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Abstract— Most of the conventional approaches to mobile
robot navigation avoid any kind of contact with the environment
or with humans. As nowadays distance sensors typically have
a limited – and often only two-dimensional – field of view,
collisions with the environment or contacts with humans cannot
be fully avoided in practical mobile robot applications. On the
other hand, direct physical contact can be used for intuitive
communication between a robot and humans. In this paper,
we present a whole-body sensory concept based on a 6-DoF
force-torque sensor to perceive physical interaction between the
robot and humans. To distinguish between external contact and
disturbance forces that result from the motion of the mobile
platform or oscillations, we present a novel model-free filtering
approach based on a neural network. In extensive experiments
carried out with our robot Canny we demonstrate the effec-
tiveness and advantages of the neural network approach, which
clearly outperforms a classical model-based one.

I. INTRODUCTION

Robots are envisioned to increasingly share their
workspaces with humans, which requires new concepts for
human-robot interaction. The close proximity allows for
intuitive and efficient physical interaction. One possible
interaction scenario is shown on the left in Fig. 1, where
a person pushes the robot out of her desired path. The
approach presented in this paper tackles this interaction
scenario by enabling the robot to feel interaction forces
during autonomous motion.

In this paper we present a novel whole-body sensory
concept based on a six degrees of freedom (DoF) force-
torque sensor mounted stiffly on an omnidirectional mobile
base, as shown in the right image of Fig. 1. A solid outer
shell attached to the other side of the sensor absorbs and
directs external forces to the sensor. Our setup enables the
robot to feel the extend, direction and location of interaction
forces on the robot shell. Even though the motion capabilities
of wheeled mobile robots are limited to the 2D plane,
knowledge of the 3D direction and impact of the force
are valuable to distinguish different types of interactions.
An intended contact is most likely occurring in reach of a
person’s hands, while a collision can occur anywhere on the
robot. A person leaning against the robot likely causes a force
with a sideways and downwards component. We think the
robot should adapt its behavior to different kinds of contact,
and the force characteristics can help distinguish them. For
multiple contacts, our setup can only process the resulting
force but cannot discriminate between them. We accept this
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Fig. 1. The presented sensory concept is based on a 6-DoF force-torque
sensor and enables the robot to perceive interaction forces.

limitation, since the resulting force already provides valuable
information for the envisioned contact scenarios amongst a
crowd of people.

A more severe downside of the sensory concept is the
sensitivity to force stimuli caused by the robot motion. Fur-
thermore, since the connections between robot base, force-
torque sensor and shell are not perfectly stiff, the system
is oscillatory. The induced internal forces superimpose the
true external interaction forces. We present two filtering
techniques to distinguish the resulting disturbance forces
from external forces. The first, probabilistic approach uses a
physical model of the base response to external and internal
force stimuli. It serves as reference for our main approach,
which employs end-to-end learning using a neural network
with a multi-task output. The sensory concept combined with
the filtering technique enables us to precisely estimate the
magnitude, direction and location of an external force, even
when the robot is in motion. In extensive experiments we
evaluate the performance of our system. To this end, we
present a novel experimental setup where varying external
forces of known magnitudes, directions and impact points
can be applied to any point of the robot shell.

We believe that our design is an important contribution
along the way to safe, interactive mobile robots that operate
in close proximity to humans. In addition, force-torque
sensors like the one we use for our robot Canny are standard
components that are widely applied in robotics. Thus, our
design is easily applicable to other robot platforms.

II. RELATED WORK

Autonomous robot navigation amongst humans is a chal-
lenging problem, since the shared environments are typically
cluttered, highly dynamic and hardly predictable. Especially
in crowded environments, it is necessary to assume that
all agents cooperate in order to make progress towards the



goal [1, 2]. Prassler et al. presented a robot wheelchair that
used the Velocity Obstacle approach [4] for navigation in
crowded environments. The Minerva museum tour guide
robot [5] reacted with angry voices and expressions on its
actuated face to eke out a path. Our approach seeks to extend
such existing navigation approaches by enabling the robot to
perceive interaction forces and thus to include and react to
intentional physical contact and accidental collisions.

Work on force-controlled robots dates back to the 1990s
when Khatib [6] introduced the robotic assistant for cooper-
ative object manipulation between humans and mobile ma-
nipulators. Later, Haddadin et al. [7] presented a concept for
human safety in shared workspaces for robot manipulators.
Hirata et al. [8] proposed an approach to cooperative object
transportation where a human pushed the robot along a pre-
planned path, indicating the desired robot velocity. Similar to
us, they used a 6-DoF force-torque sensor between the robot
base and the shell to measure interaction forces. However,
they did not evaluate the impact location of the force.

Walking helper systems for the elderly have been pre-
sented that react to a force exerted by the user, measured e.g.,
by strain gauges [9] or 6-DoF force-torque sensors [10, 11].
The design of the devices is similar to ours in that a force
sensor adds sensitivity to a mounted stiff structure. However,
unlike our robot shell, not all exposed parts of the walking
devices were force sensitive because the mounted structure
did not cover the entire devices. Furthermore, the motion of
the walking helpers was always a reaction to intended force.
Instead, we strive to combine autonomous motion with a
compliant reaction to interaction forces.

Manuelli and Tedrake [12] used a particle filter to estimate
the contact points of external forces on rigid body humanoid
robots from the joint torques. Their approach was able to ac-
curately estimate the locations of multiple impact points for
a simulated humanoid robot. Kim et al. [13] also estimated
the external forces based on the joint torques of their mobile
base with torque sensors in the drive trains of the three
omnidirectional wheels. Their robot could react to interaction
forces and detect collisions with the entire robot body, in rest
and in motion. However, they only estimated the position and
direction of the external force in the horizontal plane due to
the limited degrees of freedom of the robot. Furthermore,
they did not evaluate the location, direction and magnitude
of the external force when the robot was in motion. Frémy
et al. [14] also used the torques on the caster wheel joints
of their mobile robot to estimate external forces. However,
their platform was not fully omnidirectional, which limited
the possible reactions to interaction forces.

Our work uses the approach of Bicchi et al. [15] to
determine the impact point of an applied force. We extend
their work by filtering out disturbance forces caused by the
motion of the robot and oscillations of its shell. Thus, we
render their approach to real mobile robot applicability.

III. WHOLE-BODY SENSORY CONCEPT

Our robot Canny is based on the omnidirectional research
platform Robotino. The Robotino is shipped with a mounting

tower that attaches tightly to the base. We mount a high-
precision 6-DoF force-torque sensor to the tower as depicted
in Fig. 1. The other side of the force-torque sensor is
attached to a solid robot shell, made of aluminum profiles
and semi-transparent acrylic glass. An inertial measurement
unit (IMU) at the robot base measures the base accelerations
in the six DoFs. Furthermore, colored LEDs at the rim of
the robot shell display user feedback, such as the direction
and magnitude of the perceived interaction force.

We calculate the impact point of an external force from
the measured forces and torques according to Bicchi et al.
[15]. We restrict ourselves to the model of a point contact
with friction, which means that the force is applied on a
single point instead of an area. Accordingly, we neglect local
torques during the impact. For convex shell geometries, there
is a unique point of impact for a force, assuming that it results
from pushing on the robot shell instead of pulling.

For an impact force ~F on the robot shell at a lever arm ~r
(Fig. 1), the force-torque sensor measures the force ~F and a
corresponding torque ~τ . We approximate Canny’s hexagonal
shell by a cylinder with radius R and axis ~z ∈ S2 and obtain
the impact point according to Bicchi et al. [15], as

~r = ~r0 + λ~F where ~r0 =
~F × ~τ
‖~F‖

(1)

and

λ =
−~F⊥ · ~r⊥0 −

√
(~F⊥ · ~r⊥0 )2 − ‖~F⊥‖2(‖~r⊥0 ‖2 −R2)

‖~F⊥‖2
.

(2)
Thereby, ~v⊥ = ~v − (~v · ~z)~z denotes the part of a vector
~v ∈ R3 which is orthogonal to ~z.

IV. EXTERNAL FORCE FILTERING

We present two approaches to separate the external impact
forces from disturbance forces caused by robot motion and
oscillations. First, we introduce a probabilistic, model-based
approach in Sec. IV-A. Then, in Sec. IV-B, we present a
model-free method based on a neural network.

A. Model-Based External Force Estimation

We model our system as a stiff body suspended on a
system of springs and dampers. As a simplification, we
assume that the robot structure, the shell and the mounting
tower are perfectly stiff, while the force-torque sensor is the
sole source of elasticity. We use the coordinate system of the
sensor, where the z-axis points vertically up, and we model
the kinematics of the system in six degrees of freedom.

To derive the equations of motion, we first consider the
1D case of an oscillatory system as depicted in Fig. 2 (left).
The mass m is connected to a spring k and a damper c.
The force F acting on the mass comprises of an external
force Fext and a force Fa = −ma caused by the acceleration
a of the inertial frame, i.e., the acceleration of the robot.
The deflection of the spring is denoted by q. Thus, for the
equation of motion we have

mq̈ + cq̇ + kq = Fext −ma. (3)
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Fig. 2. One-dimensional linear spring-mass system (left) with spring
constant k and damping constant c. On the right, our extended 2D case with
displaced center of mass, resulting in coupled linear and angular oscillations.
The walls in the drawings correspond to the robot base, which itself is
movable, resulting in additional accelerations of the reference frame.

If the robot shell is mounted at its center of mass, the
degrees of freedom are decoupled and can be described by
Eq. (3). However, this does not hold in our case, as the mount
of the shell is displaced vertically along the z-axis. Hence,
some degrees of freedom are coupled, as depicted in Fig. 2
(right), where we consider the 2D case of coupled linear
oscillation in ql and angular oscillation in qφ. The stiff robot
shell with mass m and moment of inertia J is mounted
at distance d from its center of mass. Linear and angular
springs, kl and kφ, and dampers, cl and cφ, are attached
to the shell. Again, a force F = Fext − mal and a torque
τ = τext − Jaφ act on the shell. We calculate the coupled
equation of motion with the Euler-Lagrange equations as

d

dt

(
∂L

∂q̇l/φ

)
−
(

∂L

∂ql/φ

)
= Ql/φ, (4)

where Ql/φ = F/τ−cl/φq̇l/φ are the two generalized forces
and L = T −V is the Lagrangian. The kinetic energy T and
the potential energy V for our 2D system are calculated as

T =
1

2
m
(

(cos(qφ)q̇φd+ q̇l)
2

+ (sin(qφ)q̇φd)
2
)

+
1

2
Jq̇2φ,

V =
1

2
klq

2
l +

1

2
kφq

2
φ −mg cos(qφ)d, (5)

where g is the gravitational constant. Solving Eq. (4) results
in two coupled equations of motion:

q̈l = fl (ql, qφ, q̇l, q̇φ, F, τ) (6)
q̈φ = fφ (ql, qφ, q̇l, q̇φ, F, τ) (7)

In the following, we will denote the linear deflections
along the axes of the sensor as xl, yl and zl and the angular
deflections as xφ, yφ and zφ. For our sensory system, we
model xl and yφ as well as yl and xφ as coupled quantities
according to Eqs. (6) and (7). The origins of the x and y axes
coincide with the center of mass of the shell, hence zφ is
not coupled with any other degree of freedom. Furthermore,
we neglect coupling effects between zl, xφ and yφ, as the
angular deflections are expected to be very small and thus
induced deflections in the z-direction are even smaller due
to the second order dependency. Hence, zl and zφ can each
be described by Eq. (3). We end up with a non-linear second
order differential equation of the form

M(q̈) + f(q, q̇,F) = 0, (8)

with q =
(
xl yl zl xφ yφ zφ

)T
and F =

(
Fx Fy Fz τx τy τz

)T
.

As the next step, we linearize Eq. (8) around
(qT , q̇T ,FT ) = 0 using the first two terms of the Taylor
expansion and the linear dependency on q̈, and we obtain

M̄q̈ + C̄q̇ + K̄q = F̄. (9)

We can formulate this as the first order differential equation

ẋq =

(
0 I

M̄−1K̄ M̄−1C̄

)
︸ ︷︷ ︸

A

xq +

(
0

M̄−1I

)
︸ ︷︷ ︸

B

F̄, (10)

where xq =
(
q q̇

)T
represents the system state with

system matrix A, input matrix B and identity matrix I.
We now discretize Eq. (10) with the time step ∆t to

xq(k + 1) = Akxq(k) + BkF(k) (11)
with Ak = exp(A∆t) (12)
and Bk = A−1 (Ak − I) B. (13)

F(k) is a partially unknown input to our system. While we
have (noisy) measurements for the acceleration from our
IMU, we cannot measure Fext directly.

We assume that the force F does not change drastically
from one time step k to the next and use the assumption

F(k + 1) ≈ F(k) (14)

to restructure Eq. (11) to

x(k + 1) ≈
(

Ak Bk

0 I

)
︸ ︷︷ ︸

Â

x(k), (15)

with x =

(
xq

F

)
(16)

as the new state vector.
The force-torque sensor measures the forces and torques

with strain gauges. Therefore, we assume that the measured
force Fm is proportional to the deflection q. We hence
formulate the measurement equation as

F̂m =

(
Fm

0

)
=
(
K 0

)︸ ︷︷ ︸
C

x(k), (17)

where K is a diagonal matrix, consisting of the six linear
and angular spring constants kl and kφ.

F is now part of our state space and we use a standard
Kalman filter to estimate it together with the spring deflec-
tions and their derivatives, using Â as the state transition and
C as the measurement matrix. The state vector has a dimen-
sion of 18. We assume Gaussian noise in the measurement
and the prediction step:

x(k + 1) = Âx(k) + νR, (18)
F̂m = Cx(k) + νQ, (19)
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Fig. 3. The system response in xl and yφ for an external force released
at t = 0 shows the coupling effects between both degrees of freedom.

with νR ∼ N (0,R) and νQ ∼ N (0,Q). The design of
the measurement and prediction noise covariance matrices
Q and R is crucial for the performance of the Kalman
filter. For force vector Fm with independent components,
the measurement noise

Q = diag(σm) (20)

is a diagonal matrix with standard deviations σm.
For the prediction noise we assume that the error of the

assumption in Eq. (14) introduces the dominant contribution.
The control matrix Bk can be used to estimate how the noise
νF in F(k) propagates into the state space. Hence, we assume
for the prediction noise

νR =

(
Bk

I

)
︸ ︷︷ ︸

Γ

νF. (21)

The covariance of the prediction noise yields

R = E(νRνR
T ) = E(ΓνFνF

TΓT ) = Γσw,FΓT . (22)

We optimize for σm and σw,F by minimizing ‖F̂ext − F‖1
for the vinyl-motion training set introduced in Sec. V-A.

We further need to identify the model parameters of the
mass-spring-damper system: the shell mass m, moments of
inertia Jx/y and Jz , the distance between mount and center
of gravity d as well as the spring and damping constants
kl/φ and cl/φ. We can measure the mass directly with the
force sensor when the robot is in rest and no external
force is present. We calculate the moments of inertia by
approximating the shell as a cylindrical barrel with negligible
wall thickness of radius R and height L as

Jx/y =
1

2
mR2 +

1

12
mL2, (23)

Jz = mR2. (24)

The spring and damping constants as well as the distance
d are estimated from the step response of the system. To
this end, we exerted constant forces by pushing on the robot
shell and then introduced a step in external force by letting
go of the shell. We fit the recorded system response to the
harmonic solution of Eq. (8), which we solve numerically

Fm

am

F̃ext

p(ξ)

Fig. 4. Time-delay neural network. The inputs are delayed before entering
the network, which splits up into one regression and one classification part.

using the classical Runge-Kutta method. Fig. 3 shows the
identification results for the coupled force Fx and torque τy .

B. Neural Network for External Force Estimation
As a second external force filter, we use a model-free ap-

proach based on a time-delay neural network (TDNN) [16].
Instead of modeling the system equations explicitly, the
TDNN learns the model itself. TDNNs capture temporal
information by showing the network multiple consecutive
data points of a time series at one instance. To this end,
the discrete input time series is delayed and buffered before
entering the network. The TDNN has a feedforward structure
and can be trained using standard backpropagation.

We split our problem into a regression and a classification
part to exploit the superior performance of neural networks
for classification tasks. Thus, our network has two network
outputs as depicted in Fig. 4. The classification output
p(ξ) estimates whether there is currently an external force
acting on the robot shell. Formally, p(X) approximates the
probability p̂(X) of the random variable X = {ξ, ξ̄} =
{force impact, no force impact}. The regression output F̃ext
estimates the values of the six external force components
F̂ext. Finally, we fuse both output modalities and calculate
the expectancy of F̃ext, given p(ξ) as our final estimate

Fext = Ep(X)(F̃ext) (25)

= F̃ext · p(X = ξ) + ¯̃Fext · p(X = ξ̄), (26)

where the external force without force impact is ¯̃Fext ≡ 0.
The input xi =

(
Fm

i−n:i am
i−n:i)T to our network

consists of the measured forces and torques Fm and the
accelerations am measured by the IMU, delayed and buffered
by n time steps. The input vector is passed to the shared part
of the network with two fully connected layers of 256 non-
linear rectified- linear (ReLU) neurons each. The network
then splits up into separated regression and classification
parts of one layer with 128 neurons each. The regression
part consists of neurons with linear activations, while the
classification layer uses non-linear sigmoid activations.

The network parameters φ are optimized for all N training
examples using stochastic gradient descent with momentum
according to

φ∗ = argmin
φ

N∑
i=1

L
(
ŷi,yi

)
, (27)



Fig. 5. Force stick used to exert and measure external forces on the robot
shell. The optical markers are used to determine the 6D pose of the stick
with respect to the robot.

where ŷi denotes the ground truth values of the estimated
outputs, or labels. Our loss function L

(
ŷi,yi

)
is a multi-

task loss that comprises of the squared Euclidean norm of
the regression output F̃ext and the cross-entropy loss of the
classification output p(ξ):

L
(
ŷi,yi

)
= wr‖F̃ext − F̂ext‖2

− wc [p(ξ) log(p̂(ξ)) + (1− p(ξ)) log(1− p̂(ξ))] .
(28)

The weight factors wr and wc are hyperparameters that
can be adjusted for the desired regression and classification
performance. We found that wr = 4wc yields good overall
results.

V. EXPERIMENTS

We performed a series of experiments to evaluate the per-
formance of our sensory concept and the force filtering ap-
proaches. Sec. V-A presents our experimental setup. Sec. V-
B introduces the lowpass filter that we use as a baseline
approach. Finally, Sec. V-C compares the performance of
our approaches when the robot is in rest to when the robot
is in motion and evaluates them for different floor conditions.

A. Experimental Setup

We assembled a force stick depicted in Fig. 5 to generate
the ground truth external force magnitudes. It is based on a
flexible 1D pressure sensor attached to a wooden stick. A
ceiling-mounted motion capture system provides the direc-
tion and impact point of the force. For the data collection,
one experimenter repeatedly exerts forces of different extends
and at different locations by pressing the force stick against
the robot shell, as depicted in Fig. 5. We recorded data with
the robot in motion and in rest. For the datasets with motion,
a second experimenter teleoperates the robot to execute
random translational and rotational motions at speeds of up
to 0.75 m s−1 and 1.5 rad s−1, respectively. The exerted force
magnitude ranges between 0 and ≈50 N.

We collected one training, one validation and two test
datasets in the motion capture area of our robot hall which
has a vinyl flooring. The training, validation and test sets
vinyl-motion were collected with a moving robot, the test
set vinyl-rest when the robot was standing still. We further

TABLE I
STATISTICS OF THE USED DATASETS.

total impact impact µ(Fext) µ(‖v‖) µ(‖ω‖)
frames frames seqn. [N] [ms−1] [rad s−1]

training
vinyl-motion 42180 21889 251 17.54 0.34 0.13
validation
vinyl-motion 12545 5774 67 15.66 0.40 0.12
testing
vinyl-motion 26334 12912 161 15.93 0.32 0.12
vinyl-rest 32847 15566 163 14.78 0.00 0.00
stone-motion 13370 6475 95 16.43 0.35 0.13
carpet-motion 10539 4422 42 9.78 0.31 0.23

collected two test sets on different floor conditions, stone-
motion and carpet-motion. Tab. I summarizes the characteris-
tic properties of the datasets: The total number of data points
and number of data points with force impact, the number
of impact sequences (one sequence means exerting force
at one impact location and letting go), the mean external
force magnitude µ(Fext), and the mean translational and
rotational velocities of the robot, µ(‖v‖) and µ(‖ω‖). We
recorded 137 815 data points at a sampling rate of 50 Hz,
corresponding to more than 45 min.

B. Baseline Lowpass Filter

Lowpass filters are standard tools for filtering high-
frequency sensor noise from measurement data. A finite
impulse response (FIR) lowpass filter calculates the filtered
signal at time step t, x̂(t), by calculating the weighted mean
of the past N + 1 measurements x(t− i):

x̂(t) =

N∑
i=0

wix(t− i). (29)

As a model-free baseline, we designed a lowpass filter by
windowing [17], where the weights wi are calculated as

wi =
sin
(
2πft

(
i− M

2

))
π
(
i− M

2

)
)

. (30)

All components of Fm are filtered separately with an indi-
vidual lowpass filter. We keep the same filter order for all
filters to ensure a common filter delay. We optimize the cutoff
frequency ft and the filter order M by a grid search on the
vinyl-motion test set to get the best possible performance for
the baseline. The cutoff frequencies for the force components
are optimized together with the filter order, minimizing the
mean absolute force magnitude error. The cutoff frequency
for each torque component is optimized individually for its
mean absolute torque error. We compensate for the filter
delay during optimization by shifting the signal back by M

2
time steps. Thus, the resulting filter will be optimal within
its capabilities, but the signal will be delayed.

C. Force and Impact Point Estimation

The first experiment compares our model-based and the
neural filtering approach. The model-based Kalman filter
estimates the combined force acting on the robot shell
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and does not use acceleration measurements. Therefore, we
compare it with the neural network with and without IMU
information. We use the vinyl-motion test set and evaluate
the mean absolute error between the true and estimated force
magnitude. Fig. 6 shows the performance of the Kalman filter
compared to the neural network filter for different network
memories n. The neural network filters with and without
IMU information show a smaller force magnitude error, even
for n = 0 with only the current wrench measurements.
While the network performance drops slightly without IMU
information, it still clearly outperforms the Kalman filter. For
the following experiments, we use the neural network filter
with IMU information and a memory of 10.

The second experiment evaluates the estimation of the
magnitude, direction and location of external forces on the
vinyl-rest and vinyl-motion test set. Fig. 7 shows an excerpt
of the ground truth and estimated external force signals with
and without force filtering, with and without robot motion.
Without motion, all filters resemble the true external force
closely. However, the lowpass filter visibly delays the signal.
When the robot is moving, the raw sensor measurements
vary significantly from the true external force. The neural
network filter still resembles the external force signal closely,
while the performance drops visibly for both other filters.
Fig. 8 compares the performance of all approaches according
to the mean absolute force magnitude error eFext , the mean
distance between the true and the calculated impact point e~r
and the mean absolute angle between the true and estimated
force vector e∠Fext . While all approaches give comparable
results when the robot is in rest, the performance decreases
drastically when the robot is in motion for the Kalman filter
and the lowpass filter baseline. Only the neural network filter
can maintain a good filtering performance.

Note that we can only evaluate the impact point distance
and angular error for frames which have a ground truth
impact. Furthermore, we only calculate them for predicted
force magnitudes above a threshold of 5 N. All approaches
meet this criterion for around 90 % of frames with ground
truth impact – except the lowpass filter, which only selects
approx. 80 % of frames. Additionally, a calculated impact
point is only valid if it lies inside the shell geometry. For
a fair comparison, we evaluate the impact point and angle
error only on frames which meet the >5 N criterion and
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of the robot (pointing forward), in rest and in motion.

TABLE II
PERCENTAGE OF INVALID CALCULATED IMPACT POINTS [%]. AN

IMPACT POINT IS INVALID IF IT LIES OUTSIDE THE SHELL GEOMETRY.

Unfiltered Lowpass Filter Kalman Filter NN Filter

rest 8.74 9.21 9.05 3.42
motion 21.87 11.91 13.22 3.02

are valid for all approaches. Consequently, 65.7 % of frames
with ground truth impact in rest and 55.5 % in motion are
evaluated for the impact point distance error. For the force
angle error, 76.1 % are evaluated in rest and 77.3 % in
motion. Tab. II summarizes the percentage of invalid impact
points for the approaches. The neural filter outperforms all
other approaches in its ability to predict a valid impact point.

The last experiment evaluates the sensitivity of our ap-
proach to varying floor conditions. The floor condition likely
influences the base excitation due to robot motion, which is
the main cause of force measurement errors with our setup.
Tab. III presents the mean absolute force magnitude error
for the vinyl-motion, stone-motion and carpet-motion test set.
The stone and carpet datasets were not used for training the
approaches. They were collected outside the motion capture
area, hence we do have ground truth force directions and
impact points. Interestingly, the lowpass filter and our model-
based approach perform better on carpet than on the vinyl
floor for which the approaches have been adjusted. Only
our neural network filter performs slightly worse on carpet
than on vinyl, suggesting that it implicitly learns the floor
characteristics. Nevertheless, it outperforms all baselines on
all tested floor conditions. The results show that our neural
network filter generalizes well to previously unseen floor
conditions, which confirms that our sensory concept can
successfully be employed outside our robot hall.
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Fig. 8. Mean of the magnitude error eFext , impact point distance e~r and angular error e∠~Fext
for the unfiltered case and for the Kalman filter, lowpass

filter and our neural network approach. The left columns show the errors for when the robot is in rest, the right columns for when the robot is in motion.
The error bars show the standard error of the mean, amplified by a factor of 10 for visibility.

TABLE III
MEAN ABSOLUTE FORCE MAGNITUDE ERROR µ = eFext AND STANDARD

ERROR OF THE MEAN SEµ = σ(eFext )/
√
n, WITH SAMPLE SIZE n FOR

DIFFERENT FLOOR CONDITIONS, IN N.

Vinyl Stone Carpet
µ± SEµ µ± SEµ µ± SEµ

Unfiltered 21.24 ± 0.14 30.04 ± 0.24 20.00 ± 0.18
Lowpass Filter 12.52 ± 0.1 15.93 ± 0.14 8.29 ± 0.09
Kalman Filter 8.02 ± 0.06 10.12 ± 0.10 7.02 ± 0.07
NN Filter 2.06 ± 0.02 2.74 ± 0.04 2.66 ± 0.03

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a sensory concept for mea-
suring interaction forces exerted onto the shell of a mobile
robot. Further, we introduced a neural network-based filtering
technique and a model-based baseline to distinguish external
forces from those stemming from oscillations or force stimuli
introduced by robot motion. Extensive experiments were
carried out with our robot Canny. They demonstrate, that our
tactile sensor concept enables the robot to precisely estimate
the magnitude, location and direction of the impact force,
even when the robot is in motion or deployed in different
environments. Our neural network filtering technique clearly
outperforms the model-based approach, in particular is it able
to better deal with the chaotic oscillation behavior for our
robot in motion. In the future, we plan to teach our robot to
distinguish accidental collisions from intended interactions
and investigate suitable reaction strategies for the different
types of physical contact.
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