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Abstract— Autonomous systems, such as delivery robots, are
increasingly employed in indoor spaces to carry out activities
alongside humans. This development poses the question of
how robots can carry out their tasks while, at the same time,
behaving in a socially compliant manner. Further, humans need
to be able to communicate their preferences in a simple and
intuitive way, and robots should adapt their behavior accord-
ingly. This paper investigates force control as a natural means
to interact with a mobile robot by pushing it along the desired
trajectory. We employ inverse reinforcement learning (IRL) to
learn from human interaction and adapt the robot behavior to
its users’ preferences, thereby eliminating the need to program
the desired behavior manually. We evaluate our approach in
a real-world experiment where test subjects interact with an
autonomously navigating robot in close proximity. The results
suggest that force control presents an intuitive means to interact
with a mobile robot and show that our robot can quickly adapt
to the test subjects’ personal preferences.

I. INTRODUCTION

Robots that share their workspaces with people need to
consider human comfort and safety to be tolerated and
accepted. In addition, robots operating in public spaces may
encounter people with little experience with robots. In this
work, we investigate physical interaction for communicating
robot navigation preferences. Physical gestures like pushing
or guiding are familiar from our everyday experience, like
pushing a shopping cart or guiding an elderly person by
the arm. Thus, physical interaction has great potential for
intuitive human-robot communication.

Imagine a delivery robot operating in a hospital. The robot
has to ensure the safety and comfort of patients, hospital
staff, and visitors when operating in their proximity. At
the same time, the robot has a task-related objective of
transporting items from one location to another as quickly
as possible. Both objectives may contrast each other, and a
reasonable trade-off is required to do both tasks well.

To balance navigation objectives, path planning is often
formulated as an optimization problem, where the objectives
are represented as costs. Traditionally, path planning aims to
find the shortest or fastest path, but additional social costs
have been formulated for keeping appropriate interaction
distances [1, 2, 3], avoiding to pass behind a person [1],
or preferring one side for passing [2]. Adjusting the cost
function parameters for the desired robot behavior is not
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Fig. 1. A person communicates her personal space preference by pushing
the navigating robot away from her (left). Based on this interaction, the
robot adapts its navigation behavior and learns to keep a greater distance to
people (right).

straight forward since it can depend on many factors. The
preferred interaction distance, for example, is influenced by
the task and role of the robot [4], the person’s gender and
familiarity with robots [5], and the appearance [6, 7] and
speed [8] of the robot.

In this paper, we propose to learn the parameters of
the navigation cost function through physical human-robot
interaction. To this end, we formulate a cost function that
balances social space preferences and the desire to reach
a goal location. During autonomous operation, people can
correct the behavior of a navigating robot by pushing it along
the trajectory they would prefer, as depicted in Fig. 1. We
regard the corrected trajectories as expert demonstrations of
the desired robot behavior and use maximum entropy inverse
reinforcement learning to adapt the cost function parameters
accordingly. As a result, the robot learns to balance task
objectives and social constraints, allowing it to travel on
socially compliant paths.

While kinesthetic teaching has been primarily researched
for robot manipulators [9], this is the first work in the socially
compliant robot navigation context. Our approach does not
presume any particular skills or experience regarding robot
control. Furthermore, since the interaction does not require
an external control device, the robot can refine its navigation
behavior over time and continuously adapt to the people it
interacts with. In experiments and a user study with our
mobile robot Canny, we confirm that the robot can improve
its navigation behavior based on force feedback and that this
method of interaction is easy and intuitive. Our code and
experiment data are available at https://github.com/
marinaKollmitz/learning-nav-irl.



II. RELATED WORK

Various approaches have been proposed to represent hu-
man preferences during navigation. Pacchierotti et al. [10]
developed a passing module that controls the signaling and
lateral passing distance between the robot and people in a
corridor passing setting. Other works model navigation pref-
erences of people as costs for navigation to cover a broader
range of navigation scenarios. Kirby et al. [2] modeled social
space requirements and a tendency to pass a person on the
right side as additional costs for path planning. Aspects
of comfort, safety, and visibility are included as additional
navigation constraints in work by Sisbot et al. [1].

Tuning the cost function parameters for the desired robot
behavior for different robots, environments, and tasks is not
straight forward. Instead, various approaches learn robot nav-
igation behavior via human demonstrations or observations.
Trautman and Krause [11] and Luber et al. [12] learned
human-like navigation from top-view pedestrian scenes to
plan socially acceptable paths among humans. Kuderer et al.
[13] optimized joint collision avoidance models, where all
agents are expected to cooperate during navigation, via
inverse reinforcement learning. To this end, they observed
avoidance trajectories of people frequently passing each other
in an open area. Ziebart et al. [14], as well as Bennewitz
et al. [15], used observations from people walking inside
office environments to learn human path prediction models
for hindrance-free robot navigation.

The approaches presented above all learned navigation
behavior from observing humans. However, robots are not
necessarily expected to behave human-like around people
[16]. In contrast, Lichtenthäler et al. [17] proposed an
“inverse Oz-of-Wizard” approach where people teleoperated
the robot in a path crossing scenario to demonstrate how
they expected the robot to behave. Similarly, Kim and Pineau
[18] collected demonstrations via teleoperation in crowded
navigation scenarios to learn a cost function using inverse
reinforcement learning. They used a cost function with binary
features, while ours is continuous and explicitly models
personal space. Herman et al. [19] investigated inverse rein-
forcement learning for navigation scenarios where both the
cost function parameters and the state transition dynamics are
unknown. In their work, humans provided demonstrations by
controlling a simulated mobile robot in a populated hallway
scenario.

While it is possible to directly demonstrate how a robot
should behave in a given situation through teleoperation, the
demonstrators are not actively involved in the interaction.
They have to anticipate the preferences of the people the
robot interacts with. In our approach, people can directly
demonstrate their own intent via physical interaction. Fur-
thermore, since no external control device is required, the
robot can continue to learn from demonstrations over time.

Physical interaction has been frequently employed for
teaching via demonstration, often in the context of force-
sensitive manipulators [20, 21]. Our work is inspired by
Bajcsy et al. [22], who corrected the behavior of their robot

during autonomous task execution. Similar to their work,
we want to use physical interaction to enable humans to
correct the current behavior of the robot according to their
preferences. While they focus on tabletop tasks with a robot
manipulator, our goal is to find an appropriate model for
human preferences in the robot navigation domain.

So far, force-sensitive mobile robots have mostly re-
sponded to physical interaction in a reactive manner. Walking
helper systems, like the ones presented by Sabatini et al.
[23] and Spenko et al. [24], commanded a velocity based on
force feedback but did not actively navigate by themselves.
Khatib [25] presented an approach for load sharing, where
people manipulated heavy objects in cooperation with mobile
manipulators. Hirata et al. [26] also considered coopera-
tive object transportation where users guided mobile robot
helpers along a pre-planned trajectory. Load sharing policies
for cooperative transportation have been investigated by
Lawitzky et al. [27]. In their work, the task completion time
and the user effort could be reduced when robots proactively
worked towards the goal instead of reacting passively to user
input. Later, Lawitzky et al. [28] proposed to learn the motion
paths for cooperative transport of heavy objects via physical
human-robot interaction to provide proactive assistance. In
this paper, we also want the robot to adapt its behavior
based on physical interaction instead of passively reacting to
user inputs. The robot considers the user-adapted trajectories
as demonstrations of its desired behavior and adapts its
navigation cost function to match the demonstrations.

III. LEARNING FROM PHYSICAL INTERACTION

This section presents our approach to learning naviga-
tion behavior from physical interaction. Sec. III-A briefly
introduces our force-sensitive robot Canny and explains
how people can demonstrate their desired robot behavior.
Sec. III-B gives an overview of the inverse reinforcement
learning technique we employ to learn from the resulting
demonstrations. Finally, Sec. III-C introduces our navigation
reward function to model the navigation task. Note that while
the term cost function is prevalent for path planning, we will,
in the following, use the term reward function that is common
in the (inverse) reinforcement learning context.

A. Demonstrating Desired Robot Behavior

Our robot Canny uses a 6-DoF force-torque sensor be-
tween its omnidirectional mobile base and its solid shell to
perceive interaction forces [29]. During autonomous navi-
gation, the robot commands a navigation velocity vnav =
(vnav,x, vnav,y)T to follow its navigation path. The robot
further overlays external command velocities vcom to include
user feedback. The resulting robot velocity is

vr = vnav + vcom. (1)

To integrate force feedback, an interaction force F =
(Fx, Fy)T is translated to a proportional velocity command,

vcom,F = k · F, (2)



where k (in [s kg−1]) is the proportionality factor. Other in-
put modalities can be integrated to adapt the robot behavior,
following Eq. 1.

B. Learning Human-Aware Navigation from Demonstrations

We see the user-adapted paths as demonstrations of the
desired robot behavior and use Inverse Reinforcement Learn-
ing (IRL) to adapt the reward function to produce similar
behavior without human interaction. We model the robot
navigation task as a Markov Decision Process (MDP) M =
(S,A, T, r) with states S, actions A, a transition model T ,
and a reward function r. The 10× 10 cm2 grid cells of the
navigation map are the MDP states S, and the actions A
are traversing to adjacent map cells in an eight-connected
fashion. We assume a deterministic transition model s′ =
T (s, a), i.e., executing action a from state s always results in
the same next state s′. Finally, we are given a reward function
rθ with unknown parameters θ and a set D of demonstrations
τ̃i = (s0, a0, . . . , aNi−1 , sNi)i, i = 1, . . . , |D|, of varying
lengths Ni. The goal is to recover the parameters θ∗ that
best explain this set of given demonstrations.

In our work, we learn from human demonstrations, and
we cannot assume that humans always act optimally when
performing a task. Our approach therefore follows the Max-
imum Entropy IRL method of Ziebart et al. [30], which
processes noisy-optimal demonstrations in a probabilistic
fashion. Furthermore, it solves the inherent IRL ambiguity
– that many reward functions may be optimal for given
demonstrations – by choosing the distribution that remains
maximally uncertain beyond matching the expert demonstra-
tions.

For a given reward function rθ, the Maximum Entropy
principle assumes that trajectories τ are distributed according
to

P (τ | θ) =
1

Z(θ)
exp(Rθ(τ)), (3)

where Rθ(τ) is the sum of rewards along the trajectory τ , and
the partition function Z(θ) =

∑
τ exp(Rθ(τ)) normalizes

the distribution. While the original Maximum Entropy IRL
work [30] assumed a reward function that is linear in θ,
Wulfmeier et al. [31] showed that the formulation is also
suitable for general non-linear, sufficiently smooth reward
functions, which we adopt in this work.

To find the reward parameters θ∗ that best explain the
demonstrated behavior, Maximum Entropy IRL maximizes
the log-likelihood of the demonstrations,

θ∗ = arg max
θ

L(θ) = arg max
θ

∑
τ̃∈D

log p (τ̃ | θ) , (4)

which can be optimized using gradient-based techniques. The
gradient with respect to the reward parameters,

∇θL(θ) =
∑
τ̃∈D

∂Rθ(τ̃)

∂θ
− |D|

∑
τ

pθ(τ)
∂Rθ(τ)

∂θ
, (5)

requires to sum over all trajectories τ , which is intractable
in large discrete or even continuous state spaces. Instead, we

can unroll the trajectories to state-action pairs to obtain the
tractable representation,

∇θL(θ) =
∑
τ̃∈D

∑
(s,a)∈τ̃

∂rθ(s, a)

∂θ

− |D|
∞∑
t=0

∑
(s,a)

pθ(a | s)pθ,t(s)
∂rθ(s, a)

∂θ
, (6)

with unknowns pθ(a | s) and pθ,t(s). In practice, we replace
the infinite time horizon by a predefined or adaptively chosen
finite horizon T . The term pθ(a | s) represents the stochastic
policy inducing the distribution over trajectories in Eq. 3.
Note that the stochastic policy is different from the optimal
policy we would obtain through solving the MDP using the
standard Bellman equations. Instead, it was shown in [14]
that pθ(a | s) can be obtained by solving a “softened” version
of the Bellman update, given by

Q∼(s, a) = rθ(s, a) + V ∼(T (s, a)), (7)

V ∼(s) = log
∑
a

exp(Q∼(s, a)), (8)

which can be solved using standard value iteration. The
desired stochastic policy is then obtained via,

pθ(a | s) = exp(Q∼(s, a)− V ∼(s)), (9)

i.e., the probability of choosing an action is proportional to
the expected exponentiated future rewards.

Given the stochastic policy pθ(a | s), we can now obtain
the distribution over states pθ,t(s) at time steps t = 0, . . . , T
by propagating the policy through the state space. Starting
from an initial distribution over states p0(s), all future state
distributions can be calculated via

pθ,t+1(s′) =
∑
(s,a)

1{s′=T (s,a)}pθ(a | s)pθ,t(s), (10)

∀s′ ∈ S, where 1{·} denotes the indicator function.
Once the gradient is calculated, we can use standard

(stochastic) optimization techniques to solve for the reward
function parameters. Since we have to solve Eqs. 6-10 for
every iteration of the optimization, calculating the gradient
amounts to solving an MDP in every step. While this can
become computationally infeasible, the state-action space in
the 2D path planning domain is typically small enough for
exact solution methods [30, 14, 19], like in this work.

C. A Reward Function for Socially Compliant Navigation

In order to learn social navigation from demonstrations,
our robot first requires a general parametric reward func-
tion rθ(s, a) that explains socially compliant behavior. This
function should reflect the desire to reach a predefined goal
state sg, to avoid obstacles, and to acknowledge the personal
space of a person standing at a given state sp.

To model the goal reaching behavior of the robot, we
first plan the shortest path, which we denote by τ̄ , from
the start state s0 to the goal state sg. We then penalize the
deviation from this nominal path and add a step reward term
rstep(s, a) = ||s− s′||2, where s′ = T (s, a) is the next state,



weighted by a factor c0. The goal reaching reward is then
given by

rg(s, a) = c0 · rstep(s, a) + ag ·min
s̄∈τ̄
||s− s̄||22, (11)

with an additional weight ag on the distance to the nominal
path1.

We consider static obstacles Sobs ⊂ S as a subset of the
state space that needs to be avoided at all times. Since we
assume that our dynamics are deterministic, we can simply
assign a large penalty term for being in an obstacle state, i.e.,
robs(s) = −∞ · 1{s∈Sobs} without introducing conservatism.

To reflect the personal space requirements of a person, we
use a squared-exponential reward function,

rp(s) = ap · exp(−σp||s− sp||22), (12)

parametrized by a weight coefficient ap and scaling coef-
ficient σp to model the steepness or width of the personal
space reward. This type of distance function is well-known
to accurately describe the personal space in social naviga-
tion [1, 2].

In the terminal state sg , we set all rewards to zero, i.e.,
rg(sg, a) = rp(sg) = 0. Finally, the overall reward function
is given by the sum of the individual reward terms,

rθ(s, a) = rg(s, a) + rp(s) + robs(s), (13)

and the parameter set is given by θ = {c0, ag, ap, σp}.

IV. EXPERIMENTS

We conducted experiments with test persons to investi-
gate whether force control is suitable for interacting with
mobile robots and whether the robot can successfully learn
human-aware navigation behavior with our model. Sec. IV-
A explains the experiment design; the two experiment tasks
are evaluated in Sec. IV-B and IV-C, respectively. Finally,
Sec. IV-D evaluates the generalization capabilities of the
learned reward function.

A. Experiment Design

We recruited thirteen test subjects (5 female, 8 male,
aged 21 - 63). Eight participants had a technical background
(2f, 6m), and six had previous experiences with robots (2f,
4m). None of the participants were involved in this research
project or had prior knowledge of our research aim. The
experiments took place in the hallway of our building at the
faculty of engineering with our force-sensitive mobile robot
Canny. Each experiment run lasted about 45 min, during
which the test subjects performed two sets of tasks with
the robot. In one set, the participants controlled the robot
via force feedback; they used a joystick in the other. We
randomized the set order and gave the test subjects some
time to familiarize themselves with the respective control
method at the beginning of each set.

The joystick experiments serve as a baseline to compare
the ease of use and intuitiveness of physical interaction

1We note that, since the function is differentiable wrt. the parameters
c0, ag, the non-differentiability of the max-operator does not pose a
difficulty here.
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Fig. 2. For the obstacle course task, the participants controlled the robot
past two traffic cones as indicated by the sketched green line (left). The box
plot (right) shows the median task completion times and the interquartile
ranges; the whiskers mark the minimum and maximum completion times.

against a more common control method. We further use
them as a reference for the true desired robot behavior,
since the participants can influence the entire robot trajectory
with the joystick, while physical interaction requires the
robot within reach. The joystick experiments, however, only
provide an idealized and theoretical comparison, because the
requirement to carry a controller renders joystick interaction
infeasible in practical applications beyond an experimental
setup.

B. Obstacle Course Task

We first performed a calibration task to compare the ease
of use and intuitiveness of both control modalities without
the robot learning or moving autonomously. For this task, the
participants controlled the robot through an obstacle course,
as sketched in Fig. 2 (left). All robot motion was commanded
by the participants, and we limited the robot velocity to
0.4 m s−1. Each participant performed one obstacle course
run per control modality. Fig. 2 (right) summarizes the task
completion times with the joystick and with force control.
Note that we did not inform the participants that we timed
their runs because we wanted them to behave naturally.
Both modalities exhibit similar median course times, but
the joystick times show a much higher variance. Three
participants took exceptionally long with over 30 s to drive
the robot with the joystick. In contrast, no participant took
longer than 25 s to finish the task with force control. The
results indicate that force control can facilitate the interaction
with mobile robots in populated spaces.

C. Passing Task with IRL

The passing task tests force and joystick feedback for
interacting with an autonomously navigating robot. The
participants stood in the center of the hallway and guided the
robot past themselves, either via joystick or by pushing on its
shell. We instructed the participants to adapt the robot path
like they would prefer it to autonomously drive past them.
The robot navigated with a velocity of vnav = {vnav,x, vnav,y}
and overlaid the user-commanded control velocity vcom, as
described in Sec. III-A. The forward motion vnav,x was kept
constant at 0.4 m s−1. The robot further aimed to follow
its navigation path by commanding a sideways velocity
vnav,y proportional to the distance to the path but limited
to |vnav,y| ≤ 0.2 m s−1. Before the actual passing task,
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Fig. 3. Robot paths adapted via user feedback in the passing task. Left: initial paths, adapted through force feedback. Middle: paths from learned reward
function after the first IRL run, adapted through force feedback. Right: initial paths, adapted through joystick feedback.

the participants performed two practice tasks to familiarize
themselves with controlling the autonomously navigating
robot. Firstly, the robot moved on a straight line from start to
goal, and the participants freely deviated it from its path to
test the behavior. Secondly, we arranged four traffic cones as
obstacles and asked the participants to guide the navigating
robot around them to ensure they were able to control the
robot along their desired trajectory.

For both control modalities, the robot initially navigated
autonomously from the start to the goal without considering
the person in the hallway. In the force feedback set, the robot
iteratively adapted its navigation behavior by optimizing the
navigation reward function presented in Sec. III-C via IRL.
We performed two force feedback passing cycles with two
passing runs each. For the first two runs, the robot started
with a small offset of 0.4 m to the left and right, respectively,
to facilitate the interaction. The robot then performed one
online IRL run to optimize the reward function parameters
according to the corrected trajectories. We then performed
another cycle with two passing runs, where the robot paths
were generated from the learned model by sampling from
the stochastic policy (Eq. 9). Again, the participants could
correct the paths according to their preferences. We finally
retrained the reward parameters with a second IRL run on
the last two trajectories.

To find the reward parameters θ∗, we used the Adam [32]
optimizer with an L2 regularization term, as suggested by
Wulfmeier et al. [31]. We set the learning rate to 0.1 and
ran the optimization until the log-likelihood of the demon-
strations converged, which took under 2 min for 100 to 250
iterations on the experiment laptop. To speed up the training,
we initialized the reward function with parameters we found
during prior tests in simulation and refined the parameters
with every IRL cycle.

In the joystick set, the participants performed two passing
runs that serve as a reference for the true desired behavior
without reachability constraints. We did not apply our learn-
ing method to the joystick trajectories because we assume
that the unaltered trajectories are a better approximation of
the true desired robot behavior than a learned model that
may introduce a bias. Fig. 3 visualizes the joystick and force
feedback trajectories from all test subjects.

Once the participants performed all tasks in the set, we
asked them to rate the control method on a 5-point Likert
scale questionnaire, summarized in Fig. 4. Both the force

Q1: Was it easy or difficult to control the robot?
very
hard

very
easy

Q2: How much did you like this type of control?

not at all
very
much

Q3: Did you find this type of control intuitive or not intuitive?
not

intuitive
very
intuitive

Q4: Was the interaction comfortable or uncomfortable?

50100

uncom-
fortable

Participants [%]
50 100

comfort-
able

scores: 1 2 3 4 5

Fig. 4. Participant ratings after the passing task. Bars left of the center
show negative, bars on the right show positive responses.

control and the joystick modality received very positive rat-
ings for the ease of controlling the robot and the intuitiveness.
The majority of the participants liked both the joystick and
the force control and felt comfortable during the interaction.
Three participants did not like the physical interaction (rating
≤ 2), and two felt uncomfortable (rating ≤ 2). In additional
comments on the questionnaires, two participants stated that
they did not like touching the robot and preferred to control
it without physical contact. One participant wrote that she
felt uneasy when the robot directly approached her, not
knowing how it would react to her interaction. Fortunately,
since the robot can learn from the interaction, it can correct
such kind of behavior after only a few interactions. One
participant stated that she found the joystick control more
fun. Nonetheless, based on the mostly positive answers, we
think that force control has great potential for interacting with
a navigating robot. However, it is a very novel concept, and
some people might need more time to get used to interacting
with a robot in general, and especially via touch.

To validate the learned navigation behavior, we finally
presented three different paths to the participants. The robot
navigated past them without their interaction on
• a path generated from the leaned reward function by

sampling from the stochastic policy (Eq. (9)),
• a replay of one of the trajectories the participant had

commanded with the joystick,
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Fig. 5. Final trajectories presented to the test subjects: paths from the
learned model after the second IRL run, joystick path replays, and obstacle
avoidance paths.

Q: Please rate the robot path.

uncom-
fortable obs

irl2
com-
fortable

50100

too close
obs

irl2

Participants [%]
50 100

too far

scores: 1 2 3 4 5

Fig. 6. Participant ratings of the final trajectories.

• and a path with just obstacle avoidance.

The resulting paths are presented in Fig. 5. We randomized
the order of the three trajectories and did not tell the
participants how the paths were generated. After the replay
of the three paths, we asked the participants to rate the three
paths in a third questionnaire. The questionnaire results are
presented in Fig. 6. The majority of the participants rated
the comfort of both the joystick path and the path from the
learned model positively. In contrast, the obstacle avoidance
path received very negative ratings. All participants rated the
obstacle avoidance path as too close, and many criticized on
the questionnaire that the robot indicated much too late that
it would avoid them.

Interestingly, despite the positive comfort ratings, many
participants rated the joystick path and the path generated
from the learned reward function as (rather) too close. This
effect is visible for both the joystick path and the path from
the learned model, but more prominent in the latter. We were
surprised by this finding, especially since the participants
fully commanded the joystick trajectories themselves, and we
always confirmed that the joystick passing runs reflected their
preferences before saving them. One possible explanation is
that participants might tolerate a smaller distance to the robot
when they know that they can influence its behavior. Once
they cannot interact, they prefer a larger distance.

Unfortunately, it is not possible to directly compare the
learned rewards to the ground truth rewards because humans
cannot directly quantify their reward preferences. Instead, we
compare relevant path properties to confirm that the learned
navigation behavior accurately follows the demonstrations.
To this end, we compare the path lengths, the minimum
distances to the participants, and the areas under the paths

path length [m]
0

2

4

6

min person dist [m]
0

0.2

0.4

0.6

0.8

path area [m2]
0

2

4

irl1+
irl2
obs

Fig. 7. Properties of the final trajectories: path length, minimum distance
between the robot shell and the center of the person, and area under the path.
The bar plots show the mean property value and the standard deviation for
the joystick feedback paths, the force-adapted paths in the second passing
cycle, the paths from the learned model, and with obstacle avoidance (obs).

10

0

Fig. 8. Propagated policy from learned combined model (left) and state
reward of the combined model with the nominal direct path (right).

from the start to the goal, i.e., the area between the nominal
direct path and the commanded trajectory. The area under
the path indicates how early the robot started the passing
maneuver. Fig. 7 presents the path properties from the path
replay experiment and the force feedback paths from the
second passing cycle on which the reward functions were
optimized. We can see that the force feedback paths from
the final passing cycle exhibit very similar properties to the
paths from the learned reward function. This indicates that
the reward function can capture important path properties
and that the robot can successfully learn to mimic the
demonstrated behavior. We can further see that the force
feedback paths and the paths from the learned model both
pass closer to the participants than the joystick paths. One
explanation is that the participants could not guide the robot
further away from where they were standing. However, we
do not think this is the reason here since we allowed the par-
ticipants to step towards the robot if they wanted. From our
observations, we instead think that the participants tolerated
slightly unpleasant behavior before they intervened, even if
they would have preferred the robot to behave differently. We
do, however, acknowledge that the limited reach presents a
drawback of our work. In future work, we plan to include
other cues to address this limitation, such as a person’s gaze
or her/his own evasive maneuvers.

Finally, to visualize the navigation behavior learned during
the passing experiments, we trained the parameters of our
reward function with the last two force feedback trajectories
from all participants. Fig. 8 shows the propagated policy and
the learned state reward.

D. Generalization to New Environments

To verify that the learned reward function generalizes
to new navigation situations, we employed it for two new
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Fig. 9. Propagated policy from learned combined model, applied to two
unseen navigation scenarios.

simulated scenes. In the first scene, the robot navigates in
the same hallway, but two people are present. In the second,
we tested the navigation in a different part of the hallway
with one person standing next to a large obstacle. This time,
the robot has to pass closer to the person because of the
limited space. The results in Fig. 9 suggest that the learned
navigation function can represent both new scenarios.

V. CONCLUSION

We introduced a novel approach for teaching robots social
navigation behavior among humans via physical interaction
and using inverse reinforcement learning. Through real-world
experiments with human test subjects, we demonstrated that
controlling the robot via pushing is a viable means of
communicating navigation preferences and that the robot
can learn to adjust its behavior accordingly. In future work,
we plan to include additional cues like gaze or human path
deviations to train our model for situations where the robot is
not in reach of the people it interacts with. Furthermore, we
want to investigate whether our current model is sufficient
in new navigation contexts, or if multiple models should be
learned for different scenarios. Finally, we plan to extend our
model to handle dynamic situations with moving people.
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