequence 10 for evaluation and the remaining

sequences for the pseudo-label generation. We report results

using 14 classes as detailed by Vödisch et al. [21].

In-House: To illustrate the main benefit of SPINO, i.e.,

enabling panoptic segmentation on different vision systems

with very few reference annotations, we employ our method

on two in-house data sources. First, following the spirit of

the public datasets, we use an automated driving perception

car navigating in Freiburg, Germany. Second, to demonstrate

general applicability, we record indoor data in our office

environment. For both domains, we prepare annotations for

ten images to train the pseudo-label generator.

B. Panoptic Segmentation

To evaluate the performance of SPINO, we measure the

pixel accuracy (Acc) and the mean IoU (mIoU) for semantic

segmentation as well as the panoptic quality (PQ), the

segmentation quality (SQ), and the recognition quality (RQ)

for panoptic segmentation. Based on the ablation studies in

Sec. IV-C, we train our pseudo-label generator on k = 10
human-selected, labeled images with a batch size b = 1 and

a learning rate lr = 0.001.

Few-Shot Training: First, we illustrate the efficacy of our

pseudo-label generation scheme. As shown by the metrics

in Tab. I, training Panoptic-DeepLab [2] (with a ResNet-50

backbone) on only ten images yields poor results that

can be improved by replacing the backbone with a frozen

DINOv2 [11]. Following the common methodology for dense

prediction tasks, we also add an adapter module [35] to

further increase the performance. However, the results remain

significantly inferior to the quality of our pseudo-labels with

respect to both semantic and panoptic segmentation. Notably,

our pseudo-label generator comprises a much simpler design,

e.g., estimating object boundaries instead of predicting

instance centers and pixel offsets. For the overall SPINO

approach, we adopt the network design of DINOv2 plus

an adapter module. Naive training on the generated pseudo-

labels already yields highly competitive results compared

to training with ground truth labels considering that we use

less than 0.29% of the labels. We further show how the

proposed mixed-batch strategy that closely incorporates the

ten ground truth labels increases all three semantic metrics.

Next, we also generate pseudo-labels for the unlabeled

train_extra split of Cityscapes, increasing the amount of

training data for the panoptic segmentation model. The results

in Tab. I indicate that our approach opens up an avenue

for exploiting unlabeled large-scale data recordings for the

training of existing panoptic segmentation methods.

Comparison with Unsupervised Segmentation: Second, we

compare SPINO to the state-of-the-art for unsupervised

semantic segmentation. As we follow the official Cityscapes

evaluation protocol, we retrain PiCIE [14] and their modified

DeepCluster [14], [38] using the released code on 19 classes.

For STEGO [12], we use the provided network weights but

reevaluate on 19 classes. Note that, for both PiCIE and

STEGO, reducing the number of classes leads to higher

metrics than reported by the authors. As SPINO significantly

outperforms these baselines, we argue that requiring ten

instead of zero annotated images is well justified.

Generalizability: Finally, we extend the evaluation to multiple

datasets. In Tab. II, we report quantitative results on both

Cityscapes [4] and KITTI-360 [15]. In detail, we compare

supervised training with ground truth annotations to our

few-shot approach. Similar to Tab. I, we report results for

three backbones, namely ResNet-50 [39], DINOv2 [11], and



TABLE II

PANOPTIC SEGMENTATION ON CITYSCAPES AND KITTI-360

Train. Cityscapes KITTI-360

Method data Acc mIoU PQ SQ RQ Acc mIoU PQ SQ RQ

Pseudo-labels 10 GT 86.0 61.5 35.9 73.7 45.9 75.8 54.7 32.5 70.7 42.1

ResNet-50 + PH GT 89.4 64.9 44.2 75.3 56.1 83.0 64.1 41.0 76.5 50.5

DINOv2 + PH GT 89.4 71.4 41.0 74.4 51.7 83.5 62.8 39.3 70.5 48.7

DINOv2 + Adapt. + PH GT 91.9 77.0 51.4 78.9 63.1 86.0 65.6 42.5 72.9 51.2

ResNet-50 + PH PL 85.4 57.3 33.0 67.8 42.3 76.2 52.1 32.2 67.6 41.0

DINOv2 + PH PL 84.5 57.1 31.4 70.9 40.3 76.4 54.6 32.7 71.7 42.0

DINOv2 + Adapt. + PH PL 86.3 60.6 36.4 73.5 46.7 76.6 55.5 33.3 71.9 42.8

PH refers to the panoptic heads shown in Fig. 4. GT and PL indicate ground truth annotations
and pseudo-labels. The gray row corresponds to SPINO without mixed-batch training.

TABLE III

ABLATION STUDY: NETWORK ARCHITECTURE

Method A
:

k
-N

N

B
:

L
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.
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er

C
:

C
N

N

D
:

M
L

P

E
:

U
p
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m
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n
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Acc mIoU PQ SQ RQ

A ✓ 78.7 51.7 26.1 68.5 35.0

B ✓ 84.3 60.0 32.6 71.3 42.5

B + E ✓ ✓ 84.3 60.0 33.6 71.7 43.8

C + E ✓ ✓ 82.9 55.1 29.7 70.9 38.4

D + E ✓ ✓ 86.0 61.5 35.9 73.7 45.9

Due to the high computational complexity, the k-NN is
evaluated without training data augmentation.

TABLE IV

ABLATION STUDY: DATA AUGMENTATION

Method Acc mIoU PQ SQ RQ

Base 83.2 55.8 29.5 70.8 38.0

Training time

+ Random flip 83.3 56.1 29.5 70.8 38.0

+ Random crop 83.0 57.2 30.0 70.7 39.1

+ Color jitter 83.1 57.3 30.1 70.9 39.1

Test time

+ Multi-scale ensemble 86.0 61.5 35.9 73.7 45.9

TABLE V

ABLATION STUDY: BATCH SIZE

Batch

size
Acc mIoU PQ SQ RQ

1 86.0 61.5 35.9 73.7 45.9

2 84.9 59.8 34.0 72.6 43.7

4 85.3 59.4 33.6 72.3 43.3

8 84.5 56.8 31.3 71.4 39.9

TABLE VI

ABLATION STUDY: NUMBER OF LABELS

Label

count
Acc mIoU PQ SQ RQ

1 69.8 37.1 19.8 55.4 27.2

3 81.8 49.3 30.3 64.3 38.8

5 82.8 55.0 32.1 65.5 41.3

10 86.0 61.5 35.9 73.7 45.9

25 88.5 66.9 39.6 74.9 50.1

50 89.4 69.1 40.9 74.8 51.6

100 90.3 71.3 42.9 76.3 53.8

DINOv2 with an adapter [35]. Considering that our pseudo-

labels are generated based on only ten images, the few-shot

methods yield impressive results across the board. Note

that ten images correspond to 0.29% and 0.02% of the

utilized ground truth labels for Cityscapes and KITTI-360,

respectively. Finally, we provide qualitative visualizations of

our pseudo-labels in Fig. 5 for both public datasets as well

as our in-house data including outdoor urban and indoor

office environments. Further examples are shown in the

supplementary video on the project website.

C. Ablation Studies of Pseudo-Label Generation

We extensively evaluate the architectural design of our

pseudo-label generator and demonstrate its efficacy in contrast

to several alternatives. In Tabs. III, IV, V and VI, we highlight

the utilized variant in gray.

Network Architecture: In Tab. III, we compare the architectural

design of our pseudo-label generator using MLPs to other

network architectures. Similar to other methods [10], [26], we

use a k-NN classifier on the DINOv2 feature patches with k =
5. Due to the high computational complexity of this approach,

we omit training data augmentation for the k-NN. Next, we

utilize a linear layer with and without prior upsampling.

Compared to the k-NN, these learnable methods yield a

significant improvement but remain inferior to the MLPs.

Finally, we demonstrate that our design also outperforms a

4-layer CNN with 3× 3 convolutions.

Data Augmentation: Next, we gradually activate the data

augmentation techniques and list the results in Tab. IV.

Utilizing data augmentation during the training enhances

mIoU, PQ, and RQ, whereas the accuracy and SQ remain

stable. Additionally, our employed test-time augmentation

based on multi-scale ensemble prediction vastly improves the

metrics across the board.

Batch Size: In Tab. V, provide results for various batch sizes.

Note that we scale the learning rate proportionally to the

batch size and keep the number of epochs constant. Due to

leading to the highest quality of the pseudo-labels, we select

a batch size b = 1.

Number of Ground Truth Labels: Finally, we investigate the

effect of the label count on the quality of the pseudo-labels.

In Tab. VI, we report results for increasing k from one-shot

to k = 100. Note that for up to k = 10, we manually select

the samples used for training. For k > 10, we randomly

add further data. We observe a continuous improvement for

greater k. Notably, for k = 100, our pseudo-label generator

is almost on par with Panoptic-DeepLab while using 2.9%
of the annoations (see ResNet-50 backbone in Tab. II).

V. CONCLUSION

In this work, we introduced SPINO for few-shot panoptic

segmentation by exploiting descriptive image representations

from the unsupervised foundation model DINOv2. We demon-

strated that SPINO can generate high-qualitative pseudo-

labels after being trained on as little as ten annotated images.

These pseudo-labels can then be used to train any existing

panoptic segmentation method yielding results that are highly

competitive to fully supervised learning approaches relying on

human annotations. Finally, we extensively evaluated several

design choices for the proposed pseudo-label generator and

employed our SPINO approach to both public and in-house

data. To facilitate further research, we made our code publicly

available. In the future, we will further enhance the instance

separation by refining the boundary estimation and employ

SPINO in additional domains.
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