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Abstract

Robots operating in populated environments, such as hospitals, office environments or airports, encounter a large variety of
people with some of them having an advanced need for cautious interaction because of their advanced age or motion impairments.
To provide appropriate assistance and support robot helpers require the ability to recognize people and their potential requirements.
In this article, we present a people detection framework that distinguishes people according to the mobility aids they use. Our
framework uses a deep convolutional neural network for detecting people in image data. For human-aware robots it is necessary to
know where people are in a 3D world reference frame instead of only locating them in a 2D image, therefore we add a 3D centroid
regression output to the network to predict the Cartesian position of people. We further use a probabilistic class, position and
velocity tracker to account for false detections and occlusions. Our framework comes in two variants: The depth only variant targets
high privacy demands, while the RGB only framework provides improved detection performance for non-critical applications. Both
variants do not require additional geometric information about the environment. We demonstrate our approach using a dedicated
dataset acquired with the support of a mobile robotic platform. The dataset contains five classes: pedestrian, person in wheelchair,
pedestrian pushing a person in a wheelchair, person using crutches and person using a walking frame. Our framework achieves an
mAP of 0.87 for RGB and 0.79 for depth images at a detection distance threshold of 0.5 m on our dataset, with a runtime of 53 ms
per image. The annotated dataset is publicly available and our framework is made open source as a ROS people detector.
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1. Introduction

Robot helper systems aim to assist people in everyday tasks.
In health care applications, robots can help nurses lifting pa-
tients into and out of their hospital beds [1] and support the
treatment of elderly people with dementia [2]. Mobile robotic
assistants can further be employed for rehabilitation [3], carry
out delivery tasks in hospitals [4, 5, 6, 7, 8], accompany and
assist healthcare professionals [9] and support elderly peo-
ple [10, 11].

The desired assistance and guidance offered by robot helper
systems is often subjective and depends on many factors, like
the physical condition of the interaction partner. People with
walking aids tend to walk slower than people without motion
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impairments, thus it is desirable that robots adapt their veloc-
ity when guiding people with walking aids [12]. In addition,
knowledge of motion impairments can help robots to better an-
ticipate and predict the motion of pedestrians [13], which is
crucial for socially compliant navigation [14, 15, 16]. The use
of walking aids further entails certain limitations, such as the
inability to use stairs, and special requirements for door and
doorway clearances, elevators or bathroom facilities [17]. A
robot assistant should be able to perceive and reason about these
special requirements and adapt its behavior accordingly.

In this paper, we address the main challenges for perceiv-
ing people according to their mobility aids with deep neural
network-based detection and probabilistic position and class es-
timation. Our system is suitable for either depth or RGB cam-
era input and estimates the class, 3D position, velocity and the
tracked motion path of people. It has three main components:
deep learning-based 3D object detection, 3D position and ve-
locity tracking, and probabilistic class estimation. The object
detection module takes depth or RGB images as input and out-
puts 2D image bounding boxes and 3D centroids for each box,
as depicted in Fig. 1. The probabilistic position and class es-
timation modules resolve occlusions and provide a probability
distribution over the mobility aids classes for each detection,
taking the previous observations into account, as visualized in
Fig. 2. Our approach is designed for mobile robots and relies
on odometry information for tracking.
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Figure 1: Our perception framework detects people in 2D images and catego-
rizes them according to the mobility aids they use, as shown on the top. It
further estimates the 3D centroid of each person from the 2D images, visual-
ized at the bottom as colored spheres. The displayed point cloud only serves as
a reference and is not used by our approach.

This paper extends our previous paper [18], in which we gen-
erated object proposals from clustering points clouds generated
from depth images. The proposals were then evaluated by a
Fast R-CNN [19]. In [18], we obtained the 3D centroids from
the mean depth of the proposal cluster points as well as the
2D image bounding boxes. In contrast, this paper builds upon
the Faster R-CNN [20] framework, a recent object detection
method for 2D bounding box prediction that does not rely on
precomputed proposals, but identifies promising image regions
itself. We extend the original Faster R-CNN with an additional
network output which estimates the 3D centroid depth of each
bounding box. This way, we can still detect and categorize peo-
ple in the 3D space and at the same time profit from the supe-
rior object detection performance of Faster R-CNN over Fast
R-CNN on 2D images [20]. Our previous approach was limited
to the range of the depth sensor, because the proposal gener-
ation relied on it. People that are visible in the RGB but not
in the depth images could not be detected. Our new system
overcomes these limitations and is thus flexible with respect to
the employed sensor modality: RGB or depth. Our system fur-
ther incorporates an adapted version of the probabilistic posi-
tion, velocity and class estimation module originally presented
in [18]. It combines an extended Kalman filter to track the po-
sition and velocity of each person and a hidden Markov model
to estimate the class of each filter.

In this paper, we further present our extended Mobility
Aids Dataset with over 17,000 annotated RGB-D images at

detection: crutches
position: (1.63 m, 3.06 m)
velocity: 1.046 m/s
class estimation:

detection: pedestrian
position: (1.71 m, 3.02 m)
velocity: 0.199 m/s
class estimation:

detection: missing
position: (1.29 m, 2.71 m)
velocity: 1.453 m/s
class estimation:

detection: crutches
position: (1.62 m, 3.07 m)
velocity: 0.597 m/s
class estimation:

Figure 2: We track people over time to resolve occlusions and false detections.
The right box shows the estimated positions, velocities and probabilities over
the categories for one person.

960x540 pixel resolution, originally introduced in our previ-
ous work [18]. We collected the dataset with a Kinect 2 cam-
era on a mobile platform in the facilities of the Faculty of
Engineering of the University of Freiburg and in a hospital
in Frankfurt. We extend the original dataset with 3D cen-
troid depth labels for each annotated 2D bounding box. Fur-
ther, we include odometry measurements of our robot. The
dataset as well as a ROS package of our perception system are
publicly available at http://mobility-aids.informatik.
uni-freiburg.de. The webpage also contains a video of the
perception results obtained using our approach.

We evaluate the presented approach on our extended dataset
to demonstrate the object detection as well as 3D centroid re-
gression performance. We further analyze the performance of
the individual components of our system and their contributions
to the overall system. Finally, we test our approach on our mo-
bile robot for a guidance scenario to show that it can be success-
fully deployed in the physical world and that it enables robots
to provide appropriate assistance to people according to their
physical impairments.

2. Related Work

This section presents related work for people detection and
tracking with mobile platforms, deep learning-based object de-
tection and datasets for people detection.
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People Detection and Tracking for Mobile Platforms

Considering the large amount of previous work in the peo-
ple perception domain we will narrow our discussion on ap-
proaches specifically designed for mobile platforms. Hereby,
we distinguish the approaches based on the employed sensor
modalities, e.g., LiDAR sensors, stereo cameras, and RGB-D,
depth or monocular cameras.

In the context of urban driving LiDAR sensors provide a re-
liable data source for tracking moving objects [21, 22], also in
combination with vision data [23]. Several methods include
depth information from stereo cameras, which are less pre-
cise than LiDAR sensors and therefore follow different tracking
pipelines usually in combination with vision-based face or peo-
ple detectors [24, 25, 26]. Ess et al. [27] present a multi person
tracking and detection system that uses stereo cameras mounted
on a mobile platform, integrating visual odometry, depth from
stereo estimation and pedestrian detection for improved percep-
tion. In comparison to the mentioned approaches, we focus on
the multi-class aspect of the perception problem that goes be-
yond classic people detection and therefore requires rich fea-
tures that only learning-based methods can provide. In addi-
tion, besides tracking 3D position and velocity of people we
also track the class over time. Ošep et al. [28] combine 2D ob-
ject detectors and 3D information obtained from stereo cameras
for 3D tracking of objects in urban street scenes based on a 2D-
3D Kalman filter approach. In [29] they extend their approach
to enable tracking of generic unknown objects besides known
objects which are classified using Faster R-CNN [20]. In both
works the authors focus on traffic scenes and assume that there
exists a pretrained object detector for the corresponding classes.
In this work we implement a complete detection and tracking
system trained on our own dataset and able to run on our mobile
robot. Further, we offer an off-the-shelf detection and tracking
solution by making the source code publicly available, similar
to other frameworks that leverage several existing people detec-
tion and tracking methods for mobile robots [30, 31, 32].

For indoor applications RGB-D sensors can provide very re-
liable depth estimates for close and mid-range distances, which
is usually sufficient to cover the typical planning workspace
range of a navigation robot. Several people detection and track-
ing approaches for mobile robots are designed for usage with an
RGB-D sensor device. Spinello and Arras [33] present a HOG-
based detector, which they also employ in their people track-
ing framework in combination with a multi-hypothesis Kalman
filter [34]. Most prior methods employ manual vision fea-
tures in combination with 3D point cloud features for dealing
with depth data [35, 36], while we use state-of-the-art learning-
based features. Similar to others our tracking procedure re-
quires knowledge about the robot position in a world reference
frame [37, 32]. In own prior work we show that learned fea-
tures from deep neural networks improve people detection per-
formance in RGB-D data when compared to manually designed
features [38]. Guerry et al. [39] show further detection improve-
ments when leveraging recent state-of-the-art object detectors
for the same task. Zimmermann et al. [40] estimate 3D poses
of humans from RGB-D data for robotics scenarios.

In our previous approach [18], we perceive people according
to their mobility aids in depth images. Our region proposal gen-
erator processes the depth information and we evaluate the pro-
posals using Fast R-CNN. The region proposal generator pro-
vides the 3D centroid information for each detection. In this
work, since Faster R-CNN generates image region proposals it-
self, we extend it to regress the depth of the centroid pixel in
a 2D bounding box using solely image information. Similarly,
Chen et al. [41] perform 3D object detection by sampling 3D
bounding box proposals from monocular images before feeding
those into Fast R-CNN. In contrast to their method we directly
regress the depth of the centroid for each bounding box predic-
tion of our Faster R-CNN network. Therefore, the inference
time of our method is faster compared to the 1.8s required for
sampling proposals reported by Chen et al. [41], which is not
fast enough for real robot applications.

The approaches mentioned above consider one person class,
while we perform multi-class people detection by destinguish-
ing people according to the mobility aids they use. Other
recent work on multi-class people recognition and detection
applied to mobile robot scenarios include a LiDAR-based
wheelchair/walker detector [42] and a human gender recogni-
tion approach [43]. To the best of our knowledge there exists
no prior work that presents multi-class people detection on im-
ages, applied to service robot scenarios.

Deep Learning for Object Detection

Our work builds upon state-of-the-art object detection meth-
ods, specifically region-based convolutional neural networks
such as Fast R-CNN [19] and Faster R-CNN [20]. The orig-
inal Fast R-CNN method is not fast enough for real-time appli-
cations, mainly due to slow region proposal algorithms. In the
conference version of this paper we dramatically speed up Fast
R-CNN inference time by feeding it with bounding box propos-
als from our very fast depth-based region proposal method [18].
In this paper we show that Faster R-CNN in combination with a
smaller backend network achieves higher detection rates at fast
inference speed.

Datasets

This paper presents our extended Mobility Aids
Dataset which, in addition to 2D image bounding box
and multi-class person labels, includes 3D centroid ground
truth. The dataset enables the training of multi-class people
detection methods for indoor scenarios, e.g., hospitals and
public buildings. There exist a few other datasets that contain
multi-class labels for people in the context of human attribute
recognition [44, 45], but these computer vision datasets do
not represent the data and sensors used in mobile robot appli-
cations. Most similar to ours is the dataset by Sudowe et al.
[46], who recorded video sequences of people from a moving
camera for the task of human attribute recognition and the
dataset by Linder et al. [43], designed for gender recognition
in RGB-D data. In own prior work we present the InOutDoor
People Dataset for detection in RGB-D data [38], but it does
not contain multiple person classes or 3D centroid labels.
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Figure 3: Our perception system operates on 2D images (RGB or depth). We input the images into a Faster R-CNN network, which regresses 2D bounding boxes
and 3D centroids of people. We track the resulting detections with a Kalman filter for 3D position and velocity estimation. Further, we employ a hidden Markov
model for filtering the class predictions over time.
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Figure 4: Faster R-CNN architecture with Region Proposal Network (RPN).
For each proposal we predict class, 2D bounding box and the 3D centroid of
the bounding box.

3. People Perception Framework

Our perception framework processes 2D images, either RGB
or depth, and estimates the class as well as the position and ve-
locity of people in a world reference frame. It consists of three
modules, as depicted in Fig. 3. Sec. 3.1 introduces the detection
stage of our framework, the probabilistic position, class and ve-
locity estimation stages are described in Sec. 3.2.

3.1. People Detection with Faster R-CNN

Our object detection module is based on Faster R-CNN [20],
an object detection network which runs in an end-to-end man-
ner from image input to object detection output. We use the
open source Detectron implementation [47] of Faster R-CNN.
Faster R-CNN uses a region proposal network (RPN) to gen-
erate regions of interest (RoIs) in the image, followed by a
region-based convolutional neural network to classify the re-
gions of interest and to regress the bounding box of a region.
Both network modules share their convolutional layers, result-
ing in a compact and fast end-to-end system. Furthermore, the
resulting network shares convolutions across region proposals,
which means that the convolutional feature maps for the input
image are computed only once and then used to evaluate each
proposal with a regions of interest pooling procedure. Our mo-
bility aids detection extends the original Faster R-CNN by an
additional output which estimates the depth value of the 2D im-
age bounding box centroid. We further adapt the loss function
for training the network to incorporate the additional network
output. The proposal generation, classification and 2D bound-
ing box regression functionalities are identical to the original
Faster R-CNN. This section describes the resulting network and
specifies the training parameters.

The input of our mobility aids detector is a three channel
image, either RGB or color-encoded depth, in the following re-
ferred to as DepthJet [48]. In its original form, Faster R-CNN
outputs the four 2D bounding box coordinates and the detection
scores for each object category. For robotics, however, knowl-
edge about the locations of people in the image plane is often
not sufficient. We need to know where people are in the world
coordinate frame to be able to interact with them. To this end,
we add an additional output to the network – the 3D centroid
regression as depicted in Fig. 4. For each proposal, this output
estimates the Cartesian distance zcam between the camera and
the person’s 3D centroid, along the z-coordinate of the camera
which points into the image. The 3D centroid of a person with
respect to the camera can be computed using the intrinsic cam-
era calibration as

xcam =
xim − cx

fx
zcam (1)

ycam =
yim − cy

fy
zcam, (2)

with the optical center
(
cx, cy

)
and the focal lengths

(
fx, fy

)
,

both in pixels. The centroid of the person in the image plane
(xim, yim) is the center of the regressed 2D bounding box. The
3D centroid regression layer is added after the last fully con-
nected layer of the network and outputs a single real-valued
number for each proposal, using linear neuron activations.

During training, the network jointly optimizes a multi-task
loss that contains the object classification and bounding box
regression loss, the region proposal loss and the 3D centroid
regression loss. Similar to the bounding box regression loss in
the original Faster R-CNN, we use the robust loss function L1,s
(smooth L1)[19] for the 3D centroid regression loss

Lz,cam = λz,cam

∑
i

p∗z,camL1,s
(
zcam − z∗cam

)
(3)

with

L1,s(a) =

 0.5a2 if |a| < 1
|a| − 0.5 otherwise.

(4)

The ground truth z-distance between the camera and person i is
z∗cam. We use the ground truth label p∗z,cam to deactivate the 3D
centroid regression loss for proposals without centroid depth
labels, because the z-distance ground truth is only available for
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proposals with non-background object labels. Furthermore, we
obtained the centroid depth labels from the depth image of our
RGB-D camera, which has a maximum range of ≈8 m. For pro-
posals outside that range, we deactivate the 3D centroid regres-
sion loss. Please refer to Sec. 4.1 for the 3D centroid labeling
procedure. The weight factor λz,cam balances the depth regres-
sion performance with the image detection output. We found
that a value of 10, which is similar to the 2D bounding box re-
gression weights, produces satisfactory depth regression results
without significantly diminishing the image detection perfor-
mance.

We trained our people detection with stochastic gradient de-
scent with a momentum of 0.9 and a weight decay of 0.0001
on a per-image batch size of 256. We used the 2000 best scored
RPN proposals for training and a learning rate of 0.0025, which
is reduced with a factor of 0.1 after 30.000 and again after
40.000 iterations. We adopt the warm up scheme presented
in [49] and reduce the learning rate for the first 500 iterations
with a linearly decreasing factor, starting from 1/3 and vanish-
ing to 0.

We train three different network architectures, each with
60.000 iterations: the ResNet-50 [50] architecture as a
strong but complex backbone and VGG-CNN-M [51] and
GoogLeNet-xxs [38] as faster, more lightweight networks. All
networks were pretrained on ImageNet.

At test time, we pass the input image through the Faster R-
CNN network and apply class-wise non-maximum suppression
to the output bounding boxes. We choose the detections above
a class threshold as positive detections and pass them to the
probabilistic people tracker presented in the following.

3.2. Probabilistic Position, Velocity and Class Estimation

The probabilistic people tracker is adapted from our previ-
ous work [18]. Previously, we transformed the image detec-
tions into the world reference frame before processing them in
the tracking module. In contrast, in our current approach the
transformation is part of the sensor model, which requires lin-
earization and the use of an extended Kalman filter. This leads
to a more accurate estimate of the sensor noise, since its covari-
ance matrix is now measured in the native sensor coordinates,
the image axes and the centroid depth, and thus is mostly in-
dependent of the relative position between the detected person
and the camera.

The detection stage provides a set of coordinates for each
detected person of the form (xim, yim, zcam, c′), where c′ is
the perceived class. Our position, velocity and class esti-
mator computes the belief Bel(x) of the person state x =

(xw, yw, zw, ẋw, ẏw, c)T , where (xw, yw, zw) denote the person’s
position and (ẋw, ẏw) his or her velocity on the ground plane,
both in a fixed world coordinate frame. The class of the person
is denoted by c and includes pedestrian, person in wheelchair,
pedestrian pushing a person in a wheelchair, person using
crutches, person using a walking frame and background. The
estimator combines two modules: An extended Kalman fil-
ter (EKF)-based multi-tracking module and a hidden Markov
model (HMM)-based class estimation module. The estimator

manages one track for each perceived person which performs
both EKF and HMM filtering.

The EKF state is five-dimensional, xK = (xw, yw, zw, ẋw, ẏw)T ,
and uses a constant velocity motion model with the state transi-
tion matrix

F =


1 0 0 ∆t 0
0 1 0 0 ∆t
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (5)

where ∆t is the filter time interval. For the process noise, we
adopt the piecewise white noise model as described by Labbe
[52] and assume the system dynamics f are disturbed by con-
stant piecewise noise w:

f (xK) = FxK + wΓ (6)

We model w by accelerations ax and ay and a height error σz,
which are independent:

w =

ax 0 0
0 ay 0
0 0 σz

 (7)

The noise gain Γ describes how the noise w propagates into the
state space and is modeled by

Γ =


∆t2/2 0 0

0 ∆t2/2 0
0 0 1
∆t 0 0
0 ∆t 0

 (8)

The process noise covariance Q is then calculated as

Q = ΓwwTΓT . (9)

For the correction step, we integrate the observations z =

(xim, yim, zcam)T from the detection stage. We first need to de-
sign the measurement function

h(xK) = z. (10)

It maps the state to the measurement and, since the state is given
in a fixed world coordinate frame, requires to transform the state
first to the camera and secondly to the image frame. The trans-
formation between the camera and the fixed world coordinate
system is determined by

cTw = (wTr ·
rTc)−1, (11)

where wTr denotes the transformation between the world coor-
dinate frame and the robot base, which we obtain from odome-
try, and rTc is the known transformation between the robot base
and the camera. For the first step, we extract the state position
and transform it into the camera frame:

xcam
ycam
zcam

1

 = cTw


xw

yw

zw

1

 (12)
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Table 1: Default threshold values of the estimation module.

threshold value
max. Euclidean distance dmax 1.0 m
max. Mahalanobis distance δmax 7.815
max. position uncertainty σxy,max 4.0 m

As a second step, we need to project xcam and ycam into the im-
age plane, using the intrinsic camera calibration and following
Eq. 1 and Eq. 2, by

xim =
xcam

zcam
fx + cx (13)

yim =
ycam

zcam
fy + cy. (14)

The measurement function is non-linear with respect to the state
xK , which means that we need to employ an extended Kalman
filter and use the Jacobian H of h in the correction step. We
obtain the observation noise R experimentally by analyzing the
Faster R-CNN detections z and the corresponding ground truth
image bounding box and centroid depth labels z∗ of people in
the test dataset 1 (Sec. 4.1). To this end, we compile a data
matrix A with N columns

a∗i = zi − z∗i , (15)

one for each detection-label pair in the dataset, and specify the
observation noise as the covariance of A.

For the data association between tracks and observations, we
consider the pairwise Mahalanobis distances

δ2
i j(t) = vT

i j(t)Ŝ
−1
i j (t)vi j(t) (16)

with vi j(t) = zi(t) − h(x̂K, j(t)) (17)
and Ŝi j(t) = H j(t)P̂ j(t)HT

j (t) + R, (18)

where x̂K(t) and P̂(t) are the predicted state mean and covari-
ance at time t and the observation and track indices are i and
j. We only pair observations if the Mahalanobis distance is
below a fixed threshold δmax. Furthermore, we enforce a max-
imum Euclidean distance dmax between detections and position
hypotheses. If for one observation both thresholds are satisfied
for multiple tracks, we pair it to the one with the highest prob-
ability density value

pi j =
1√

(2π)3detŜi j(t)
exp

(
−

1
2

vT
i j(t)Ŝ

−1
i j (t)vi j(t)

)
. (19)

If multiple observations are paired with one track at time t, we
update it successively with all paired observations. If an obser-
vation was not paired, a new track is initialized. Finally, if there
is no observation for a track, we perform a prediction without
observation update.

Each track also has one HMM associated to it for estimating
the class c of the tracked person, according to

p(ct | c′1:t) = ηp(c′t | ct)
∑
ct−1

p(ct | ct−1)p(ct−1 | c′1:t−1). (20)

0

5

10

15

20
·103

category

#
In

st
an

ce
s

DepthJet RGB

0 - 1
1 - 2

2 - 3
3 - 4

4 - 5
5 - 6

6 - 7
>

7
0

5

10

·103

centroid depth (m)

#
In

st
an

ce
s

Figure 5: Number of instances per class (top) and per 3D centroid depth (bot-
tom) in the Mobility Aids Dataset.

It models the probability of the tracked person to belong to a
given class ct, given the past observations c1:t. Here, ct is hid-
den, since we only get observations c′t for it. The measurement
model p(c′t | ct) connects the hidden with the observed variable
for time step t. The HMM further assumes that the class ct can
randomly change from one time step to the next, represented by
the transition model p(ct | ct−1). In a hospital, a possible tran-
sition could be person with crutches → pedestrian → person
in wheelchair for a patient who has just finished physiotherapy
and hands over his crutches to return to his wheelchair. We ini-
tialize the HMM with a uniform prior p(c1) over all categories.

The softmax output of deep neural network classifiers like
Faster R-CNN could be interpreted as p(ct | c′t). However,
training with one-hot encoded labels results in very peaky dis-
tributions and over-confident estimates. Therefore, we will not
employ the network scores directly for filtering. Instead, we
analyze the detections and labels for the test dataset 1 to deter-
mine the underlying probability distributions statistically. The
amount of detections for one class given a certain label deter-
mines the measurement model p(c′t | ct) of the HMM. It corre-
sponds to the normalized confusion matrix of our classifier. The
transition model p(ct | ct−1) is given by the amount of transi-
tions from one class to the other with respect to the total number
of transitions. Due to the limited amount of examples in the val-
idation set, we might not observe all class transitions and con-
fusions, even if they are possible. Therefore, we assign small
probabilities to all unobserved but possible transitions and false
detections, using a Dirichlet prior.

The data association for the HMM is given by the EKF. If
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Table 2: Object detection performance in terms of average precision (AP, in %), detection only, on the Mobility Aids Dataset. We show the 2D image APs and the
APs at a detection distance threshold of 0.5 m.

mAP
Method Network 0.5 m 2D 0.5 m 2D 0.5 m 2D 0.5 m 2D 0.5 m 2D 0.5 m 2D

D
ep

th
Je

t Fast G-xxs
[18] 75.8 81.2 94.8 96.0 49.6 51.8 76.3 76.6 63.7 64.8 72.04 74.10

R-CNN
Faster

R-CNN
centroid

R-50 80.6 84.5 92.5 96.6 77.4 84.9 85.6 88.3 67.8 68.6 80.78 84.61
VGG-M 77.3 81.5 93.5 95.4 78.8 81.0 80.8 81.5 66.5 67.7 79.38 81.41
G-xxs 77.0 82.8 93.6 94.8 67.3 74.7 84.3 84.7 67.9 69.2 78.01 81.23

R
G

B

Fast G-xxs
[18] 68.1 74.9 91.0 92.0 76.1 72.4 71.5 74.2 80.1 82.2 77.37 79.16

R-CNN
Faster

R-CNN
centroid

R-50 84.3 93.5 95.5 98.8 93.9 95.0 95.0 96.8 89.4 98.5 91.62 96.52
VGG-M 73.1 87.2 92.4 98.4 94.8 98.3 88.2 91.3 88.2 98.3 87.35 94.71
G-xxs 74.6 89.0 91.9 98.1 90.4 96.3 88.4 93.4 94.7 97.3 87.98 94.84

there is no observation ct for a track at time step t, we treat it as
a background detection in the HMM. The position, velocity and
class estimator removes tracks with a standard deviation in po-
sition above a threshold σxy,max. Furthermore, tracks where the
background class is dominant are deleted. Tab. 1 summarizes
the threshold values we used during the experiments.

4. Experiments

In this section we introduce our dataset and evaluate the per-
formance of the Faster R-CNN detection module and our entire
perception framework. Additionally, we present a real-robot
scenario where the robot uses our perception pipeline to give
special assistance in a person guidance task.

4.1. Mobility Aids Dataset

We annotated the RGB and DepthJet images in out Mobility
Aids Dataset on a 2D bounding box level with additional 3D
centroid depths for each bounding box to train and evaluate our
approach. Images were collected in the facilities of the Faculty
of Engineering of the University of Freiburg and in a hospital in
Frankfurt using a mobile Festo Robotino robot, equipped with
a Kinect 2 camera mounted 1 m above the ground and capturing
images at 15 frames per second. The robot was controlled by
a notebook computer running ROS (Robot Operating System).
The 3D centroid labeling procedure is described in Appendix
A.

The dataset is subdivided into subsets for training, validation,
and testing. We use two test sets to evaluate the performance of
the approach. Test set 1 contains 4317 frames and we use it to
evaluate the detection methods. We use test set 2 for testing our
method in combination with our probabilistic position, velocity
and class estimation module. It contains a total of 1801 frames
merged from 4 video sequences and in contrast to test set 1 the
ground truth labels consider also occluded objects. Note that
we use test set 1 as a validation set to tune the parameters of
the HMM and EKF (Sec. 3.2). Fig. 5 shows the number of in-
stances for each class and for different centroid depth intervals
contained in the Mobility Aids Dataset, for DepthJet and RGB.

Note that some images inside the hospital were only recorded in
DepthJet because of privacy concerns. Furthermore, some peo-
ple visible in the RGB images are not visible in the DepthJet
images, because of the limited depth range of the camera.

4.2. Object Detection Performance

In this section we evaluate and compare the object detec-
tion performance of the Faster R-CNN module in combination
with our 3D centroid regression separately, without the track-
ing module. We compare our detection module to our previous
work [18], which was also designed and trained for detecting
people according to their mobility aids. One major difference
between this approach and our previous work is the estimation
of the 3D centroids for the detections. Previously, we used
clustered point clouds obtained from the depth images to gen-
erate detection proposals, which were then processed by Fast
R-CNN. We determined the centroid depth as the mean depth
of all proposal cluster points. In contrast, in our Faster R-CNN-
based framework we regress the 3D centroid in the network.
We further compare different backbone architectures: ResNet-
50 [50] (in the following denoted by R-50), VGG-CNN-M [51]
(VGG-M) and GoogLeNet-xxs [38] (G-xxs), which we also
used in our previous approach.

We use the standard mean average precision (mAP) metric
for evaluation. To calculate the mAP, we pair each detection
to the ground truth example with the highest 2D bounding box
intersection over union above a threshold of 0.5. The detec-
tions are paired with decreasing confidence and each label can
only be paired to one detection. To include the 3D centroid re-
gression performance in the metric, we additionally only count
detections for which the absolute difference between the esti-
mated and true centroid depth is below a threshold and vary
this threshold during evaluation. Detections with depth errors
above the threshold are regarded as false negatives. Since we
cannot determine the depth errors for detections and labels that
could not be paired, they are regarded as false examples irre-
spective of the depth error threshold. Note that some examples
do not have depth labels (see Appendix A). Detections paired
to those labels are ignored and do not contribute to the metric.

7



0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

distance threshold (m)

m
A

P

DepthJet

0 0.25 0.5 0.75 1
distance threshold (m)

RGB

Faster R-CNN R-50
Faster R-CNN VGG-M
Faster R-CNN G-xxs
Fast R-CNN G-xxs

Figure 6: Mean average precision comparison of Fast- and Faster R-CNN with different backbone architectures as a function of the detection distance threshold.
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Figure 7: Variation of the centroid depth error with respect to the distance of people to the camera. The centroid depth error is the absolute distance between true
and regressed centroid depth. The boxes show the interquartile range with the median, while the whiskers mark the 5th and 95th percentile. For visibility, we only
mark the three greatest outliers at each interval with circles and put them above the plot area with the error value next to them if they exceed the range of the plot.

However, unpaired labels without depth information still count
as false negatives. Due to the ignored detections, the 2D image
mAP is different from the depth error mAP, even as the thresh-
old approaches infinity.

Tab. 2 compares the depth error APs for the Mobility Aids
Dataset at a threshold of 0.5 m as well as the 2D image APs,
ignoring the depth labels. Note that we also update prior re-
sults presented in [18] for GoogLeNet-xxs with Fast R-CNN
by applying minor modifications during test time (we allow
multiple detections of different classes per segment, which im-
proves mAP). Consistent with the results in [20], Faster R-CNN
clearly outperforms Fast R-CNN for the 2D image mAP met-
ric. In addition, the depth error mAPs at 0.5 m for our approach
are higher than for Fast-RCNN for all backbone architectures.
Fig. 6 shows the evolution of the mAP as a function of the depth
error threshold for the different methods. For all backbones
architectures, our approach surpasses the performance of our
prior work after a threshold of 0.3 m. Our previous work can
estimate the centroid depths very precisely, as illustrated by the
steep ascent of the mAP curve at low distance thresholds. The
mAP curve, however, ends at a much lower level compared to

our approach, which shows that it misses a lot of examples that
our approach can detect. The differences are especially promi-
nent for the RGB detection results, which is explained by the
limited depth range of the camera. Fig. 7 compares the centroid
regression performance in more detail. It shows the absolute
distance between the true and estimated centroid depth at dif-
ferent depth intervals. Note that we only evaluate the depth
regression error for positive detection-label pairs. It is again
visible that Fast R-CNN yields in general lower centroid depth
errors. However, it also produces a few strong outliers, likely
because some of the proposals were generated from depth in-
formation not belonging to the detected persons. Our approach
produces fewer strong outliers, but the depth regression errors
are overall higher. We can also see that our approach yields
better centroid depth regression performance for the DepthJet
dataset, which is expected since the DepthJet images include
the color-encoded depth information. For both image modal-
ities, the medium range between 1 m and 5 m has the lowest
depth errors. This range corresponds to possible human-robot
interactions within a short time window. For the greater dis-
tances, the error increases. Especially on RGB images we need
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Figure 8: Runtime vs. mAP comparison for Fast- and Faster R-CNN with
different backbone architectures, for the DepthJet dataset.

to expect larger depth errors with increasing distance. Future
work should further investigate how the 3D object detection
performance for the close and far range can be improved. Nev-
ertheless, the results show that our work presents a great im-
provement with regards to our previous work, because it can
perceive people that were previously missed entirely. Applica-
tions that do not require centimeter accuracy can profit greatly
from our new approach. Fig. 11 shows qualitative detection re-
sults for RGB and DepthJet.

We further compare the runtime and mAP performance of
the methods, see Fig. 8. To this end, we vary the number of
top scoring proposals evaluated by Faster R-CNN, between 10,
100 and 1000 proposals per image. With Fast R-CNN we used
on average 450 proposals per image [18]. Faster R-CNN with
the VGG-M network architecture provides the best tradeoff be-
tween runtime and performance. With 100 proposals for each
image, the forward pass takes 48 ms and the mAP is 0.80. Mea-
surements are obtained using a computer with 12-Core CPU
and a GeForce GTX TITAN X with 12GB of memory.

4.3. Framework Detection Performance

We evaluate our complete framework on our test set 2 to as-
sess the contribution of the different framework modules for the
overall detection performance. We compare the performance
in terms of precision and recall rather than mAP, because the
tracker processes thresholded detections. To be comparable to
Tab. 2, we choose the detection thresholds from the mean av-
erage precision points of test set 1. Furthermore, we evaluate
the mean absolute distance between the predicted and true 3D
centroid depth. Fig. 9 shows the precision and recall scores
of the framework stages for RGB and DepthJet. Test set 2 is
especially challenging because of occlusions, which explains
that the recall scores are lower than expected from the test set
1 evaluation. In the DepthJet case, the EKF stage decreases
the recall, while the precision only improves slightly. The ad-
dition of the HMM finally boosts the precision by ten percent
points compared to detection only and recovers the recall back
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Figure 9: Object detection performance evolution with respect to stand-alone
Faster R-CNN, VGG-M backbone.
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Figure 10: Depth regression performance evolution with respect to stand-alone
Faster R-CNN, VGG-M backbone.

to the detection level. For the RGB case, the tracking module
improves recall by almost four percent points, while the preci-
sion is slightly decreased by two percent points. The detector is
already very strong, so that filtering over time can resolve oc-
clusions and thus improves recall, but filter effects like errors in
the assumptions of constant velocity or wrong data associations
impact the precision. Fig. 10 summarizes the centroid depth
regression error for the detection stages, which is not greatly
influenced by the tracking stages. All in all, the experiments
confirm that the tracking module has positive effects on the de-
tection performance, even for the already strong RGB detector.

4.4. Person Guidance Scenario

To show the applicability of our framework to a real-world
service robot task, we test our system in a person guidance sce-
nario. The task of the robot is to guide visitors to the profes-
sor’s office in our lab, building 80 at the Faculty of Engineering
of the University of Freiburg. The professor’s office is located
at the first floor, opposite the staircase at the main entrance. An
elevator is available at the other side of the corridor.

This experiment is an extension of the one presented in our
previous paper [18]. Previously, the robot selected the desti-
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Figure 11: Qualitative object detection results obtained using the Faster R-CNN network with VGG-M backbone, for DepthJet and RGB. Left: positive examples.
Right: cases of failure with missed or multiple detections and wrong classifications.
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stairs
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Figure 12: We use our framework to provide assistance in a person guidance experiment. The task of the robot is to guide all pedestrians to the nearest staircase
(left image) and all people with mobility aids to the elevator (right image).

nations based on the perceived mobility aids categories of the
visitors and traveled at a lower velocity when guiding people to
the elevator, but it navigated to the destination without further
considering the followers. In this experiment, the robot tracks
the followers while navigating and constantly adapts its veloc-
ity to them.

Our robot uses a laptop computer with an 8-Core CPU and a
GeForce GTX 1080 with 8GB of memory. We use our RGB
network with the probabilistic class and velocity estimation
module to process the color images of the Kinect 2 camera
mounted on the robot at approx. 15 frames per second. We do
not use the depth data of the Kinect 2 for this experiment. To
ensure that the followers remain in the field of view of the robot,
we point the camera to the back of the robot. For the navigation
parts we employ the ROS navigation stack [53] in combination
with a laser rangefinder pointing to the front of the robot for
localization and obstacle avoidance. We use the global planner
package from the ROS navigation stack to generate the global
navigation paths. For the local path planning, we adopt the
omni path follower ROS package [54], which generates veloc-
ities for omnidirectional robots to closely follow a navigation
path.

We select the initial waiting pose of the robot in the hallway
of the ground floor as well as two goal poses, see Fig. 12. At
the waiting pose, the robot is facing the wall while the cam-
era is pointing backwards into the hallway. The robot observes
an area of interest 3 m in front of the camera and within ±20◦

from its center. Once it detects a person in this area with an
absolute velocity of less than 0.25 m s−1, it starts to navigate to
one of the two goals. For pedestrians without perceived mo-
tion impairments, it navigates to the goal by the stairs; people
with mobility aids are guided to the elevator. The robot uses
predefined speech commands to ask the visitors to follow it and
inform them how to proceed to the professor’s office once the
navigation goal is reached. Upon reaching the destination, the
robot returns to the waiting pose and waits for the next visitor.

To make sure that the visitors can follow the robot, it keeps

track of them during navigation. To this end, the robot retains
the track associated to the follower until it reaches its goal. Dur-
ing navigation, the robot always turns the camera towards this
person by rotating the base with a rotational velocity of

ω = kω arctan(
yr

−xr
) (21)

during path following, where xr and yr denote the position of
the person in the robot coordinate frame and kω is a proportional
gain. The robot coordinate system is at ground level with the
x-axis pointing forward and the y-axis pointing to the left. Note
that since our robot is omnidirectional, it can follow a path at
arbitrary orientations. This enables it to perform a base rotation
for keeping the follower in view while navigating to the goal.

The perceived mobility aids give some indication of the pre-
ferred velocity of the follower, since people with mobility aids
tend to move slower than people without motion impairments
[12]. Therefore, our robot chooses an initial guidance veloc-
ity of v0 = 0.2 m s−1 when guiding a person with walking aids,
compared to v0 = 0.4 m s−1 when guiding a pedestrian. How-
ever, the motion capabilities likely vary greatly from person to
person. Therefore, our robot adjusts its guidance velocity to the
person at each time step t to

vt = vt−1 + kv (d− | xr |) . (22)

Here, d is a fixed target distance between the robot and the per-
son and kv is a proportional gain. We additionally restrict the
guidance velocity to 0 m s−1 ≤ vt ≤ 0.5 m s−1. The target dis-
tance d is determined as the distance at which the person ap-
proached the robot in the waiting area, plus a small offset of
+0.2 m to account for the robot driving ahead. If the track of
the follower is removed because the background class is domi-
nant or the position uncertainty is too high, the robot considers
a person as lost. When it looses the follower, the robot turns
towards the path and travels to its destination with the initial
guidance velocity v0.

We tested twenty guidance runs with different people from
our lab, four for each of the mobility aids categories: pedes-
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trian, person with crutches, person in wheelchair, person
with walking frame and person pushing another person in a
wheelchair. We marked the waiting area between 1.5 m and 3 m
in front of the camera with tape on the floor and asked the par-
ticipants to approach the robot at the waiting area and follow it
once it gives the speech command. Furthermore, we asked the
test subjects to keep a distance to the robot roughly as indicated
by the tape during the entire experiment to make sure they stay
in the field of view of the camera. Additionally, we told the
participants that the robot would adjust its velocity to them, so
they could walk as fast as they like.

In all of the runs, the robot perceived the correct mobility aids
category and successfully navigated the follower to the right
destination. Furthermore, the robot successfully kept track of
its follower until it reached the goal in seventeen runs. It lost
track of the person in one run with a pedestrian and in two runs
where a person was pushing another person in a wheelchair. In
these runs, the people came too close to the camera and were
therefore not detected for multiple frames. A different camera
with a wider field of view could be used to solve this prob-
lem. Furthermore, the robot could try to find the follower again,
maybe taking visual features into account. This is, however,
out of the scope of this paper and remains for future work. The
tracking module estimated the correct class of the follower in
92.9 % percent of all frames, over all runs. The mean guid-
ance velocity of the robot was 0.38 m s−1 with a standard devi-
ation of 0.09 m s−1. Here, the robot moved at an average speed
of 0.36 m s−1 when guiding people with walking aids and at
0.42 m s−1 when guiding pedestrians. However, these velocities
are not very meaningful since all test subjects were young and
healthy. They were physically able to keep up with the robot,
therefore they likely co-adapted to its velocity. Many of the
test subjects, however, tried different velocities during the ex-
periment and also stopped to test the robot behavior. Some test
subjects reported that the robot took too long to adapt its veloc-
ity and only started moving again after a stop when they came
very close. More sophisticated approaches to person guidance
could be used to generate a more natural and prompt guidance
behavior, but exceed the scope of this paper.

The experiment confirms that our approach can be success-
fully applied on a moving robot in an authentic environment.
Further, it shows how our approach can be used to give appro-
priate, individual assistance to people, according to their needs.

5. Conclusion

We proposed a perception system to detect and distinguish
people according to the mobility aids they use, based on a deep
neural network and supported by tracking and class estimation
modules. Our approach shows a significant increase in object
detection performance, compared to a Fast R-CNN baseline
with depth-based proposal generation. We added a 3D centroid
regression output to our network which enables us to estimate
the 3D centroids of people from image data only and without
additional geometric information. In our person guidance ex-
periment we showed that our detection pipeline enables robots
to provide individual assistance to people with advanced needs.

In the future, we will further examine how the additional infor-
mation provided by our framework can improve the behavior
of robots in populated environments, for example during au-
tonomous navigation.

References

[1] T. L. Chen, C. C. Kemp, Lead Me by the Hand: Evaluation of a Di-
rect Physical Interface for Nursing Assistant Robots, in: Proc. of the
ACM/IEEE Int. Conf. on Human-Robot Interaction (HRI), 2010.

[2] K. Wada, T. Shibata, T. Musha, S. Kimura, Robot Therapy for Elders
Affected by Dementia, IEEE Engineering in Medicine and Biology Mag-
azine 27 (4) (2008) 53 – 60.

[3] J. Eriksson, M. J. Mataric, C. J. Winstein, Hands-off Assistive Robotics
for Post-Stroke Arm Rehabilitation, in: Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2005.

[4] J. M. Evans, HelpMate: An Autonomous Mobile Robot Courier for Hos-
pitals, in: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 1994.

[5] M. Y. Shieh, J. C. Hsieh, C. P. Cheng, Design of An Intelligent Hospital
Service Robot and Its Applications, in: Proc. of the IEEE Int. Conf. on
Systems, Man and Cybernetics (SMC), 2004.

[6] M. Takahashi, T. Suzuki, H. Shitamoto, T. Moriguchi, K. Yoshida, De-
veloping a mobile robot for transport applications in the hospital domain,
Robotics and Autonomous Systems 58 (7) (2010) 889 – 899.

[7] F. Capezio, F. Mastrogiovanni, A. Scalmato, A. Sgorbissa, P. Vernazza,
T. Vernazza, R. Zaccaria, Mobile Robots in Hospital Environments: an
Installation Case Study, in: Proc. of the Eur. Conf. on Mobile Robots
(ECMR), 2011.
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Appendix A. 3D Centroid Labeling

We label the 3D centroid depths from the depth images of the
dataset after annotating the 2D bounding boxes. For the cen-
troid depth labeling, we only consider the DepthJet labels, be-
cause they definitely include depth information describing the
person. We convert each depth image to a point cloud and re-
move the ground plane. Then we extract the part of the point
cloud which belongs to the 2D bounding box. Finally, we clus-
ter the extracted part and calculate the 3D centroid of each clus-
ter as the mean of all points belonging to the cluster.

Now we need to decide which cluster best represents the per-
son. For both test sets, an experimenter selected the most rep-
resentative clusters by hand. For the training split, we used a
simple heuristic to choose the best cluster from the following
criteria:

• cluster size

• distance between cluster center and bounding box center
in the image

• depth of cluster centroid.

The cluster size and distance ensure that the heuristic selects
a dominant cluster, the cluster depth criterion favors clusters
closer to the camera to avoid choosing parts of the background.
For all clusters in a bounding box we calculate a score repre-
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senting each criterion:

ssize,i =
ncl,i∑
i ncl,i

(A.1)

sxy,i =

√
(xcl,i − xim)2 + (ycl,i − yim)2√

w2
box + h2

box

(A.2)

sz,i = 1 −
zcl,i

zmax
(A.3)

The number of points in each cluster i is ncl, (xcl, ycl) are the
image coordinates of the cluster center and wbox and hbox are
the bounding box width and height. The maximum range of the
Kinect is denoted by zmax and zcl is the centroid depth of the
cluster. All scores range between 0 and 1, and we choose the
ground truth centroid depth of the 2D bounding box as zcl of the
cluster with the maximum overall score

si = ssize,i · sxy,i · sz,i. (A.4)

We evaluated our heuristic on 500 manually labeled bound-
ing boxes where an experimenter selected the most represen-
tative depth clusters. The heuristic selects the same cluster in
97.8 % of the cases. For the remaining 2.2 %, the mean abso-
lute depth error between the clusters was 1.78 m. This means
that our heuristic is very reliable, but outliers are possible. Af-
ter labeling the 3D centroid depths for the DepthJet dataset, we
transfer them to the RGB bounding boxes. For labels which
are present in RGB but not in DepthJet, e.g. due to the limited
depth range of the camera, we deactivate the depth label by set-
ting p∗z,cam = 0, see Eq.3.
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