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ABSTRACT: Decoding the human brain state with BCI
methods can be seen as a building block for human-
machine interaction, providing a noisy but objective,
low-latency information channel including human re-
actions to the environment. Specifically in the context
of autonomous driving, human judgement is relevant
in high-level scene understanding. Despite advances in
computer vision and scene understanding, it is still
challenging to go from the detection of traffic events
to the detection of hazards.
We present a preliminary study on hazard perception,
implemented in the context of natural driving videos.
These have been augmented with artificial events to
create potentially hazardous driving situations. We de-
code brain signals from electroencephalography (EEG)
in order to classify single events into hazardous and non-
hazardous ones. We find that event-related responses can
be discriminated and the classification of events yields
an AUC of 0.79. We see these results as a step towards
incorporating EEG feedback into more complex, real-
world tasks.

INTRODUCTION

Humans can hardly compete with machines in purely
computational tasks. Though the progress in machine
learning and artificial intelligence in general has led to
computers outperforming humans in difficult tasks such
as playing the game of Go, it is still challenging to pro-
vide adequate interaction policies between humans and
machines. This challenge is faced in application areas
in which machines and humans both are actors, such as
in collaborative manipulation tasks with robot arms or
autonomous cars sharing the road with humans. Robots
often require a high amount of adaptation to the human
user, specifically by learning from her or him. In the
following, we will focus on the driving domain, where
many challenges in the interaction between intelligent
vehicles and humans (be it as passengers, drivers or
pedestrians) arise [1].
When considering complex (e.g., residential) driving
environments, it is not sufficient to consider humans in
the scene merely as (dynamic) obstacles. Rather, it is
desirable to have a task-specific label for these obstacles,
such as the respective hazardousness.

potential hazards

EEG

Figure 1: Experimental Paradigm: Recordings of driving
scenes have been augmented with potentially hazardous
events (artificial pictograms). The resulting videos are
shown to the subjects while brain signals are recorded
using electroencephalography.

We propose to utilize electroencephalography-based sig-
nals (EEG) to gather human feedback about the environ-
ment in a passive way. Alternative approaches to incor-
porating human teaching input, such as learning from
demonstrations, can also be valuable tools [2]. However
the situation- and context-dependence of preferred be-
havior (e.g., whether a situation should be treated as
hazardous or not) suggests to instead gather feedback
from the human, while she or he is acting within the
target environment or within a reasonable approximation
thereof. EEG signals, as opposed to behavioral feedback
like button presses, offer the advantages of being non-
intrusive and having a low latency. Additionally, brain-
computer interfaces (BCIs) provide an unbiased feed-
back channel that corresponds to the subject’s individual
scene perception.
As the low signal-to-noise ratio of EEG poses practical
challenges, it may be reasonable to seek for a balanced
trade-off between a constrained lab environment and
the final application environment to run experiments.
Therefore, in this study we investigate passive viewing
behavior of humans in continuous driving videos as a
step towards monitoring humans as passengers in cars,
with a possible application in the area of autonomous
driving.
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As illustrated in Figure 1, we use videos of natural
driving scenes as stimulus material and augment them
with realistic salient pictograms of hazardous and non-
hazardous events. With this, we focus on the domain-
specific meaning (hazardousness) of the event rather
than on the sole detection of an event (as in an oddball
setting).
In the context of this paper, events are considered
as hazardous when they would be dangerous (to the
pedestrian or the driver), are hard to predict and, most
importantly, require special attention or reaction by the
(robot) driver (e.g., more defensive behavior or slowing
down). As an example, a child or a pedestrian walking
on the sidewalk would be considered as non-hazardous
whereas a child running from occlusion onto the street
(c.f, Figure 1) would be hazardous. While we focus on
hazardousness here, we view it merely as an example
for a high-level semantic scene information.

RELATED WORK

Substantial prior work addresses scene understanding
for intelligent vehicles in the presence of humans (c.f.,
the survey by Ohn-Bar and Trivedi [1]). As a relevant
example, Møgelmose et al. [3] present an integrated
approach on pedestrian detection, tracking and hazard
inference. For the latter, they leverage map data (prox-
imity to street) to assign hazardousness to pedestrians.
However, as also discussed in the following section, the
mere presence of humans in the vicinity of the car does
not necessarily imply a hazard.
Utilizing BCIs in the context of human-machine inter-
action, substantial previous work has been performed on
decoding user state from brain signals for improved user
experience or performance. For example, workload or
drowsiness can be detected from EEG in different task
settings [4], [5] and can be used to adapt tasks based on
the decoded user state [6].
At the intersection of BCI research and, both simulated
and real, driving, several works have addressed the
utility of brain responses for human-machine interaction.
Haufe et al. [7] investigated using brain signals in early
detection of emergency braking. They report that using
event-related potentials for detection of braking signals
is feasible both in simulation and real-world driving,
whereas oscillatory signals do not provide complemen-
tary information. Khaliliardali et al. [8] focused on the
anticipation and prediction of the type of driver’s actions
in an automotive go/no-go paradigm. Zhang et al. [9]
investigated the response to directional cues presented
by driving assistant systems and classified whether these
correspond to the user’s intention based on error-related
brain activity.
Whereas the subject’s desired reaction to a stimulus is
immediately clear in the first two studies or only requires
a comparison with a street sign in the third, in this
paper we consider a more unconstrained stimulus setting
in which both the context and partly the movement of
stimuli is relevant for the class assignment of an event
as a step towards more ecological validity [10].

Figure 2: Exemplary events from the stimulus material.
The top row consists of events that have been labeled
as hazardous, whereas events in the center and bottom
row are labeled as non-hazardous. Only half of the
actual width of the video frame is displayed for layout
purposes.

MATERIALS AND METHODS

Five healthy subjects participated in the study by watch-
ing natural video sequences of traffic scenes. All subjects
gave their written informed consent and the study has
been approved by the Ethics Committee of the Univer-
sity Medical Center Freiburg.

Experimental Design: The stimulus material consists
of video sequences based on actual car recordings from
the KITTI dataset [11] with a resolution of 1242x375 px.
Parts of the sequences were edited by inserting events
with pictograms in order to introduce potential hazards.
A selection of exemplary events is depicted in Figure 2.
The pictograms introduced in the natural scenes are
generally salient and easily discoverable. However, a
substantial portion of events consists of pictograms
appearing from occlusion (both with or without prior ap-
pearances in the scene). The appearance of a pictogram
from occlusion does not automatically imply that it is
a hazard, which needs to be inferred from the context
instead.
Different types of pictograms (such as children, pedestri-
ans, cyclists) and different colors are used. However, the
type of pictogram or color does also not imply the class
label, i.e., hazardousness of the event (c.f., the color
distribution by event class in Figure 3). Similarly, events
in close proximity to the car can be both hazardous or
non-hazardous (e.g., a child running close to the curb
compared to a pedestrian with a dog in Figure 2).
In total, each subject watched 240 scenes (videos) of 20 s
each. The total of 240 scenes is grouped into blocks of
12 scenes. Each block is balanced between scenes in
simple (e.g., highways) and complex (e.g., residential)
environments.
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Figure 3: Event counts from a full experiment ses-
sion, grouped by stimulus color and class label. The
“red+blue” group consists of stimuli consisting of mul-
tiple participants (e.g., mother and child). It is apparent
that the assignment of an event to a class cannot be
performed solely based on stimulus type or stimulus
color.

Embedded in these scenes are 262 unique events, out
of which a portion was repeated over the course of
the experiment, resulting in a total of 450 events in an
experiment session. Out of all events in an experiment
session, 97 are labeled as hazardous and 353 as non-
hazardous.
During the experiment, subjects were seated approxi-
mately 80 cm in front of a 24 inch monitor, where videos
were presented at 10 frames per second (corresponding
to the recording rate of the source material). Subjects
were instructed that they should assume being passen-
gers in an autonomous vehicle and that they should
press a button (in their right hand) in case of hazardous
situations. Pressing the button could be seen as relaying
the desire to drive more defensively to the vehicle.
During the experiment, however, the videos continued
normally, disregarding the button press.
EEG signals were recorded from 63 passive Ag/AgCl
electrodes (EasyCap), which were positioned according
to the extended 10-20 system and referenced against
the nose. Impedances were kept below 20 kΩ. The
signals were registered by multichannel EEG amplifiers
(BrainAmp DC, Brain Products) at a sampling rate of
1 kHz.

Data Analysis: The recorded data was analyzed
offline. It has been bandpass-filtered from 1.1 Hz to
15 Hz and downsampled to 100 Hz. Subsequently, the
continuous recording has been divided into one segment
per event. Each segment has a duration of 1200 ms,
consisting of 200 ms preceding the first frame containing
the pictogram and 1000 ms succeeding it. Note however
that due to occlusions the pictogram is often not yet
fully visible in the first frame of its appearance.
Before subsequent processing steps, channels whose
variance was smaller than 0.5 for more than 10 % of
the segments were rejected.

Additionally, segments that violated either a min-max
threshold of 70 µV at frontal electrodes or whose vari-
ance was excessively large were rejected as artifactual.
For base correction, the mean amplitude of the first
200 ms (corresponding to the duration of the two video
frames preceding the pictogram) is subtracted from the
signal.
Each segment was labeled as hazardous or non-
hazardous (c.f., Figure 2). We use annotated class labels
instead of using the behavioral button response of sub-
jects to have constant class distributions and therefore
better comparability across subjects.
As features for classification, mean voltages in 100 ms
windows from 100 ms to 900 ms after the first visible
pictogram frame were used. Both single time intervals
and cumulative time intervals (i.e., concatenating the
channel means of the interval with all preceding ones)
were used as feature vectors (see Figure 5 for the used
intervals).
Analyzing each subject individually, we train and evalu-
ate classifiers in a chronological 5-fold cross-validation.
Classification was performed by regularized linear dis-
criminant analysis (with analytic determination of the
shrinkage parameter). Classification results are reported
as the area under the receiver operating characteristic
(AUC). Assigning predictions at random would result
in a chance-level AUC of 0.5.

RESULTS

Participants gave qualitative feedback that the events
labeled as hazardous were perceived as such, and sub-
jects pressed the button in 74 % of hazardous events.
Based on the rejection policies described in the previous
section, 12 % of all epochs were rejected. Rejection rates
were similar for both classes such that the original class
distribution was preserved.
We observed event-related responses to both hazardous
and non-hazardous events with peak amplitudes around
600 ms after the first (partial) appearance of a po-
tentially hazardous stimulus. Spatially, we observed a
predominantly non-lateralized response throughout the
subjects. Central and parietal electrodes offer highest
discriminative information between hazardous and non-
hazardous events for four of the five subjects.
Figure 4 visualizes data of a subject with average
decoding results. Both hazardous and non-hazardous
events show event-related potentials compared to base-
line intervals taken from video segments at least 5 s
from each annotated event. However, hazardous events
elicit a stronger response. This is most prominent from
500 ms to 800 ms after the event’s first video frame, as
depicted by the color bars representing the channel-wise
discriminatory information between hazardous and non-
hazardous events.
Using eight time intervals within the range of 100 ms
to 900 ms after the first visible frame of the event,
classification yielded a mean AUC of 0.79 over all
subjects, with a minimum AUC of 0.75 and a maximum
of 0.87 across the five subjects.
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Figure 4: Event-related responses of an exemplary subject (with average classification quality) at seven electrodes.
Lines show the mean voltage at the given electrode over all hazardous, non-hazardous events or baseline segments,
respectively (N = 79, 297, 315). Baseline segments are extracted from parts of scenes that are separated by at least 5 s
from other events. The mean of the first 200 ms of the interval (i.e., before the appearance of the pictogram) has been
subtracted from each channel. The colorbars depict the signed r2 value between hazardous and non-hazardous events.

Focusing on the features’ influence on single-trial de-
coding quality (see Figure 5), one can see that classifiers
trained on features from 300 ms to 400 ms after onset
show the first reasonable performance (AUC of 0.66).
The best single time windows have latencies of 500 ms
to 600 ms and 600 ms to 700 ms after onset. Cumula-
tively using all time windows up to a given point, we
see gains until 800 ms after the event.

DISCUSSION

We find that distinguishing between hazardous and non-
hazardous events is possible with a reasonably good
quality for all five subjects (minimum AUC of 0.75).
Although results need to be supported by more subjects,
the observation that discriminative information from the
first 600 ms already result in a mean AUC of 0.76
suggests the possibility for close-to-realtime utilization
as an information source in online systems.
For this study we did not perform exhaustive feature
engineering or hyperparameter optimization, but rather
focused on obtaining a realistic decoding result using
“best practice” methods in order to evaluate the feasibil-
ity of distinguishing between high-level event classes. It
appears reasonable to expect that better decoding results
are possible by, e.g., adapting time intervals or spatial
filters to individual subjects.
On a cursory glance, the question might arise whether
the results just resemble a “classical” P300 effect in an
oddball scenario. We argue that this is not the case since
we aim to distinguish between two different types of
events (hazardous and non-hazardous) which are both
similarly (un)expected. Observed effects are not based
on the sole occurrence of an event compared to a
baseline stimulus.

Despite the smaller amount of hazardous events com-
pared to non-hazardous ones (since traffic scenes should
maintain some degree of realism), both classes are “odd”
events that differ strongly from regular parts of the
scenes (also in their brain response, as depicted by the
baseline class in Figure 4). Hence, rather than discrim-
inating rare unexpected events from regular ones, our
classes distinguish between the contextual meaning of
an event. Furthermore, due to the priming of participants
(e.g., by pedestrians appearing before occlusions) and
some repetitions in the later course of the experiments,
we argue that the sole occurrence of (both classes of)
events is not always unexpected.

The comparatively high latency of the event-related
response could be attributed to the fact that stimuli
are still partly occluded at time 0 s. Additionally, it
has to be noted that the decision whether a pictogram
is hazardous could not always be made immediately
at its appearance since movement with respect to the
scenes is critical for judging the event. Alongside the
different latencies after which participants noticed the
pictograms, these differences between time-alignment
of events could potentially be mitigated by relying
on fixation-related potentials [12]. Nevertheless, these
latencies are common to both classes so we expect only
minor influence upon the quality of classification.

Since subjects performed button presses during the
experiment, the question arises whether the decoding
results might be solely based on the motor activity of
the subject. However, this appears to not be the case
since there is not a clear lateralization of the response
as would be expected from a single-handed motor ac-
tivity. Additionally, artifact rejection should diminish the
effects of muscular artifacts in the analyzed signal.
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As the preceding paragraphs suggest, the complex set of
stimuli might lead to several effects that might be con-
sidered confounders in the context of the classification.
As discussed above for a selection of important candi-
dates, we aimed to either control for these or check that
they did not heavily affect the results. More importantly,
we would like to stress that real-world use cases of BCIs
most likely also implicate substantial confounders to the
main task and in the light of ecological validity of BCI
studies, these have to be dealt with in the analysis rather
than solely by restricting the experiment.

While we focus on hazardous and non-hazardous events
in the context of the paper, these labels should be
considered as representatives of semantic classes that
can easily and “intuitively” be distinguished by humans
whereas it is challenging to infer them from alternative
sensor data.

Regarding the applicability of the performed experi-
ments to real-world driving, we want to discuss two
major impediments of the current setup. First, the exper-
iments are limited to video-based stimuli in a laboratory
setting and events have been artificially introduced into
the scenes. While this has been motivated by having
repeatable experiments with material that is similar in
quality, style and salience of stimuli, there is still an
apparent mismatch with car recordings in real traffic.
Regarding the signal quality, an automotive environment
including abrupt movement is certainly a more difficult
recording environment. However, such an environment
can also be expected to create a much higher immersion
than the laboratory setting, which might also transfer
to more distinct subject reactions. Additionally, it is
reasonable to expect some generalization to a car setting
since the stimulus material is comparatively realistic
and a transfer across similar ERP-based tasks has been
shown to be feasible [13].

A second constraint of the presented analysis is the
assumption of having temporal alignments for the po-
tentially hazardous candidate events. However, in the
context of autonomous driving it is reasonable to assume
that additional sensor equipment (such as cameras or
laser scanners) are able to detect candidate events (e.g.,
the appearance of dynamic obstacles or identification of
pedestrians [1]).

Generally, we find that the combination of BCI-based
monitoring in the context of autonomous machines
promises to be especially helpful in the generation
of labels from humans with high temporal resolution.
During development of systems, this can be utilized to
directly associate training data from other modalities
with continuous human feedback, e.g., to evaluate the
compliance of the machine to the human’s requirements.
Additionally, due to the potentially subject-specific but
unbiased nature of responses, BCIs can become building
blocks for adapting complex systems to individual users,
e.g., by optimizing parameters based on the perceived
hazardousness.
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Figure 5: Classification results on different time intervals
relative to the event’s first visible video frame. Each
point represents the mean AUC over all subjects along
with a bootstrapped 68 % confidence interval. The dotted
line represents classification results on the respective
100 ms interval whereas the dashed one shows results
based on including all time preceding intervals as fea-
tures.

CONCLUSION

In order to investigate the discriminability between dif-
ferent high-level semantic events in complex environ-
ments with passive BCIs, we describe preliminary ex-
periments with five subjects on distinguishing hazardous
and non-hazardous appearances of pictograms in natural
driving videos. We find that the event-related responses
differ not only compared to baseline stimuli but also be-
tween classes. Single-event classification yields a mean
AUC of 0.79, suggesting that reasonable discrimination
is possible in the context of complex realistic baseline
stimuli.
We view these results as a step towards utilization of
BCIs as a monitoring and feedback channel of hu-
man scene understanding and assessment for improved
human-machine interaction.
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