
Predicting Obstacle Footprints from 2D Occupancy Maps
by Learning from Physical Interactions

Marina Kollmitz1 Daniel Büscher1 Wolfram Burgard1,2

Abstract— Horizontally scanning 2D laser rangefinders are
a popular approach for indoor robot localization because of
the high accuracy of the sensors and the compactness of the
required 2D maps. As the scanners in this configuration only
provide information about one slice of the environment, the
measurements typically do not capture the full extent of a large
variety of obstacles, including chairs or tables. Accordingly,
obstacle avoidance based on laser scanners mounted in such a
fashion is likely to fail. In this paper, we propose a learning-
based approach to predict collisions in 2D occupancy maps.
Our approach is based on a convolutional neural network
which is trained on a 2D occupancy map and collision events
recorded with a bumper while the robot is navigating in
its environment. As the network operates on local structures
only, it can generalize to new environments. In addition, the
robot can collect and integrate new collision examples after
an initial training phase. Extensive experiments carried out in
simulation and a realistic real-world environment confirm that
our approach allows robots to learn from collision events to
avoid collisions in the future.

I. INTRODUCTION

Robots are increasingly employed in spaces designed for
and populated by humans. These environments are typically
cluttered and may change over time. At the same time, we
demand rising levels of autonomy and decreasing costs from
personal robots and robots employed in public spaces. This
paper presents a novel approach to predicting collisions with
parts of objects that cannot be perceived by a mobile robot
due to the specific mounting of its sensors.

Throughout this paper, we focus on horizontally scanning
2D laser rangefinders, which are popular for autonomous
indoor navigation. Horizontally scanning laser rangefinders
only perceive one slice of the environment and therefore
typically miss large parts of obstacles. Accordingly, the
resulting 2D occupancy maps typically do not correctly
resemble the free space in the environment. One example
is depicted in Fig. 1. As large parts of the tables in the
room are not visible to the laser rangefinder, many planned
navigation paths based on the 2D occupancy map lead to
collisions. One possible solution is to use additional sensors,
such as RGB-D cameras or 3D Lidar sensors. However,
additional sensors increase the computational cost and power
consumption, and most cannot reliably perceive all obstacles
either, like glass surfaces. Bumper sensors provide a reliable
method for perceiving collisions outside the planar perceptive

*This work has been partially supported by the German Federal Ministry
of Education and Research (BMBF), contract number 01IS15044B-NaRKo.

1Department of Computer Science, University
of Freiburg, Germany. {kollmitz, buescher,
burgard}@informatik.uni-freiburg.de

2Toyota Research Institute, Los Altos, USA

Fig. 1. Navigation based on 2D occupancy information can result in
collisions for scenarios where only parts of the objects are visible (left).
Our approach predicts the obstacle footprints from 2D occupancy maps
and can, therefore, avoid collisions with parts of the objects that cannot be
perceived by the sensor (right).

field of laser rangefinders. While they are cheap and have
very low computational and power requirements, they cannot
prevent collisions; the robot can only react appropriately
to them. In addition, inferring and maintaining occupancy
from bumpers is not straight forward if the environment is
changing over time, since occupied space is never updated
if the robot avoids it.

We propose a learning method to predict collisions in 2D
occupancy maps. Our approach uses a convolutional neural
network which is trained based on collision events recorded
with bumpers. The network predicts map areas that will
likely result in collision (see Fig. 1). With our approach,
the robot can anticipate collision areas and plan paths to
avoid them. We introduce a collision dataset recorded with
a simulated robot in diverse simulated indoor scenes, which
we used to train an initial model for collision prediction. We
further demonstrate how the robot can combine simulated
data with collision examples from real-world scenarios to
train models for new environments. The contributions of our
work are as follows:

• a novel approach to predict collisions in 2D occupancy
maps learned from collision events

• a network structure that allows training on binary colli-
sion events as well as fast, efficient and high-resolution
occupancy map processing

• a dataset for 2D map learning that is tailored for
collision-free indoor mobile robot navigation with 2D
laser rangefinders

Our approach presents the first work for collision pre-
diction in the indoor mobile robotics context that al-
lows the robot to collect and integrate new training ex-
amples after an initial training phase since the robot

can collect collision examples with the onboard bumper
sensor in a self-supervised fashion. Thus, the robot can
adapt to new environments by learning better models
to represent them. Our simulated dataset and the code
for our work are available at https://github.com/
marinaKollmitz/learn-collisions.

II. RELATED WORK

Robotic systems rely on adequate models of the environ-
ments they interact with to operate safely and efficiently.
However, sensor data is noisy and typically incomplete.
Therefore, a lot of research is concerned with anticipating
and predicting missing sensor information, e.g., 3D semantic
scene completion [1] and 3D object reconstruction [2].
Another example is the work of Ondrúška and Posner [3],
who predicted occluded objects from laserscanner data.

In the context of mobile robot navigation, Burgard et al. [4]
presented an approach for laser rangefinder-based obstacle
avoidance in the presence of partially invisible obstacles. The
robot was able to avoid collisions with parts of obstacles that
the sensors could not perceive by using an adapted version
of the dynamic window approach [5], µDWA [6]. However,
a full model of the environment, including all obstacles, had
to be provided. Axelrod et al. [7] considered robot navigation
in the presence of obstacle uncertainty, but their approach is
not suitable when large parts of the obstacles are invisible
to the sensor.

Thrun [8] used a fully connected neural network to es-
timate the occupancy in maps using sonar sensor readings
as inputs. They also used simulated data to train their
model, but the approach was also not designed for cases
where large parts of the obstacles are invisible. Guizilini and
Ramos [9] learned to reconstruct 2D and 3D structures for
occupancy mapping. They trained a convolutional variational
autoencoder to recover data gaps, but they did not consider
partially detectable objects.

Various works used additional sensors for obstacle avoid-
ance, such as RGB-D sensors [10, 11]. Baltzakis et al. [12]
fused laser and visual data to perceive parts of objects which
were not visible in the laser data alone. The approaches rely
on additional sensors with high computational and power
demand, while we learn from collision events. Plagemann
et al. [13] used Gaussian process classification and regression
techniques to detect collisions with unseen obstacles. While
their approach can perceive collisions when they occur, it
cannot anticipate them beforehand.

The work by Lundell et al. [14] is closest related to ours.
The authors used a fully convolutional autoencoder to predict
laser rangefinder readings with true obstacle distances from
2D laser scans. Their later work [15] integrated the processed
laser scans into occupancy maps with uncertainty estimation.
The true obstacle distances for training were collected with a
3D camera. The authors showed that their approach can avoid
collisions with obstacles in realistic navigation scenarios.
However, it relies on an additional sensor for generating the
training examples, which is removed after the training phase.
Our approach, however, allows to integrate further training

ypatch
input

map
input

binary
output

map
output

Fig. 2. Our neural network structure can be used for binary classification on
image patches (top). During inference on map inputs, the network performs
image segmentation and outputs full resolution maps (bottom).

examples after the initial training phase and thus to adapt to
the environment over time.

Our approach relies on image segmentation techniques to
process 2D occupancy maps efficiently. Image segmentation,
especially semantic segmentation, is a very active research
field in which convolutional neural networks have caused
large gains in performance over the last years [16, 17, 18,
19, 20, 21, 22]. We predict collisions based on 2D occupancy
maps, which differ from usual image data because of their
small size and resolution. Because of the already small
spatial resolution, we want to avoid further downsampling
of the occupancy maps. Various approaches aim to maintain
a large output resolution [20, 21]. Dilated convolutions [22]
have been used in semantic segmentation to reduce the
amount of downsampling in segmentation networks [22, 19],
like in our work. We base our approach on the Fully
Convolutional Network (FCN) model [16] and use dilated
convolutions to eliminate output downsampling. The FCN
model uses convolutionalized versions of CNNs designed
originally for object detection. The FCN paradigm is well
suited for our approach because we can train our model as
a classification network on binary collision events and still
apply it efficiently for segmentation, as described in the next
section.

III. METHOD

Our goal is to segment 2D occupancy maps into collision
space and free space. At the same time, we want to learn
from binary collision events recorded by the robot in a
self-supervised fashion. Our approach is based on a neural
network that is suited both for binary classification and image
segmentation, as depicted in Fig. 2. When applied to image
patches, the network output is binary. We can hence train the
network on binary collision events, using occupancy map
patches as input. When applied to full occupancy maps,
the network efficiently slides over the input and outputs
segmented collision maps.

To achieve a network that can perform both classification
and segmentation, we follow the fully convolutional net-
work (FCN) paradigm presented by Long et al. [16]. They

y

n× n input

f = 5×5,
c = 6 f = 5×5,

d = 2,
c = 16

f = k × k,
d = 4,
c = 120

f =
2× 2,
d = 2,
c = 21

f =
2× 2,
c = 1

Fig. 3. Dilated convolution layers replace convolution and pooling in our
adapted network structure. The dilated layers enlarge the receptive field and
reduce the number of parameters. The kernel size f , dilation factor d and
the number of filters c are specified for each layer.

proposed to convolutionalize the fully connected layers of
CNNs originally designed for classification. To this end, the
fully connected layers are replaced by equivalent convolution
layers with kernels that span over all input neurons of the
layer. As fully convolutional structures, FCNs can efficiently
convolve arbitrary-sized inputs and thus segment them into
class heat maps, as visualized in Fig. 2 (bottom). For input
patches that exactly match the network input shapes, FCNs
output class predictions like the original classification CNNs
(Fig. 2 top). Image segmentation with FCNs is equivalent to
patch-wise processing of the input image, but it is much more
efficient because computations are shared over overlapping
patches.

FCNs typically downsample the input image due to strid-
ing in the network, e.g. by pooling layers. However, such
a decrease in resolution is problematic for our use-case, be-
cause we already operate on low-resolution occupancy maps.
In the original FCN paper, Long et al. [16] proposed to add
deconvolution layers with skip connections for upsampling
the class heatmaps. However, the resulting structure cannot
be trained as a binary classifier any more. Instead, we replace
the pooling layers by dilated convolutions [22] to maintain
full map resolution during inference. Dilated convolutions
have spaces between the kernel neurons, where the dilation
factor determines the number of skipped neurons. They span
larger input regions than conventional convolution filters
with the same number of neurons. Thus, they increase the
receptive field in the same way as pooling layers, but they
do not downsample the input.

Our network architecture is visualized in Fig. 3. We
base our architecture on the LeNet model [23] because it
is fast and showed superior performance on the MNIST
handwriting dataset [23], which is similar to our type of data.
The architecture is a fully convolutional version of LeNet
with dilated convolutions instead of pooling. Furthermore,
we use a sparse connectivity throughout the network to keep
the number of parameters similar to the original LeNet.

The first convolutional layer is equal to the original
LeNet; the second uses a dilation of 2. Without the pooling
layers, the feature map size after the convolutional part is
larger compared to the original LeNet. Therefore, we use a
convolution filter with a dilation of 4 after the second layer.
The filter size of the third layer k × k depends on the size

Fig. 4. Our collision classifier takes patches from the 2D occupancy map
to classify map poses into collision (red cross) and free (green checkmark).
The gray parts of the obstacle footprints are not visible in the 2D occupancy
map and are to be predicted by our approach.

of the network input n×n and is calculated by k = n/4− 3.
Note that the feature map of the original LeNet after the
convolutional part is also k × k. Thus, the dilated layer has
the same number of parameters. The last two layers of our
network are again independent of the output shape. Note
that we add dilations and reduce the number of convolution
channels compared to the original LeNet to keep the number
of parameters similar.

Our architecture can be used for classification as well
as segmentation of images at the full input resolution. In
the following, we will explain in more detail how it can
be trained on collision events and how it segments full
occupancy maps.

A. Learning from Collision Events

As visualized in Fig. 4, we train our network to classify
patches of the occupancy map. Each input patch is centered
around a map pose S = (x, y, θ)T, and the network outputs
the probability that the map pose S is in collision as mS =
p(S) ∈ [0, 1].

The parameters φ of the network are optimized using
stochastic gradient descent according to

φ∗ = argmin
φ

N∑
i=1

L
(
m̂i

S,m
i
S
)
. (1)

The number of training examples is N , and m̂S denotes the
collision label that specifies whether the robot perceived a
collision at pose S from which the input patch was generated.
The loss function L is a weighted cross-entropy loss,

L
(
m̂i

S,m
i
S
)
=

1

N

N∑
i=1

w ·m̂i
S logm

i
S+(1−m̂i

S) log(1−mi
S).

(2)
The factor w increases the contribution of the positive
training examples, which are less frequent in the dataset.

B. Segmenting 2D Occupancy Maps

Due to the fully convolutional structure, the trained colli-
sion classification network can segment full 2D occupancy
maps without further modifications. When applied for seg-
mentation, we first need to pad the input image as visualized
by the gray border in Fig. 2 to account for the shrinkage at
the image borders caused by the network size itself. Since the

1 2 3 4 5
60

70

80

90

receptive field size in m×m

av
er

ag
e

pr
ec

is
io

n
in

%
ours, known env

ours, unknown env
occupancy only

Fig. 5. Average precision for varying receptive field sizes for our approach,
compared to using the occupancy map information alone.

collision poses for training included orientation information,
we process 8 equidistant orientations for each occupancy
map. To this end, we rotate the map by θk = k · 45◦, k =
{0, ..., 7}, for predicting the collision map mθ,k. We then
take the maximum predicted collision probability for each
cell as the final map value m = maxmθ,k.

IV. EXPERIMENTS

We devised a set of experiments to evaluate the ability of
our network to predict collisions in 2D occupancy maps.
Sec. IV-A introduces our simulated collision dataset, and
Sec. IV-B describes our training setup. The classification
and segmentation capabilities are evaluated in Sec. IV-C and
Sec. IV-D, respectively. Finally, Sec. IV-E shows a real-world
scenario in which a robot combines simulated data with new
collision events to train updated models for the environment.

A. Simulated Collision Dataset

We use the SceneNet [24] synthetic indoor scenes dataset
to train and test our approach. The SceneNet dataset consists
of 3D models of 59 indoor scenes from 5 room categories
with different furniture items and room layouts. We removed
a total of 7 rooms from our set because of missing furniture
parts or different model scales and divided the remaining into
9 rooms for testing, 9 for validation, and 34 for training.

We used a simulated version of our robot Canny to
explore the simulated environments and collect collision
examples. Like the real version, the simulated Canny can
detect collisions with a force-sensitive shell [25] that per-
ceives the magnitude, impact point, and direction of collision
forces. To collect collision data, we teleported the robot to
random poses in free areas of the simulated environment
and drove it forward until it encountered a collision. We
then saved the pose of each perceived collision as a positive
collision example. During collision-free motion, we saved
non-collision examples at regular time intervals of 1 s. Here,
we selected the front corner of the robot and sampled one
configuration inside the footprint. We collected a total of
206.532 examples from the train and validation rooms, which
corresponds to almost 33 hours of exploration.

We generated ground truth collision maps by marking
whether the cells intersect with the simulated environment
models. Intersections were checked with the simulation

TABLE I
PERFORMANCE IN TERMS OF PRECISION, RECALL, AVERAGE PRECISION

AND MAP PROCESSING TIME.

prec. recall AP GPU time [s]

occupancy only 87.90 53.27 49.31 -
LeNet + patch classification 34.47 82.22 51.70 181.07
FCN LeNet + bilinear upsample 31.06 81.40 35.50 0.0825
dilated FCN LeNet (ours) 33.32 82.33 55.66 0.3118

physics engine. Note that collisions only occur at the object
borders. Therefore, we performed a wavefront exploration
from the free space inside each environment to find and
mark the object borders as collision. Areas inside objects or
outside the environments do not have a valid label and are
ignored for evaluation. We further generated 2D occupancy
maps for each environment. To generate realistic occupancy
maps, we simulated noisy laser rangefinder beam arrays and
integrated all measurements using the counting model [26] to
produce maximum-likelihood grid maps. Example simulated
environments, together with the generated occupancy maps
and ground truth collision maps, are depicted in Fig. 6.

B. Training Setup

We implemented the collision networks in PyTorch. To
increase the impact of the less frequent positive collision
examples, we used a weight of w = 2 (Eq. (2)). We used
stochastic gradient descent with an initial learning rate of
0.025, reduced by half after each epoch, and trained for 10
epochs on mini-batches with 32 examples.

C. Evaluation of Collision Classification

The first experiment evaluates the performance of our
binary classifier on our simulated collision dataset. We
performed 3-fold cross-validation on the training set. The
leave-out set is not part of the training, but it is composed of
collisions samples collected in the same environments used
for training. We will refer to the leave-out set as known env
set. The final model is trained on the entire training set and
tested on the validation set. The validation set examples stem
from unseen environments, referred to as unknown env.

To analyze the influence of the network receptive field on
the classification performance, we vary the network input
sizes during training and testing between 20 × 20 and
100 × 100 pixels, corresponding to 1 × 1 m2 and 5 × 5
m2 at 0.05m map resolution. Note that the receptive field
size does not influence the prediction resolution, since the
network always estimates only the center pixel (Fig. 2). We
compare our network performance to the naive ”occupancy
only” baseline where we classify a pose as collision if
the corresponding cell in the occupancy map is occupied
and as free otherwise. Fig. 5 shows the performance of
our approach and the occupancy only baseline in terms
of average precision for varying network input sizes. Even
for small receptive fields, our approach outperforms the
baseline by a large margin. This confirms that our approach
can learn to predict collisions in 2D occupancy maps from

a) simulated environment b) occupancy map c) collision ground truth d) segmented collision map

Fig. 6. Example simulation environments used for data generation with occupancy and ground truth collision maps and segmentation outputs of our
approach.

collision events. For the unknown env set, the performance
slightly drops for receptive fields larger than 2 × 2 m2.
The drop could indicate that collision examples that rely on
local features, captured by small receptive fields, are similar
between the known and unknown environments. However,
more complex examples, captured only by larger receptive
fields, differ between the sets. Therefore, a larger receptive
field can cause a loss in performance by overfitting to specific
environments. The gain in performance with larger receptive
fields on the known env set, where the network can exploit
more information from known arrangements of objects, also
supports this hypothesis.

The receptive field choice depends on the environment
complexity and is always a trade-off between performance
and inference speed. In the following, we will show results
for the 3× 3 m2 receptive field network only.

D. Evaluation of Occupancy Map Segmentation

The second experiment evaluates the ability of our ap-
proach to segment occupancy maps. We test on the occu-
pancy maps in the test split, which was not part of the
training set. To evaluate the collision map reconstruction
performance, we calculate pixel-wise precision and recall
and regard a cell as in collision if the predicted collision
probability is larger than 0.5. We further compare the av-
erage precision score and the runtime on an Nvidia Titan
Black GPU, normalized for a 100 × 100 pixel input. The
ground truth collision map was generated from simulation,
as described in Sec. IV-A. As before, we compare our
approach with the occupancy only baseline where the col-
lision probability of each cell corresponds to its occupancy
value. We also evaluate the map processing performance of
other network variants to test the impact of our network
adaptations from the original LeNet. We first compare our
approach to the original LeNet with patch processing. Instead
of convolving the network over the input image, all cells
are processed individually by sampling image patches. The

second variant is a fully convolutional version of the original
LeNet, including the pooling layers. The pooling layers
downsample the input image by a factor of 4. Therefore, we
perform bilinear upsampling to yield the full map output size.
Note that we do not consider larger networks like AlexNet
[27], VGG [28] or ResNet [29] because their large input
dimensions make them unsuitable for our low-resolution map
data. Furthermore, they strongly downsample the input due
to the many pooling layers.

Tab. I shows the map segmentation performance. All
architecture variants show a drop in precision but a notable
improvement in recall compared to the occupancy only
baseline. The occupancy only baseline represents the pixels
that are definitely in collision, resulting in a high precision
score. However, the low recall shows that it misses large
parts of the actual collision space. The networks tend to
overestimate the collision space, hence the drop in preci-
sion, but identify many previously missed collision areas,
as shown by the higher recall. The LeNet variant with
patch classification performs comparably to our approach,
but the runtime is orders of magnitude higher. In contrast,
the fully convolutional LeNet yields very fast processing
speeds. However, the down- and upsampling causes a notable
segmentation performance drop. Our approach combines
both fast processing speeds with high segmentation scores
and even outperforms patch classification in terms of average
precision.

This experiment confirms that our approach can process
occupancy maps fast and that it can successfully identify
areas in the map where collisions may occur. However,
we can see that our approach is often too conservative
and classifies areas as in collision that are actually in free
space. For navigation, we argue that overcautious obstacle
avoidance is preferable to risking collisions. However, over-
estimating occupancy can lead to incomplete path planning
in tight spaces. In future work, we plan to investigate
exploration/exploitation strategies so the robot can test and

Fig. 7. Top: Office environment for the real-robot experiment. Our force
sensitive robot Canny is collecting new collision examples for improving
the environment model. Bottom: 2D Occupancy map (left) and collision
map with recorded collision poses (right).

confirm if map areas are actually occupied. Fig. 6 shows
example occupancy and ground truth collision maps as
well as collision maps generated by our approach for two
simulated environments.

E. Real Robot Experiment with Canny

Finally, we show the performance of our network for a
real-robot scenario. Our force-sensitive robot Canny operated
in the previously unseen office environment depicted in
Fig. 7. Also shown are the occupancy and the manually
annotated ground truth collision maps. The environment
is challenging because a large portion of the objects is
not visible in the 2D occupancy map: e.g., only the table
legs are visible. This experiment evaluates both the ability
of our approach to generalize from simulation to the real
robot as well as the retraining performance on new collision
examples. For retraining, we collected 40 new collision
examples by colliding the robot with the room furniture. We
first trained our approach on the training set from simulation
and iteratively retrain with the new collision examples. We
add the new collision examples to the training set and retrain
the model from scratch, as described in Sec. IV-B. To give
them more weight, we added 100 copies of the new collision
examples to the training set.

Fig. 8 shows the performance of our approach after retrain-
ing with varying numbers of collision examples, compared
to the occupancy only baseline. The segmented collision
maps of our approach after integrating 0, 10 and 40 collision
examples are visualized in Fig. 9. As in the previous exper-
iment, we can notice a drop in precision for our approach
compared to the baseline, but the recall improved by a large

0 10 20 30 40

40

60

80

100

new collisions

pe
rf

or
m

an
ce

in
%

ours, recall
ours, prec.
occ. recall
occ. prec.

Fig. 8. Map segmentation performance for the real office environment vs.
number of integrated new collision examples.

40 examples10 examplesno retraining

Fig. 9. Processed collision maps before retraining and after integrating 10
and 40 collision examples from the new environment.

margin. Without the new collision examples, we already see
a greatly improved recall, which means that the robot can
already anticipate a large fraction of the collisions in the
new environment with the model trained in simulation. The
recall further improves with a rising number of integrated
collision examples, which means that the approach can
improve its model over time. Fig. 9 shows qualitatively that
the robot learns an improved model: The contours of the
previously unseen objects are more and more visible with
an increasing number of new collision examples. Fig. 1
shows two navigation paths planned between two poses in
the environment: one on the original 2D occupancy map
and one with our approach. While the original path results
in a collision, our approach can prevent the collision and
produces a safe navigation path.

V. CONCLUSION AND FUTURE WORK

We presented a novel approach for predicting collisions
in 2D occupancy maps build with horizontally scanning
2D laser rangefinders. Our approach uses a convolutional
neural network trained on collision events recorded with a
bumper. Our experiments confirm that the model trained on
a simulated collision dataset can reliably predict collisions
in 2D occupancy maps. We also show that the performance
of our approach can be further improved by integrating new
collision examples collected during real-world operation. In
future work, we plan to incorporate exploration/exploitation
techniques to confirm that the space predicted as occupied
actually leads to a collision and actively guide the robot to
such areas.

REFERENCES

[1] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and
T. Funkhouser, “Semantic scene completion from a single
depth image,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[2] J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. Allen,
“Shape completion enabled robotic grasping,” in International
Conference on Intelligent Robots and Systems (IROS), 2017.

[3] P. Ondrúška and I. Posner, “Deep tracking: Seeing beyond see-
ing using recurrent neural networks,” in National Conference
on Artificial Intelligence (AAAI), 2016.

[4] W. Burgard, A. Cremers, D. Fox, D. Hähnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun, “The interactive mu-
seum tour-guide robot,” in National Conference on Artificial
Intelligence (AAAI), 1998.

[5] D. Fox, W. Burgard, and S. Thrun, “The dynamic window ap-
proach to collision avoidance,” IEEE Robotics & Automation
Magazine, vol. 4, no. 1, pp. 23–33, 1997.

[6] D. Fox, W. Burgard, S. Thrun, and A. B. Cremers, “A
hybrid collision avoidance method for mobile robots,” in
International Conference on Robotics and Automation (ICRA),
1998, pp. 1238–1243.

[7] B. Axelrod, L. P. Kaelbling, and T. Lozano-Pérez, “Provably
safe robot navigation with obstacle uncertainty,” International
Journal of Robotics Research (IJRR), vol. 37, no. 13-14, 2018.

[8] S. Thrun, “Learning metric-topological maps for indoor mo-
bile robot navigation,” Artificial Intelligence, vol. 99, no. 1,
1998.

[9] V. Guizilini and F. Ramos, “Learning to reconstruct 3D
structures for occupancy mapping,” in Robotics: Science and
Systems (RSS), 2017.

[10] A. Oliver, S. Kang, B. C. Wünsche, and B. MacDonald,
“Using the kinect as a navigation sensor for mobile robotics,”
in Conference on Image and Vision Computing New Zealand
(IVCNZ), 2012.

[11] D. Maier, A. Hornung, and M. Bennewitz, “Real-time navi-
gation in 3D environments based on depth camera data,” in
International Conference on Humanoid Robots (Humanoids),
2012.

[12] H. Baltzakis, A. Argyros, and P. Trahanias, “Fusion of laser
and visual data for robot motion planning and collision
avoidance,” Machine Vision and Applications, vol. 15, 2003.

[13] C. Plagemann, D. Fox, and W. Burgard, “Efficient failure
detection on mobile robots using particle filterswith gaussian
process proposals,” International Joint Conferences on Artifi-
cial Intelligence (IJCAI), 2007.

[14] J. Lundell, F. Verdoja, and V. Kyrki, “Hallucinating robots:
Inferring obstacle distances from partial laser measurements,”
in International Conference on Intelligent Robots and Systems
(IROS), 2018.

[15] J. Lundell, F. Verdoja, and V. Kyrki, “Deep network

uncertainty maps for indoor navigation,” arXiv preprint
arXiv:1809.04891, 2018.

[16] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015.

[17] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A
deep convolutional encoder-decoder architecture for image
segmentation,” Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), vol. 39, no. 12, 2017.

[18] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene
parsing network,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[19] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Re-
thinking atrous convolution for semantic image segmentation,”
Computing Research Repository (CoRR), vol. abs/1706.05587,
2017.

[20] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet:
A deep neural network architecture for real-time semantic
segmentation,” Computing Research Repository (CoRR), vol.
abs/1606.02147, 2016.

[21] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-
resolution residual networks for semantic segmentation in
street scenes,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[22] F. Yu and V. Koltun, “Multi-scale context aggregation by di-
lated convolutions,” in International Conference on Learning
Representations (ICLR), 2016.

[23] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, 1998.

[24] A. Handa, V. Pătrăucean, S. Stent, and R. Cipolla, “Scenenet:
An annotated model generator for indoor scene understand-
ing,” in International Conference on Robotics and Automation
(ICRA), 2016.

[25] M. Kollmitz, D. Büscher, T. Schubert, and W. Burgard,
“Whole-body sensory concept for compliant mobile robots,” in
Intermaional Conference on Robotics and Automation (ICRA),
2018.

[26] D. Hähnel, R. Triebel, W. Burgard, and S. Thrun, “Map
building with mobile robots in dynamic environments,” in
International Conference on Robotics and Automation (ICRA),
2003.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Neural Information Processing Systems (NIPS), 2012.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in International
Conference on Learning Representations (ICLR), 2015.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

