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ABSTRACT
With growing availability of robots and rapid advances in
robot autonomy, their proximity to humans and interaction
with them continuously increases. In such interaction sce-
narios, it is often evident what a robot should do, yet unclear
how the actions should be performed. Humans in the scene
nevertheless have subjective preferences over the range of
possible robot policies. Hence, robot policy optimization
should incorporate the human’s preferences. One option to
gather online information is the decoding of the human’s
brain signals. We present ongoing work on decoding the
perceived hazardousness of situations based on brain signals
from electroencephalography (EEG). Based on experiments
with participants watching potentially hazardous traffic sit-
uations, we show that such decoding is feasible and propose
to extend the approach towards more complex environments
such as robotic assistants. Ultimately, we aim to provide a
closed-loop system for human-compliant adaptation of robot
policies based on the decoding of EEG signals.

1. INTRODUCTION
With the advent of autonomous robots in a multitude of

different environments as well as proximity and cooperation
of humans and robots, multiple aspects of robotics, such as
predictability of robotic behavior and compliance to the hu-
man’s preferences are of increasing importance. In isolated
environments, robot policies are typically optimized with
regard to technical objectives (e.g., time for trajectory exe-
cution). However, a human might have different preferences
(e.g., perceived complexity or safety).

While substantial work has been done to improve human-
robot interaction by actively demonstrating desired behav-
ior, such as socially-compliant navigation [7], it is often de-
sirable to gather human preferences in a passive way. Sev-
eral publications address inferring the user’s goal from pas-
sive observations [6, 1], yet it poses challenging to infer how
such a goal should be achieved.
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Figure 1: Schema of human-compliant robot adap-
tation based on brain signals with simple feedback.

Such desired properties of robot policies have been investi-
gated, e.g., in the areas of human-robot handovers [9] or leg-
ibility of motion for observers [2]. Perception of properties
such as hazardousness, however, differs between individuals
and contexts. Hence, in many situations, robotic systems
need to adapt their policies in an online fashion with the
human in the loop. Gathering online feedback during ex-
ecution is, however, very difficult, since asking for explicit
user input can be distracting from the main task. Therefore,
we propose to gather feedback in a passive way, using brain
signals in the form of non-invasive electroencephalography
(EEG) to extract information on the human scene percep-
tion, which can be utilized for improving robot policies (c.f.,
Figure 1).

Brain-computer interfaces (BCIs) are capable of estimat-
ing (noisy) user intentions (e.g., for device control [3, 10]) or
decoding a user’s brain state in single trial (e.g., for emer-
gency braking [5]). BCI output is graded and can deliver a
continuous stream of decoding results, which can be used for
adapting human-computer interaction, e.g., modifying task
difficulty based on detected workload [8].

In human-robot interaction, the application areas of au-
tonomous driving and robotic assistants are particularly rel-
evant due to the large number of non-expert robot users
over the coming year. In autonomous driving, functional
goals of reaching a target location leave a wide spectrum
of (subject-dependent) choices regarding preferred driving
style, e.g., speed or preferred following distance. Similarly,
optimization of robotic assistants in workplace or assistive
scenarios might face trade-offs between, e.g., minimizing ex-
ecution time of trajectories and maximizing distance to the
human user to reduce perceived hazardousness of the robot.

In the remainder of this paper, we focus on human percep-
tion of traffic scenes, e.g., as passengers in an autonomous
car. We investigate whether it is possible to distinguish haz-
ardous and non-hazardous events in traffic scenes based on
brain signals.



2. METHODS AND RESULTS
In order to gather brain responses to events with vary-

ing hazardousness, we performed experiments with eleven
subjects in a lab setting. Subjects watched realistic stim-
ulus material in the form of videos (10 frames per second)
of 48 traffic scenes from the KITTI dataset [4]. Subsec-
tions of scenes were modified with pictograms in order to
add more potentially hazardous situations. Subjects were
told they were passengers in an autonomous car and in-
structed to keep track of potentially dangerous situations
and to press a button in these situations to relay this in-
formation on hazardousness to a vehicle. The traffic scenes
contained 443 potentially hazardous candidate events such
as a pedestrian appearing on the sidewalk (non-hazardous)
or a child entering the street from an occlusion (hazardous,
c.f. Figure 2a). EEG signals were recorded at 1 kHz using
63 passive Ag/AgCl electrodes.

For the analysis of hazardousness of events, intervals of
1000 ms aligned to the first visible frame of the potential
hazard in the scene were extracted. After automatically re-
jecting intervals with artifacts (e.g., eye blinks), we trained a
classifier (linear discriminant analysis) to classify single win-
dows in single trial into hazardous and non-hazardous events
based on electrode potentials in discriminative sub-intervals.
Classifier training and evaluation have been performed in a
5-fold chronological cross-validation.

Analyzing the brain signals, we observe event-related re-
actions for both classes of events yet find them to differ
substantially between classes. For hazardous compared to
non-hazardous events, we observe for most subjects an early
negative deflection primarily at occipital electrodes and a
later positive deflection at central electrodes. Class-wise
averages over all events of two EEG channels for a sub-
ject with average classification performance are depicted in
Figure 2b. Visualizing all electrode locations for two sub-
intervals of the 1000 ms window (Figure 2c) shows that the
class-discriminative information can be observed in a large
number of channels.

Single-trial classification of events into hazardous and non-
hazardous based on the 1000 ms windows was evaluated us-
ing the area under the curve of the receiver operating charac-
teristic (AUC). The classification yielded a mean AUC over
all subjects of 0.73 with a standard deviation of 0.05.

3. DISCUSSION AND FUTURE WORK
The performed experiments suggest the feasibility to de-

code perceived hazardousness from the brain signals of hu-
man observers. Discriminative information can be observed
early, providing the opportunity to utilize this information in
online systems. The experiments were, however, performed
in a controlled environments and under the assumption that
the timing of candidate events is known.

Building on these results, we plan to next extend the work
in two directions. First, we plan to decode the perceived
scene complexity as a continuous feedback metric by the hu-
man. Such a score can be utilized to adapt behavior (such as
reducing execution speed or modifying planning cost func-
tions to minimize the perceived complexity). Second, we
aim to investigate the perceived hazardousness in the more
complex domain of robotic assistants in collaborative envi-
ronments. Here, we plan to directly associate brain response
with varying robot policies or cost functions.
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Figure 2: (a) Experimental setup. (b) Exemplary
averaged event-related response of one subject (elec-
trodes Pz, Cz), aligned to the first frame of the
event (N=70+305). Hazardous events (blue) cause
a distinct response. (c) view of all electrodes of the
same subject in intervals 200ms and 600ms after the
event, showing (top to bottom) hazardous and non-
hazardous events and the discriminability (r2) .

Utilizing the user’s brain signals, we expect to reduce un-
certainty over the user’s preferences regarding robot policies.
Having a better estimate of the preferred behavior, we plan
to incorporate this into the policy optimization for adaptive
human-compliant policies. Ultimately, we envision brain
state decoding as a non-intrusive online feedback channel
which can provide a teaching signal as well as an evaluation
measure for the quality of human-robot interaction.
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