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Abstract— Most of the conventional approaches to mobile
robot navigation avoid any kind of contact with the environment
or with humans. However, most distance sensors have a limited
field of view, so that collisions cannot be fully avoided in
practical mobile robot applications. At the same time, direct
physical contact also can be used as a means of intuitive
communication between a robot and humans. We present a
whole-body sensory concept based on a 6-DoF force-torque
sensor to detect interaction forces between the robot body
and humans. To distinguish between external contact forces
and forces that result from the accelerations of the mobile
platform, we employ a novel neural network-based filtering
approach. The network fuses information from an inertial
sensor, odometry data and the 6-DoF force-torque sensor. Our
approach allows the robot to detect and react to physical contact
during autonomous motion. Extensive experiments with our
robot Canny demonstrate the effectiveness of our approach.

I. INTRODUCTION

Robots increasingly share their workspaces with humans,
which requires new concepts for human robot interaction.
Unwanted contact with the environment or with people must
be handled appropriately to ensure human safety. The close
proximity also allows for intuitive and efficient deliberate
physical interaction between humans and robots. One possi-
ble interaction scenario is shown in Fig. 1, where a person
pushes the robot out of her desired path.

Our approach enables the robot to feel interaction forces
on the entire robot body, in rest and during autonomous
motion. Our whole-body sensory concept is based on one
six degrees of freedom (DoF) force-torque sensor mounted
stiffly on an omnidirectional mobile base. We employ an
end-to-end learning approach with a multi-task output to
distinguish between external forces on the robot shell and
disturbance forces, e.g., caused by the motion of the robot.
The sensory concept enables us to precisely estimate the
magnitude, direction and location of an external force on
the entire robot body by using just one sensor.

II. RELATED WORK

Work on force-controlled robots dates back to the 1990’s
when Khatib [1] introduced the robotic assistant for co-
operative object manipulation between humans and mobile
manipulators. Walking helper systems for the elderly [2, 3, 4]
or helpers for cooperative object transport [5] have been
presented that react to a force exerted by the user, measured
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Fig. 1. Whole-body tactile sensory concept and robot prototype reacting
to an external interaction force.

e.g., by strain gauges or 6-DoF force-torque sensors. The
approaches are similar to ours in that a force sensor adds
sensitivity to a mounted stiff structure. However, the motion
of the presented devices is always a reaction to the user’s
intended force. Instead, we strive to combine autonomous
motion with a compliant reaction to interaction forces.

Kim et al. [6] estimated the external forces based on the
joint torques of their mobile base with torque sensors in
the drive trains of the three omnidirectional wheels. Their
robot can react to interaction forces and detect collisions
with the entire robot body, also when the robot is moving.
However, they can only estimate the position and direction of
the external force in the horizontal plane due to the limited
degrees of freedom of the robot. Furthermore, they do not
evaluate the location, direction and magnitude of the external
force when the robot is in motion.

III. WHOLE-BODY SENSORY CONCEPT

Our robot Canny is based on the omnidirectional research
platform Robotino. The Robotino is shipped with a mounting
tower that attaches tightly to the base. We attach a high-
precision 6-DoF force-torque sensor to the mounting tower as
depicted in Fig. 1. The other side of the force-torque sensor
is attached to a solid robot shell, made of aluminum profiles
and semi-transparent acrylic glass.

For known convex shell geometries it is possible to calcu-
late the impact locations of external forces on the shell from
the forces and torques measured by the force-torque sensor,
assuming that the force results from pushing the robot instead
of pulling. Thus, Canny can perceive external forces using
just one sensor, instead of using an expensive sensor skin or a
sensor array. Furthermore, the sensor is not directly exposed
to the environment but protected by the solid shell.
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Fig. 2. Employed time-delay neural network structure. The inputs are
delayed with time delays D before entering the neural network. The
network is split up into one regression and one classification part.

IV. NEURAL NETWORK FOR EXTERNAL FORCE
ESTIMATION

The external forces acting on the robot shell are in
practice overlaid by disturbance forces introduced by the
robot motion or oscillations of the structure. We employ a
model free filtering approach based on a time-delay neural
network (TDNN) [7] to separate the external forces from
the disturbance forces. TDNNs capture temporal information
by showing the network multiple consecutive data points
of a time series at one instance. To this end, the (discrete)
input time series is delayed and buffered before entering the
network. The TDNN has a feed-forward structure and can
be trained using standard back-propagation.

In the following, we denote the true external wrench
acting on the robot shell as Fext = [Fext, τext] ∈ R6, the
measured wrench is denoted as Fmeas = [Fmeas, τmeas] ∈ R6.
Furthermore, we introduce a random variable X that takes
the values {ξ, ξ̄} = {force impact, no force impact} and
captures whether an external force currently acts on the robot
shell. Our network generates estimations F̂ext for Fext.

Our TDNN has two output modalities, one regression
output F̃ext and one classification output p̃(ξ). F̃ext estimates
the values of the external wrench components, p̃(ξ) estimates
whether an external force is present on the robot shell.
Finally, we fuse both output modalities and calculate the
expectancy of F̃ext, given p̃(ξ) as our final filter result

F̂ext = Ep̃(X)(F̃ext) (1)

= F̃extp̃(X = ξ) + ¯̃Fextp̃(X = ξ̄), (2)

where the external wrench without force impact is ¯̃Fext ≡ 0.
The input to our network is the wrench Fmess measured

by the force-torque sensor. We further input velocity v and
acceleration a measurements from an inertial measurement
unit (imu) on the robot base and the robot’s odometry to
capture the base excitation caused by the motion of the
robot. Our imu measures linear accelerations aimu ∈ R3 and
angular velocities vimu ∈ R3. The odometry gives the robot’s
omnidirectional velocity in the plane, vodom ∈ R3.

We delay and buffer the six imu measurements, three
odometry measurements and the six wrench measurements
by n time steps. The input to our network is given by
xi = [Fmeas,i−n:i, vimu,i−n:i, vodom,i−n:i, aimu,i−n:i], where i

Fig. 3. Force stick used to exert and measure external forces on the robot
shell. The optical markers are used to determine the 6D pose of the stick
with respect to the robot.

is the current time step in the sequence and i− n : i :=
i− n, . . . , i.

Our network structure is depicted in Fig. 2. The input
vector is passed to the shared part of the network with non-
linear rectified-linear units (ReLUs). The network then splits
up into separated regression and classification parts. The
regression part consists of neurons with linear activations
and outputs F̃ext. The classification layer outputs p̃(ξ) with
non-linear sigmoid activations.

The network parameters φ are optimized for all N training
examples using stochastic gradient descent with momentum
according to

φ∗ = argmin
φ

N∑
i=1

L
(
ỹi, yi

)
, (3)

where yi denotes the ground truth values of the estimated
outputs, or labels. The estimated output ỹi is given by a
forward pass of the input xi through the network. Our loss
function L

(
ỹi, yi

)
is a multi-task loss that comprises of the

squared Euclidean norm of the regression output F̃ext and the
cross-entropy loss of the classification output p̃(ξ):

L
(
ỹi, yi

)
= wr‖Fext − F̃ext‖2

− wc [p(ξ) log(p̃(ξ)) + (1− p(ξ)) log(1− p̃(ξ))]
(4)

The weight factors wr and wc are hyperparameters that
can be adjusted for the desired regression and classification
performance. We found that wr = 10wc yields good overall
results. Another important hyperparameter of the network is
the number of time steps n delayed and buffered at the input.
We observed that a value of n = 10, which corresponds to
a time window of 0.2 s at our sampling frequency of 50 Hz,
sufficiently captures the temporal information of the data.

V. EXPERIMENTS

We assembled a force stick depicted in Fig. 3 to generate
the ground truth external force magnitudes. It is based on a
flexible 1D pressure sensor attached to a wooden stick. The
direction of the force is obtained by the pose of the force
stick with respect to the robot shell, which we obtain from
a motion capture system. The force stick is used to exert
forces as shown in Fig. 3 in order to generate training data
for the neural network and testing data for the presented
experiments. We conducted experiments where the robot
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Fig. 4. Magnitude error, impact point distance and angular distance for the external force estimation, in rest and in motion.

is standing still and experiments where the robot is tele-
operated at varying rotational and translational speeds.

The first experiment evaluates the ability of our approach
to predict the magnitude, direction and location of an external
force on the robot shell. To this end, we collected two data
sets, one where the robot is in rest and one where the robot
is tele-operated. We compare our approach to the unfiltered
case, a simple Kalman filter and a Finite Impulse Response
(FIR) lowpass filter. The Kalman filter uses a constant motion
model and its covariances are obtained from the training data.
Note that we compensate for the filter delay of the lowpass
filter when calculating the comparison metrics.

Fig. 4 shows the mean absolute error of the estimated
force magnitude and the mean impact point distance and
angle between the true and estimated force vector. While
all approaches give comparable results when the robot is in
rest, the performance decreases drastically when the robot
is in motion for the baseline approaches. Only our approach
is able to accurately estimate the external forces when the
robot is moving. The results show that our sensory concept
combined with the neural force filtering is able to accurately
predict the magnitude, direction and location of external
force impacts.

We conducted a second experiment where we exert a
known external force on the robot shell while the robot is
driving on different floors to examine their influence on the
induced disturbance forces. Here, we only compare the force
magnitude, because we cannot obtain the direction of the
external forces outside the motion capture area.

In addition to the PVC floor of the motion capture area for
which we trained our approach and adjusted the baselines,
we tested on two other floors, stone and carpet. Table I
presents the mean absolute force magnitude error for our
approach and the baselines. Our approach outperforms all
baselines on all tested floor conditions. The results show
that our approach generalizes well to previously unseen floor
conditions, which indicates that our sensory concept can
successfully be employed outside our robot hall.

VI. CONCLUSION AND FUTURE WORK

We presented a sensory concept that enables us to estimate
forces and torques resulting from external force impacts

PVC Stone Carpet
µ±σ µ±σ µ±σ

Unfiltered 21.23± 21.92 30.04± 27.64 20.00± 18.68
Lowpass filter 5.95± 9.92 7.16± 12.02 4.80± 6.67
Kalman filter 7.88± 10.22 9.94± 12.19 7.82± 8.82
Our Approach 2.13± 3.32 2.82± 4.59 3.08± 4.00

TABLE I
MEAN ABSOLUTE FORCE MAGNITUDE ERROR µ AND STANDARD

DEVIATION σ FOR DIFFERENT FLOOR CONDITIONS IN N

onto the shell of a mobile robot. A neural network-based
filtering approach distinguishes external forces from forces
stemming from oscillations or force stimuli introduced by
motions of the robot. Experiments with our robot Canny
demonstrate that our neural filtering technique outperforms
standard filtering methods. Our tactile sensor concept enables
the robot to precisely estimate the magnitude, location and
direction of the impact force, even when the robot is in mo-
tion. In the future, we want to use the presented framework
for estimating external forces within a navigation system
allowing our robot to provide force compliance.
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