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Abstract— Interpreting the brain activity to identify user
goals or to ground a robot’s hypotheses about them is a promis-
ing direction for non-intrusive and intuitive communication.
Such a capability can be of particular relevance in the context
of human-robot cooperation scenarios. This paper proposes
a novel approach to utilize the natural brain responses to
highlighted objects in the scene for object selection. By this, it
circumvents the need for additional interfaces or user training.
Our approach uses methods from information geometry to
classify the target/non-target response of these event-related
potentials. Online experiments carried out with a real robot
demonstrate an accurate detection of target objects solely based
on the user’s attention.

I. INTRODUCTION

When assisting and interacting with humans, it is benefi-
cial if robots can infer the user’s intent and comply with
it. While in certain situations user goals can be inferred
well from context or preferences, users sometimes need the
possibility to give explicit commands or to choose from a
set of potential goals. One example is the selection of an
object from a scene that a robotic assistant should fetch
and deliver. Here, the human could use different modalities
to select objects, ranging from screen-based interfaces over
speech and gaze control to brain-computer interfaces (BCIs).
Specifically for impaired users that have problems to reliably
exert control over muscular pathways, BCI systems offer an
additional control channel to interact with the environment.

In this paper, we address the problem of selecting objects
using a non-invasive BCI. In our setting, a robot triggers the
(passive) human brain response upon highlighting different
objects in the scene by decoding the corresponding brain
responses from the electroencephalography (EEG).

We leverage the ability of robots to interact with the
environment for direct object selection, avoiding the use of
an additional interface. This promises to reduce the user’s
workload. Additionally, using the spatial position of objects
avoids the need to disambiguate between visually similar
objects and the reference resolution needed in speech-based
approaches. While gaze-based interfaces follow a similar ap-
proach, they suffer from the problem of having to distinguish
“aimless” gaze from gazing at a target object purposefully
in order to select it.

To avoid these problems, we propose to select target
objects by having the robot gesture towards objects. We
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Fig. 1. Selection of objects by attending them: The user attends to a target
object (1). The robot probes for the target object by highlighting candidate
objects in the scene (2). Based on the difference of the evoked response for
target and non-target objects in the brain signals recorded using EEG, the
robot infers the target object (3).

implement this by highlighting an object with a laser pointer.
This only occupies a small portion of the subject’s field-of-
view while still leveraging the user’s attention.

In the following, we present the details of an interface-
free BCI-based approach to object selection. In summary,
we make the following contributions in this work: (1) an
EEG-based framework that lets the user select scene objects
by attending them, including a non-intrusive highlighting
strategy to evoke a brain response in the user without
requiring an additional interface; (2) an online processing
and classification pipeline based on information geometry
that effectively discriminates between target and non-target
responses; and (3) experimental results with six untrained
users and a real robot in which target objects are successfully
inferred in 93 % of online trials.

II. RELATED WORK

As an elementary part of human-robot interaction, a wide
range of approaches to target object selection have been pro-
posed. [1]. In this section, we focus on selection mechanism
using BCIs and their applications in robotics.

In order to extract information from a user’s brain signal,
literature on BCI suggests different well-suited experimen-
tal paradigms. Besides utilizing self-driven imagery tasks
(e.g., the imagination or attempted execution of different
movement classes), many BCI setups exploit external stimuli.
Visual, auditory or somatosensory stimuli presented to a
human subject elicit a transient potential in the brain signals



of the observer and can be observed in the EEG. Interest-
ingly, attention modulates the average timing characteristics,
amplitudes and the spatial location characteristics of these
so-called event-related potentials (ERP).

Despite the high noise level in typical brain signal record-
ings, BCI systems are capable of analyzing the ongoing brain
signals by classifying ERP responses evoked by attended
target stimuli from those of ignored non-target stimuli. State-
of-the-art approaches make use of shrinkage-regularized
Linear Discriminant Analysis (LDA) classification models
which are trained to distinguish target- from non-target ERP
responses [2].

Recently, alternative approaches for ERP classification
in BCI have been proposed by Barachant et al. Instead
of using EEG potentials for classification, they propose to
represent each EEG epoch as a covariance matrix and realize
the classification in the space of covariance matrices using
information geometry to measure distances between these
matrices [3], [4].

BCI applications based on ERP paradigms can allow
motor-impaired users to choose between multiple options,
each represented by a specific stimulus. To make a choice,
users focus their attention for example on one out of several
symbols on a computer screen while all symbols are visually
highlighted multiple times in a rapid stimulation sequence.
A single selection process, which we call a trial, typically
involves multiple repetitions of all symbol highlightings. By
analyzing an increasing number of segments of EEG activity
(epochs), the BCI collects evidence for the target symbol
over the course of the trial. ERP-based BCI systems have
been successfully used for, e.g., text spelling [5], media
applications [6] and gaming [7]. Using such systems is
straightforward for software applications that can be realized
by symbols on a computer screen. If the device to be
controlled, however, is physical (e.g., a wheelchair), the cog-
nitive workload for the user induced by switching between
the device and its control via a screen can be substantial.

Several publications in recent years have presented appli-
cations of BCIs in robotics. While invasive measurements
using intracortical arrays enable direct control of robots [8],
the challenging signal-to-noise ratio in non-invasive BCIs
suggest the use of a small number of high-level commands or
nested decision interfaces. Using a traditional screen-based
control interface, BCI spellers have been adapted for action
selection in a wheelchair setting [9]. Other applications such
as grasp selection involve the use of a screen interface show-
ing potential commands in rapid succession [10]. Movement
intention has also been used to decode the user target for a
robotic arm in a simulated environment [11].

Mental tasks (such as hand movement, foot movement or
mental rotation) are an alternative command strategy. In an
integrated setup with a mobile manipulation robot, Burget
and colleagues decoded user commands in response to a
screen-based interface [12], for which mental imagery is
used. The number of decodable mental tasks is limited and
strongly varies between users, which is important in prac-
tical application. Additionally, the mental task is typically
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Fig. 2. Course of one experiment trial (in which the target object remains
constant): Objects are highlighted every 0.50 s over a period of 3 s (bottom
row). This is performed for every candidate object (center row). In order to
improve object identification and reduce the influence of artifactual epochs,
these so-called repetitions are performed multiple times (top row).

unrelated to the actual user goal (e.g., selecting a cup or a
plate), and hence can be less intuitive and result in a higher
user workload than the proposed attention-based interface.

III. BCI-BASED APPROACH TO TARGET SELECTION

Identifying the user’s target object in a scene using an
ERP-based BCI requires three main components: First, a
decodable brain response must be elicited by appropriate
stimuli in an experimental paradigm. The corresponding
responses must be classified on an individual level, i.e.,
into target and non-target classes, and subsequently these
individual noisy estimates have to be aggregated to be useful
in the actual task, in our case object selection.

A. Object Highlighting to Elicit Visual Evoked Potentials

In pursuit of identifying the user’s target object, we
highlight relevant candidate objects in order to evoke an
event-related response. Highlighting is performed using a
laser pointer, which allows for both an accurate marking of
the object (also outside of the robotic arm’s workspace) and
for a reduced ambiguity compared to, e.g., pointing with
the robotic hand’s finger. In addition, this way of proposing
objects allows to deliver the stimuli with a precise timing
which eases the analysis of the user’s brain signals.

As depicted in Fig. 2, we illuminate each object mul-
tiple times per trial. While most experimental paradigms
for ERPs realize a pseudo-random sequence of target-/non-
target stimuli, this would be impractical in our scenario,
as a switch between objects after each single highlighting
event incurs the cost of having to move the robotic arm.
Delivering all highlighting stimuli for an object consecutively
would minimize the movements of the arm at the cost of
high interdependence between observed EEG epochs. As a
compromise, we chose to highlight each object consecutively
for six times over a period of 3 s before switching to the next
object, and repeat this for every object nrep times.

B. Decoding Target Responses from EEG recordings

Due to the large inter-subject variability in brain signals
recorded with EEG, we perform a subject-specific calibration



phase, in which labeled data is gathered for classifier training.
Following novel approaches by Barachant and colleagues
[13], [4], we utilize the covariance structure provided by
each single EEG epoch for classification. Note that epoch-
wise covariance matrices are more noisy than class-wise
covariance matrices that are the basis for state-of-the-art ERP
classification with LDA [2].

1) Data Representation: We segment the EEG recording
into epochs Xi ∈ Rnc×ns of fixed lengths that are time-
aligned to each object illumination, where nc is the number
of channels and ns the number of time samples in each
epoch. Since the temporal structure of each time course
is critical for the classification of event-related potentials,
we augment each epoch with template prototype signals
P+, P− of the class-specific responses (target and non-target
responses in our case).

X̃i =

P+

P−

Xi

 (1)

Class-wise means of all recorded channels on the training
data would be an obvious choice for the template. However,
this would triple the size of each epoch and would therefore
result in a nine-fold increase in the entries of the covari-
ance matrix. Hence, we resort to dimensionality reduction
techniques for projecting the class-wise response to lower-
dimensional time series. In this work, we use the xDAWN
algorithm [14] to select three surrogate channels per class
(i.e., P+, P− ∈ R3×ns ). We denote the number of rows
in X̃i with n′c. Since the estimation of such projections in
xDAWN requires access to class labels, we estimate them
on the training data. Note that unsupervised dimensionality
reduction methods are also possible. For each epoch i,
we calculate the regularized covariance Ci of X̃i with an
analytically determined shrinkage (Ledoit-Wolf).

2) Riemannian tangent space transformation: Since the
Euclidean distance in the space of covariances has unde-
sirable properties [15], yet common classifiers expect an
Euclidean feature space, we utilize that covariance matrices
are members of the space of symmetric positive-definite
(SPD) matrices Pn = {X ∈ Rn×n | X = XT , X � 0}. We
project each epoch covariance into the tangent space of the
manifold of SPD matrices at a reference point Cref. Following
[3], we do this using a logarithmic mapping:

S̃i = logm
(
C
−1/2
ref CiC

−1/2
ref

)
(2)

Here, logm corresponds to the logarithm of a diagonalizable
matrix (i.e., the logarithm of each element of the diagonal
after the corresponding decomposition is taken).

Let ‖ · ‖F denote the Frobenius norm. In order for the
Euclidean distance in the tangent space to approximate the
geodesic distance between two SPD matrices δR(C1, C2) =
‖ log

(
C−11 C2

)
‖F , the covariances Ci to be projected should

be distributed closely around the reference point Cref in
Equation 2. Following [13], we choose the Frechét mean
(also known as geometric mean) of the covariance matrices

in the training data for this purpose:

Cref ∈ arg min
C∈Pn′

c

∑
1≤i≤ntrain

δ2R (C,Ci) (3)

Having transformed each augmented epoch X̃i into the
tangent space representation S̃i ∈ Rn′

c×n
′
c , we keep only

the upper triangular part (multiplied by
√

2 for all off-
diagonal elements) and vectorize it, yielding a (n′c)(n

′
c +

1)/2-dimensional feature vector s̃i.
3) Discriminating between Target and Non-Target Re-

sponses: In order to distinguish for an epoch i whether it
is a response to a target or non-target stimulus, we train a
Logistic Regression classifier with L2 penalty based on the
vectorized versions of S̃i. Thus we get an approximation
P (is target | s̃i) = σ(wT s̃i) of the likelihood of epoch i
being a response to a target object. We denote the results of
this classifier with TCOV in the following section.

We compare our results against a best practice approach
from [2] that uses mean voltages in nint intervals of 50 ms
lengths at all channels as features, thus leading to nc · nint-
dimensional feature vectors. Discrimination between target
and non-target epochs is performed using LDA for which
the covariance matrices are regularized with an analytically
determined shrinkage. We denote this approach with IVAL
in the results.

C. Aggregating Stimulus Responses to Select Target Objects

For each trial k, we obtain 6 · nobj · nrep epochs that are
aligned to the highlighting stimuli (c.f., Fig. 2). We denote
the indices of all epochs of trial k in which object oj was
highlighted with Ik,j .

Under the simplifying assumption that epochs, i.e. high-
lighting responses, are independent of each other, we predict
j∗ as the user target such that

j∗ ∈ arg max
j

∏
i∈Ik,j

P (is target | s̃i) (4)

where the latter probability that an epoch corresponds to a
target stimulus is estimated by the binary classifier.

IV. EXPERIMENTS

A. Setup and Data Collection

We report results from six healthy subjects, who each
participated in a single session of an online experiment. Fol-
lowing the declaration of Helsinki, we received approval by
the local ethics committee for this study and obtained written
informed consent from participants prior to the session.

We seated the subjects approximately 1.20 m in front
of a table with objects. Using a focused laser beam, the
visually highlighted sections on the objects covered only
small fractions of the subject’s field of view. We instructed
the subjects to put themselves in the condition of a user of an
assistive robotic arm and that they could decide which object
the robot should fetch by attending the object. In order to
support the performance evaluation, we determined the target
object according to the experimental protocol and gave it as
a cue to the subject prior to the start of every trial.



For the experiments, we assumed identical prior probabili-
ties for all objects. With each subject, we performed 48 trials
with four objects on the table. Note that objects do not have
to be modified and that we include visually identical objects
(c.f., Fig. 1). For subjects S5 and S6, twelve additional trials
were performed with seven objects to check how well the
approach can generalize to a different object count.

Experiments were performed with a Kuka iiwa robotic
arm with seven degrees of freedom. It is however applicable
to any robotic arm that can accurately reach a position to
highlight a desired object. The laser pointer was mounted
next to the end effector. It was activated by an Arduino
microcontroller which also sent time markers to the EEG
recording hardware to mark the start of each laser illumina-
tion. These markers allowed to segment the EEG data into
epochs during online and offline analyses.

Every object was highlighted from an object-specific end
effector pose which was determined as a trade-off between
maximizing the visibility by the participant and minimizing
the robot’s trajectories lengths for switching between poses.
An example of an experimental trial can be found in the
accompanying video.

The course of an experimental session is depicted in Fig. 2.
For the online experiment, we chose nrep = 3 and ntrain =
9 training trials. We also report results for varying theses
parameters using “simulated online” processing, for which
the only difference is that pre-recorded EEG signals are used.
For a whole session consisting of 48 trials, we recorded 2,592
non-target and 864 target responses. The robotic arm took
on average 0.71± 0.15 s to switch between the highlighting
poses. In addition, we added 0.10 s of waiting time before
and after each robot move to reduce the influence of the
sound of the robot’s servo motors upon the adjacent epochs.

We acquired the brain signals using a cap holding 32
Ag/AgCl gel-based passive EEG electrodes positioned ac-
cording to the extended 10-20 system with a nose reference.
Channel impedances were kept below 20 kΩ. The amplifier
sampled the EEG signals at 1 kHz. For online analysis, we
used only a subset of channels known to be discriminative
for visual ERP responses (channels T7, Cz, T8, P7, P3, Pz,
P4, P8, O1, O2).

We streamed the raw EEG signals via a local network to
the control computer running ROS. For parts of the EEG
analysis, we utilized the MNE-Python [16] and pyRiemann
[4] software packages. We filtered data to a band of 0.50 Hz
to 16 Hz using a FIR filter before downsampling to 100 Hz.
We extracted epochs from −0.20 s to 1.00 s relative to the
stimulation onset leading to ns = 121 samples per epoch
and subsequently corrected them separately for signal drifts
using the first 0.20 s as a baseline. To ensure observations for
each object, no rejection was performed in the online setup.
For the visualizations in Fig 3, we rejected epochs in which
the peak-to-peak amplitude exceeded 100 µV. We performed
the “simulated online” experiments for the baseline condi-
tion (IVAL) with identical processing (e.g., the same causal
filtering).
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Fig. 3. Grand average mean responses to target (red) and non-target (blue)
stimuli for all six subjects recorded at electrode Cz (location depicted in
the bottom right of the plot). Dashed lines mark the onsets of two object
highlighting events. Shaded blue and red areas mark the corresponding 95th
percentile range determined by a bootstrap test.

B. Results

After validating the brain response elicited by the object
highlighting, we evaluate our proposed attention-based object
selection both regarding the classification performance on
individual epochs as well as the correct decision after a trial.

1) Electrophysiology of Response: While online data
analysis was performed on single epochs, we conducted an
offline analysis of the collected data to visualize the event-
related responses. The grand averages of target and non-
target responses over all subjects are depicted in Fig. 3. Laser
illumination of an attended target object resulted in a more
negative deflection at the channel Cz approximately 180 ms
after the stimulus onset compared to responses evoked by
non-target stimuli. In addition, attended target stimuli evoke
a stronger positive deflection in the period of 200 ms to
350 ms after stimulus onset, commonly referred to as the
P300 component.

2) Target Decoding Performance: We evaluate the classi-
fication performance for single epochs into targets and non-
targets using the area under the receiver-operating character-
istic (AUC). Training and test data is split chronologically to
avoid training on closely correlated training samples. After
training on data collected during a calibration period of 9
trials (see training errors listed in Table I), the proposed
classification using Riemannian geometry (TCOV) achieves
a mean AUC value of 0.80 during the online session.
This outperformed the classification based on interval means
which achieves a mean AUC of 0.72.

Overall it would be desirable, if the system can be set
up using a minimum amount of data for training and online
decisions. By discarding complete stimulus repetitions from
the data and by changing the number of trials used for
classifier training, we can investigate the influence of these
parameters on system performance. Since epochs from each
repetition are separated in time, we assume that the brain
response is not altered due to changing nrep.

The top row of Fig. 4 depicts the improvements in
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Fig. 4. Decoding quality of single epochs (target/non-target) (top row) and
object selection accuracy (bottom row) for varying training sizes (columns)
and repetitions (x-axis values). Results for ntrain = 9 can be found in Table I.
Trial selection accuracy is reported for no = 4 objects. The point estimates
correspond to the mean over 6 subjects, with the error bars corresponding to
a bootstrapped 95% confidence interval. The dotted horizontal lines depict
the theoretical chance level.

target/non-target classification performance which can be
achieved with varying amounts of training data. While the
difference is smaller in the regime with few training data,
the classification of augmented covariance matrices (TCOV)
outperforms the IVAL approach consistently. Note that the
change in AUC value with varying repetitions is due to
differing amounts of training data, since we fixed the number
of training trials, but not of repetitions.

In order to get an estimate of the performance in a
regime with larger amounts of calibration data, as would
be expected for a real user, we list the performance on a
5-fold chronological cross-validation (CV) in Table I. One
can note that the online performance that we report is still
limited by the amount of calibration data and not the inherent
noise in the EEG signal. With increasing amounts of training
data, AUC values improve by approximately 10 %, to a mean
value of 0.84 for the cross-validation in the TCOV case.

3) Object Selection Performance: Moving from the
stimulus-specific binary classification to the object-selection
task, we evaluate the selection accuracy, i.e., the fraction
of trials in which the target object was predicted correctly.
In the online experiments, where subjects performed 39 test
trials with four objects each, the target object was correctly
identified in 93 % of trials, with two out of six subjects
having each object selection correct (c.f., Table I). The
prediction using TCOV performed significantly better than
IVAL for each subject (Wilcoxon signed-rank test, p < 0.05).

Identification of target objects obviously depends on the
quality of the underlying target classification and therefore
varies with the amount of training data (c.f., Fig. 4). How-
ever, the number of repetitions nrep, i.e., the amount of
evidence collected for each object, is critical for performance

as well. For all three calibration phase lengths, the selection
performance improves substantially with each additional
repetition. While only three repetitions were performed in
the reported experiments, pilot measurements with four
repetitions showed only minor additional improvements in
selection accuracy for the fourth repetition. In the additional
trials with seven objects, which we performed with subject
S5 and S6, the robot selected the correct object in 70 % of
trials, with an expected drop in performance due to the larger
amount of candidate objects without an increase of evidence
for the target.

V. DISCUSSION

The online experiments show that target objects can reli-
ably be identified based on the brain response to the object
highlighting in the scene. The proposed new BCI interaction
scenario has a number of advantages compared to object
selection using other modalities: First, the control mode is
intuitive and does not require any user training.

Second, it does not create additional workload as the
objects are probed directly. With the presented approach,
selecting an object neither requires the user to map a com-
mand to a differing target action nor unnecessary cognitive
effort as the user can continuously keep his attention on
the scene. In questionnaires answered after the experiment
session, users rated the task as being easy and stated that they
felt relaxed. Screen-based interfaces on the other hand can
create a cognitive mismatch between the physical object’s
location and the spatially separated screen, and visually
similar objects could be mixed up. Selecting objects by
speech commands would require reference resolution and
natural language understanding.

Third, compared to object selection via an additional
screen or compared to speech commands, the selection of
an object with this BCI is non-intrusive with respect to
other tasks. Considering users that have remaining physical
capabilities, instructing the robot will rarely be their main
task but rather a secondary aspect of some primary task.
Imagining a household robot serving food or a robot assisting
a surgeon, an important aspect of interaction is how intuitive
and non-intrusive the instruction is. Language commands can
be intrusive in social situations, while using a laser-based
selection the user could even be engaged in another task.

Using a BCI, however, requires the user to wear an EEG
cap. Its setup—at least for current gel-based systems—is
time-consuming and will probably only be accepted if it
offers a clear advantage for the user. This advantage will
depend on the context of human-robot interaction scenarios
and is more obvious for patient users than for healthy users.

Priors on the expected target objects can easily be in-
tegrated into our approach, so that the selection can be
viewed as a grounding of the robots’ hypotheses of the
user’s intent. If we would require a minimal threshold for
the predicted target probability of decoded object j∗, the
user would also have the option to not attend any object. In
an assistive scenario, a robot could thus probe the user to
infer if assistance is required at all.



TABLE I
PERFORMANCE OF INDIVIDUAL SUBJECTS USING THE IVAL AND TCOV DECODING METHODS

5-fold CV Online (9 training trials)
target AUC target AUC selection accuracy

IVAL TCOV IVAL TCOV IVAL TCOV
subject

S1 0.77 0.81 0.68 0.72 0.72 0.9
S2 0.71 0.75 0.63 0.68 0.72 0.82
S3 0.79 0.84 0.66 0.78 0.79 1
S4 0.79 0.9 0.67 0.82 0.79 0.92
S5 0.86 0.89 0.76 0.83 0.92 1
S6 0.77 0.83 0.73 0.78 0.85 0.95
mean ± std 0.78 ± 0.05 0.84 ± 0.05 0.69 ± 0.05 0.77 ± 0.06 0.8 ± 0.08 0.93 ± 0.07

Considering the duration of an object selection, it should
be noted that our protocol parameters (choice of training
trials and repetitions) has been rather conservative and
depending on the desired performance the corresponding
numbers could be reduced (c.f., Fig. 4). While we chose
a fixed number of repetitions per subject and trial for
meaningful comparison of results, an adaptive choice of
repetitions in each trial based on the confidence in the pre-
dicted target (dynamic stopping) would substantially speed
up the selection process [17]. Additionally, detection of error-
related potentials after the robot communicates the predicted
target object to the user [18] could be exploited to correct
potentially erroneous decisions.

VI. CONCLUSION

We present a novel approach to interface-free object
selection based on brain signals. The robot elicits event-
related responses in the user’s brain signal by highlighting
objects in the scene using a laser pointer. This novel inter-
action paradigm does not require user training and avoids
unnecessary context switches. Classifying the visual evoked
responses from the ongoing brain signals using covariance-
based features, a correct target identification of objects was
achieved in 93 % of all cases in our online experiments. For
future work it would be interesting to include an adaptive
choice of object highlighting based on response discrim-
inability as well as reducing the need for user calibration.
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