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Abstract— Attention-based brain-computer interface (BCI)
paradigms offer a way to exert control, but also to provide in-
sight into a user’s perception and judgment of the environment.
For a sufficient classification performance, user engagement and
motivation are critical aspects. Consequently, many paradigms
require the user to perform an auxiliary task, such as mentally
counting subsets of stimuli or pressing a button when encoun-
tering them. In this work, we compare two user tasks, mental
counting and button-presses, in a hazard detection paradigm in
driving videos. We find that binary classification performance
of events based on the electroencephalogram as well as user
preference are higher for button presses. Amplitudes of evoked
responses are higher for the counting task—an observation
which holds even after projecting out motor-related potentials
during the data preprocessing. Our results indicate that the
choice of button-presses can be a preferable choice in such BCIs
based on prediction performance as well as user preference.

I. INTRODUCTION

Brain-computer interfaces (BCIs) are characterized by the
experimental paradigm that is utilized to elicit discriminative
brain signals. Yet for some paradigms—especially complex
stimuli—it is not well established which exact task a user
should perform in order to optimize the usability of the BCI
or to allow for studying a targeted neuroscientific research
question.

In a visually simple detection task, Wentzel and colleagues
reported that mental counting outperformed mental arith-
metic and memorization in terms of classification accuracy
obtained for BCI [1]. In the context of motor tasks in BCIs,
the task spectrum reaches from overt motor execution on
the one end over attempted motor execution (in paralyzed
patients) to motor imagery at the other end. In this context,
Nikulin and colleagues [2] have proposed an interesting
and efficient quasi-movement task for experimenting with
healthy users. In attention-based BCI paradigms, the user
tasks reported in literature range from the sole observation
of stimuli over mentally counting of stimulus subclasses to
explicit motor responses upon events, such as button presses,
pressing a foot pedal [3], or a combination thereof [4]. For a
movement-related visually evoked potential paradigm, Guo

All authors are with the Department of Computer Science, University
of Freiburg, Germany. H.K., W.B. and M.T. are with the Autonomous
Intelligent Systems group and H.K. and M.T. are also with the Brain State
Decoding Lab. This work was (partly) supported by BrainLinks-BrainTools,
Cluster of Excellence funded by the German Research Foundation (DFG,
grant number EXC 1086). Additional support was received from the German
Research Foundation through grant INST 39/963-1 FUGG and from the
Ministry of Science, Research and the Arts of Baden-Württemberg for
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Fig. 1. Overview of experiment: Subjects watched driving videos aug-
mented with potentially hazardous pictograms while performing a task:
mentally counting hazards or pressing a button after each hazard. Tasks
alternated between experiment blocks.

and colleagues have reported that mental counting evokes
stronger responses than gazing [5] .

Given the choice of a user task when designing an
attention-based experimental paradigm, multiple criteria in-
fluence a task’s suitability: First, it should be feasible and
well-accepted by the user. Second, it should not distract the
user from the actual primary task (attention to the stimuli) in
order to elicit the desired brain signals. Third, the task should
allow for a sufficient classification performance to be useful
with respect to the BCI’s objective. Additionally, the task
should not introduce an unnecessary amount of artifacts or
confounding brain activity detrimental to the use case (e.g.,
in rehabilitation paradigms). Naturally, these criteria are not
independent of each other. For example, a more engaging
user task will likely also contribute to a good classification
performance, but may at some point entail a higher rate of
muscular or ocular artifacts.

In this paper, we present a pilot study in which we
compare mental counting and button presses as user tasks
in a paradigm for hazard detection in driving videos [6].
The paradigm is characterized by its naturalistic stimulus
material, which we use to learn about the user’s perception of
the environment. The two user tasks investigated here, mental
counting and pressing a button upon hazard perception, are
representative for a common trade-off encountered during ex-
periment design: While mental counting is known to perform
well, it is usually only loosely related to the application and
therefore hard to motivate from a user’s perspective. Button
presses can be seen as a simpler alternative that can be easier
to incorporate and motivate (e.g., performing an emergency
stop). However, the resulting motor activity can potentially
create confounders for the later analysis.
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Fig. 2. Responses to hazardous and non-hazardous stimuli at electrode Pz for both the button-press and the counting task. The stimulus appears at time
0 s. The thin lines represent the class-wise average for each of the subject and the thick lines the grand average over all five subjects.

In the remainder of this paper, we evaluate and compare
the two user tasks with regard to the user’s preferences, the
evoked event-related potentials (ERPs) and the classification
performance both on the same task as well on the comple-
mentary one. We show how a reduction of the confounding
motor activity by projecting out corresponding motor-related
components of the recorded data can reduce the influence
of confounders in the button press condition and improve
classification performance. Additionally, we discuss these
results in the context of choosing an adequate user task when
designing a BCI paradigm.

II. METHODS

A. Paradigm and Experimental Data

We recorded the electroencephalogram (EEG) from six
healthy subjects, who each participated in a single exper-
iment session. Following the declaration of Helsinki, we
received approval by the local ethics committee for this study
and obtained written informed consent from participants
prior to the session. Subjects were seated approximately
80 cm in front of a screen, on which they were shown videos
of natural driving environments based on the KITTI dataset
[7]. In order to create (potentially) hazardous situations,
videos were augmented with pictograms (e.g., pedestrians or
playing children). More details on the used stimulus material
can be found in [6].

Each session consisted of 20 blocks. Every block encom-
passed 12 videos with a duration of 20 s each that were
separated by a short break. A single video contained between
0 and 8 occurrences of different pictograms, which we will
subsequently call events. Events were labeled as either non-
hazardous (e.g., a pedestrian walking on the sidewalk) or
hazardous (e.g., a pedestrian crossing the street in front of
the virtual car). Hence, the context rather than the identity of
the stimulus determines the class label. A session consisted
of 871 events out of which 19.40 % were hazardous.

Prior to experiment start, subjects were instructed that they
should assume being a passenger in an autonomous vehicle.
Depending on the experiment block, they had to execute one
out of two tasks: button-press or counting. In the button-press
task, subjects were told to press a button, which was placed
in their right hand, once they (subjectively) considered a

situation to be hazardous. In the counting task, they were told
to silently count the number of hazards they observed while
avoiding any movement. During a short pause after each
video, subjects reported their counts to the experimenter.
Blocks were assigned to tasks in an alternating fashion.

We acquired the brain signals using a cap holding 63
Ag/AgCl gel-based passive EEG electrodes positioned ac-
cording to the extended 10-20 system with a nose reference.
Channel impedances were kept below 20 kΩ. The amplifier
sampled the EEG signals at 1 kHz.

B. Data Analysis

Analysis was performed separately for each subject in
an offline manner. Initially, the EEG data was filtered to
a frequency band of 0.50 Hz to 16 Hz using a FIR filter.
In order to investigate the influence of motor activity, we
perform the subsequent analysis steps in two preprocessing
settings. In the raw setting, filtered data is directly segmented
into event epochs as described below. In the redu-motor
setting, we first reduced motor-related activity by projecting
out corresponding spatial components from the data. For this,
we selected data segments from −0.70 s to 0.50 s relative to
each button press in the session and baselined these segments
based on the first 0.20 s. We extracted a full set of spatial
filters using xDAWN [8], a supervised algorithm that is
trained to increase contrast between the extracted motor-
related segments and “background” segments extracted from
all video portions of the recording.

Components revealing strong motor activity were pro-
jected out: We removed data corresponding to the motor
components by setting the corresponding surrogate channels
(as extracted by xDAWN) to be constant. For this study, we
manually selected a single component per subject out of the
six components with highest eigenvalues. Note that the data
now has a reduced rank, which we counter in the following
data processing by regularization as described below.

Subsequently, the continuous recording was segmented
into a single epoch per event. Each epoch consists of the
data from −0.20 s to 1 s relative to the onset of the stimulus
(i.e., the first video frame in which a pictogram appears).
Note that not all of the stimuli may have been fully visible
in the first frame (e.g., when a person (re)appears from an
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Fig. 3. User rating regarding the preferred task in a post-session question-
naire. Markers correspond to the rating of individual users.

occlusion). Epochs were labeled hazardous or non-hazardous
based on the context of the event. While we did not use
button presses to label events, for the behavioral analysis
we considered them to be in response to an event if they
are within 0.20 s to 1.20 s of the event onset. Epochs were
corrected for signal drifts with respect to the first 0.20 s
after event onset. We rejected epochs in which the peak-
to-peak amplitude exceeded 70 µV in any channel. Data of
one subject was excluded due to extremely high noise (more
than 50 % of epochs had to be rejected).

For the classification of epochs into hazard and non-
hazard, we used a covariance-based feature representation
[9], [10]. On the training data, we extracted three xDAWN
filters [8] for each class. Epoch data was projected using
these filters. We augmented epochs with prototype responses
(based on the xDAWN-filtered class-means in the training
data) before calculating the covariance matrix of each epoch.
For this, we used a Ledoit-Wolf regularization. These regu-
larized covariances were projected into the Riemannian tan-
gent space at the mean of the training data and subsequently
classified using Logistic Regression. For details, see [11].

For the complete data as well as the within-task evaluation,
we performed a 5-fold chronological cross-validation to esti-
mate classification performances. For between-task transfer,
classifiers were trained similarly on 80 % of the data of one
task and were evaluated on 20 % of the data of the other task
(repeated five times) in order to achieve comparable training
data sizes to the within-class setting. In the following, we
report results using the area under the receiver-operating
characteristic curve (AUC).

III. RESULTS

A. Behavioral Response

As subjects had been instructed to attend to events that
they perceived as hazardous, the number of button presses
as well as the reported hazard counts varied substantially
between subjects (222 ± 68 button presses and 230 ± 58
counts). However, within subjects the numbers were con-
sistent between tasks (Pearson correlation of 0.98 between
number of button presses and hazard counts). The button
presses had a mean latency of 0.65 s relative to the events.

A post-session questionnaire revealed that users on av-
erage preferred the button-press task over the counting task
(see Fig. 3). As reasons they primarily mentioned that button
presses are “easier” (three subjects) and more “interactive”
(two subjects). The single subject who preferred the counting
task similarly claimed that the button-press was easier, but
reported to be more concentrated due to the higher workload
setting of counting.
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Fig. 4. Spatial distribution of difference in response to hazard stimuli
(average activity of button task is subtracted from the one in the counting
task). Each subplot shows the mean potential within a 100ms window
centered at the given time after event onset.
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Fig. 5. Decoding quality (AUC) of single epochs (hazard/non-hazard). Col-
ors denote the reduction of motor influence after removal of corresponding
components (redu-motor) and the original data (raw). Left: Results from a
cross-validation within the same task (“all” corresponds to pooling the data
of both conditions) . Right: Generalization across tasks (trained on one task
and evaluated on the other). Each marker corresponds to the classification
results of one subject in one data setting.

B. Electrophysiology of Responses

As depicted in Fig. 2, we observed ERPs for both haz-
ardous and non-hazardous events and under both user tasks.
Hazardous events generally showed a stronger positive de-
flection between approximately 350 ms and 750 ms relative
to the appearance of the stimulus. Comparing the two tasks,
the latencies of ERPs are similar, whereas the amplitudes
differ. As shown in Fig. 4, the potential in the counting
task is higher at central electrodes from 0.40 s to 0.80 s after
event onset. Neither the waveform characteristics (Fig. 2) nor
the spatial distribution of the grand average ERP response
(Fig. 4) for each task are affected by removing motor
components in the redu-motor setting.

C. Hazard Decoding Performance

Pooling all data of both tasks in the raw condition, we
achieved an AUC of 0.76 via a cross-validation as indicated
by the leftmost yellow marker in the left subplot of Fig. 5.
A comparison of decoding accuracies of the two single tasks
reveals a loss of performance compared to the pooled data,
but a higher classification performance in the button task
(0.75 compared to 0.73 in the counting task). The scatter
plot in the right subplot provides the individual performance
values which can be achieved by transferring classifiers
between tasks (i.e., training on the data corresponding to one
task and evaluating on the other). The transfer for classifiers
trained on counting and evaluated on button (mean AUC
of 0.70) resulted in higher performances compared to the
transfer in the opposite direction (mean AUC of 0.68).

Projecting out motor-related xDAWN components from
data in the redu-motor setting (green markers) improved
classification performance in each of the subjects and tasks.
As expected, the AUC for the button task improved strongest
by this removal from 0.75 to 0.78. Interestingly, we also



observed a small improvement in the counting task (0.73 to
0.74) after removing motor components. The improvements
could also be observed for the cross-task transfer scenarios
(green markers in right subplot of Fig. 5). The transfer from
counting to button still outperformed the transfer from button
to counting with regard to AUC (0.71 to 0.69), yet the
transfer performance did not match the performance of a
classifier trained on the same task.

IV. DISCUSSION

In order to reduce the risk of confounders during the
analysis of brain signals, motor tasks that are not mandated
by the primary use case are often avoided in experimental
paradigms of BCIs. In this paper, we find—in an attention-
based visual hazard detection paradigm—that they are not
necessarily detrimental to the analysis of evoked responses
nor classification performance. Since the motor activity
caused by button presses is not precisely time-locked to the
onset of the visual event, we observe similar ERPs in the
grand average in Fig. 2.

Similarly, the classification of hazards in the button-press
task works well, with performance superior to performance
during mental counting when each is evaluated within the
respective task. However, the transfer to the other task works
better for mental counting. At first glance, this might lead to
the interpretation that the motor activity is a confounder that
solely due to correlation with event classes can improve the
classification performance (and, conversely, the lack thereof
diminishes performance on the counting task). However,
in the redu-motor setting we observe that projecting out
components strongly tied to motor activity actually improves
performance of the button-trained classifier on both tasks.
Instead, the signals in the button-press portion of the data
appear to be easier to discriminate into hazards and non-
hazards. Due to the similar stimulus material as well as
interleaved design, the higher user engagement would be
a plausible explanation for this effect (i.e., training on the
counting data does not necessarily generalize “better”, but
test data in this transfer direction is easier).

When projecting out motor-related components (redu-
motor setting), performance of the classifiers trained on
button-press data improved, providing a practical approach
for reducing undesired effects on an individual epoch level.
Observing both tasks within the same session, we could also
apply the redu-motor setting to the counting task. Interest-
ingly, we also see (smaller) gains in performance in this task
(in which no button presses occurred). Possible explanations
for this include (i) that components may capture not only
motor activity, but also other confounders and (ii) that due
to the interleaved design, subjects might be tempted to press
the button even in counting tasks, leading to brain activity
that can be captured by the button-trained components.

Overall, both mental counting and button-press tasks are
feasible, evoked similar average responses, kept the user
focused and allowed a classification into hazardous and
non-hazardous events (albeit with performance differences
between tasks). This leads to the question which task to

choose when designing an experiment. The button-press task
performs better than counting and is preferred by users,
hence might be the clear choice when optimizing for classi-
fication performance. However, classification of the response
to visual stimuli might also include motor performance.
Projecting out components in the redu-motor tries to address
this, with the higher performance potentially allowing a bet-
ter BCI. Notwithstanding, depending on the application the
counting task might also be preferable: In scenarios where
feedback shall be provided on specific brain activity only
(e.g., non-motor-related rehabilitation training paradigms)
button presses may be prohibitive, as a contribution of motor-
related brain activity in the classification cannot be ruled out.
Consequently, the choice of the user task of an experimental
paradigm should be made based on the trade-offs of the
application. Based on the results of our pilot study, the use
of button presses can be desirable, mirroring the preference
of users.

V. CONCLUSION

Investigating the influence of button presses and mental
counting as user tasks in a visual attention-based BCI, the
results of our pilot study indicate that using a button-press
task is preferred by most users and improves classification
performance compared to counting, especially when motor-
related components can be removed from the data during
preprocessing. Counting constitutes a feasible alternative if
influence of motor activity should be minimized.
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