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Abstract— The ability to build models of the environment
is an essential prerequisite for many robotic applications. In
recent years, mapping of dense surface geometry using RGB-D
cameras has seen extensive progress. Many approaches build
colored models, typically directly using the intensity values
provided by the camera. Unfortunately, these intensities are
inherently affected by illumination. Therefore, the resulting
maps only represent the environment for one specific lighting
condition. To overcome this limitation, we propose to build
reflectance maps that are invariant against changes in lighting.
Our approach estimates the diffuse reflectance of a surface
by recovering its radiosity and the corresponding irradiance.
As imperfections in this process can significantly degrade the
reflectance estimate, we remove outliers in the high dynamic
range radiosity estimation and propose a method to refine the
reflectance estimate. Our system implements the whole pipeline
for offline reconstruction of dense reflectance maps including
the segmentation of light emitters in the scene. We demonstrate
the applicability of our approach in real-world experiments
under varying lighting conditions.

I. INTRODUCTION

Robots operating in indoor environments are often
equipped with consumer-grade RGB-D cameras. While depth
measurements facilitate geometric reconstructions, also the
provided color measurements are a rich source of information
beneficial for many robotic tasks like navigation or scene
understanding. In contrast to the limited effect on active
depth measurements, the formation process of color images
is inherently affected by illumination. Changing lighting con-
ditions are a challenging and highly relevant topic for robotic
perception, since many robots are supposed to operate in
indoor environments like households, where illumination can
change dramatically, e.g., when lights are switched on or off.
In order to deal with these substantial changes, robots should
not neglect but explicitly reason about illumination. We
consider reflectance maps to be a suitable environment repre-
sentations in this context. They are illumination-invariant and
allow to simulate the appearance of the environment under
arbitrary lighting conditions, enabling a robot to match its
observations from the real-world to an appropriately adjusted
model. This can be exploited for tasks like localization or
object recognition.

Over the recent years, building accurate geometric models
of indoor environments using RGB-D cameras has made
enormous progress [1]. The colorization of these models is
commonly directly based on intensity values provided by the
camera [2]. This is unfavorable as these intensities depend

∗The first two authors contributed equally to this work.
1Autonomous Intelligent Systems, University of Freiburg, Germany
2Toyota Motor Europe, R&D - Advanced Technology, Brussels, Belgium

Fig. 1: Our method reconstructs radiosity maps (top-left),
computes the corresponding irradiance (top-right) using ray
tracing, estimates an initial reflectance map (bottom-left), and
refines it (bottom-right).

on radiometric camera intrinsics and are often substantially
influenced by automatic exposure and gain control. As a
result, the low dynamic range (LDR) color estimates are
inconsistent. More recently, approaches for high dynamic
range (HDR) mapping have been proposed to overcome these
issues [3], [4]. These maps aim at modeling the amount of
light that is reflected from the surface. However, they still
represent a quantity that depends on the illumination during
the capture of the scene.

In this paper we propose an approach to achieve invariance
against the present lighting conditions by reconstructing
reflectance maps of indoor environments. Reflectance is
the ratio between radiance and irradiance as defined by
the bidirectional reflectance distribution function (BRDF).
Our approach intends to recover the diffuse (Lambertian)
reflectance of a surface. Therefore, the BRDF is independent
of the incoming and outgoing light directions and can be
represented by a single so called diffuse reflection coefficient.
We tackle the problem of reflectance estimation by com-
bining the idea of HDR mapping to obtain radiosity (non-
directional radiance) with a method for irradiance computa-
tion based on ray tracing. Once we have obtained radiosity
and irradiance, we can determine the reflectance of a surface
by computing their ratio. As errors accumulate in this process
and degrade the quality of the obtained estimate, we propose
methods to refine the reflectance. Examples for the individual
radiosity, irradiance, and reflectance maps reconstructed with



our system are shown in Figure 1. In addition to the estimated
reflectance, we also segment the light sources in the scene.
Both can be essential tools to enable robots to reason about
the illumination in their environment. Since our computation
of the reflectance map for a room-sized indoor environment
takes about an hour, our pipeline works as an offline recon-
struction system. However, once the model has been built, a
robot can efficiently utilize it in an online fashion for tasks
like visual localization or object recognition.

II. RELATED WORK

The problem of recovering intrinsic reflectance properties
of a scene has been primarily studied in the computer
vision community and is referred to as intrinsic image
decomposition. In this context, the RGB color value of
each pixel in an image is decomposed into a reflectance
and a shading (illumination) component. Most approaches
aim to recover both components from a single RGB image,
making it a highly underconstrained problem. Thus, prior
assumptions must be made, e.g., that changes in color
brightness result from variations in shading and changes in
chromaticity correspond to variation in reflectance. Some
methods [5], [6], [7] work on RGB-D images and take
surface normals into account. Also deep learning has been
applied to recover intrinsic images [8], [9], even though these
approaches currently suffer from the lack of large-scale real-
world datasets with reflectance ground truth required for
training. A number of recent works extend the classic in-
trinsic image decomposition problem. Barron and Malik [10]
jointly recover shape, shading, and reflectance of the scene
from a single RGB-D image. Lombardi and Nishino [11]
reconstruct the geometry, the BRDF, and illumination from
a series of RGB-D images. However, their method operates
at object scale and is presumably unsuited for room-sized
environments.

The discussed approaches show reasonable results for
cases in which the stated assumptions hold, but the lack of
explicit knowledge about the scene and the limited amount
of input data poses natural limitations. In particular, the
separation of shading and texture often fails in ambiguous
situations. Further, the consistency of the reflectance cannot
be guaranteed over the whole scene. Even more problematic
for localization or object recognition applications is that
the reflectance is only correct up to a global scale, i.e.,
two images of the same scene captured under different
illumination will likely lead to inconsistent reflectance maps.

In contrast, our approach reconstructs the complete ge-
ometry and illumination of a scene from a larger amount
of data. This allows us to compute the reflectance in a
physically meaningful fashion rather than relying on prior
assumptions. This strategy avoids the inherent problems of
intrinsic image decomposition approaches stated above. Our
reflectance estimate is consistent across the scene and for
different illumination settings. Although we employ some
ideas from the intrinsic image decomposition literature to
refine our initial reflectance map, we do so only locally, thus
keeping global reflectance consistency.

In order to recover the scene illumination, we perform
HDR radiosity estimation. As shown by Debevec and Ma-
lik [12], it is possible to obtain HDR values from multiple
LDR images recorded with different exposure times. In the
context of 3D reconstruction Meilland et al. [3] presented
a method to build a 3D model with HDR textures using an
RGB-D camera. This method exploits the changes of the
camera’s auto-exposure (AE) by estimating the relative ex-
posure time differences between consecutive frames required
to perform the HDR fusion. Li et al. [4] also use an RGB-D
camera with AE and show that using HDR maps can increase
tracking robustness. In contrast to these methods, we use
multiple fixed exposure settings to ensure that we capture the
whole radiosity range of the scene. We argue that AE is not
well suited for this purpose [13] as its objective is to properly
expose all parts in the image, resulting in medium exposure
times that leave parts of the image under- and overexposed.

Zhang et al. [14] use an RGB-D camera to create 3D
maps of indoor environments with HDR texture. They also
estimate the incident light in the scene and produce a
reflectance map as a side product. They fit predefined light
emitter models and apply priors on the scene geometry, e.g.,
assume flat walls. In contrast, our approach is entirely model-
free. Since our focus is on reflectance maps, we additionally
tackle shortcomings reported by the authors, e.g., imprecise
geometry reconstruction, incorrectly projected textures, and
specular reflections. In order to handle these problems we
propose methods to remove outliers from our HDR radiosity
map and to refine our initial reflectance estimate.

III. PROPOSED METHOD

This paper presents a system for offline reconstruction
of dense reflectance maps using an RGB-D camera. In this
section we present all individual parts of the pipeline from
data acquisition over geometry reconstruction and radiosity
estimation to light source segmentation, irradiance computa-
tion, and reflectance refinement.

A. Preliminaries

This subsection introduces some notation used in the
remainder of this paper. First, we give an overview over
radiometric terms which are central in our work:
• The radiant flux Φ [W] is the radiant energy emitted,

reflected, transmitted or received per unit time.
• The radiosity B [W/m2] is the radiant flux leaving a

surface per unit area.
• The irradiance H [W/m2] is the radiant flux received

by a surface per unit area.
• The (diffuse) reflectance ρ is the radiant flux reflected

by a surface divided by that received by that surface.
For non-emitting and non-transmitting surfaces it is the
ratio between radiosity and irradiance and in the range
[0, 1].

We assume that all quantities can be treated separately for
the wavelengths corresponding to the red, green, and blue
color channel.



The scene geometry is represented as a triangular mesh
given by a set of vertices V and a set of triangles T , where
a triangle t = (v1, v2, v3) ∈ T is defined as triple of
distinct vertices vi ∈ V . The set of the direct neighbors
of vi is denoted by N (vi). Furthermore, to each vi, we
associate a surface patch centered at position p(vi) ∈ R3

with a normal n(vi) ∈ R3 and surface area A(vi) ∈ R+.
We define A(vi) = 1

3n

∑n
l=1A(tl), where A(tl) is the

surface area of the triangle tl and t1, ..., tn are the triangles
containing vi. Finally, Φ(vi), B(vi), H(vi), and ρ(vi) are
the corresponding radiometric quantities of the surface patch
at vi with Φ(vi) = B(vi)A(vi) and ρ(vi) = B(vi)/H(vi).

We group multiple connected vertices to so-called super-
patches P . For each P we define the same attributes as for
a single vertex. The area A(P) is the sum of individual
areas of vi ∈ P . All other attributes are computed as the
average of the corresponding vertex attributes weighed by the
vertex patch area, e.g., p(P) =

∑
vi∈P p(vi)A(vi)/A(P).

For any two patches Pi and Pj we define the distance as
d(Pi,Pj) = ‖p(Pi)− p(Pj)‖.

B. Data Acquisition

Our input data stream consists of RGB-D images with
known exposure times and gains for the color images. It
is crucial for our approach that the color images cover the
whole radiosity range of the scene, from the darkest areas in
shadow regions to the brightest spots at light emitters. We
realize this by rapidly switching between a low, medium,
and high exposure setting, which leads to a flickering color
image stream. To allow a meaningful fusion of the sensor
data, we assume the environment to be static during capture,
both in terms of geometry and lighting. As we also require
a fairly complete model, the sensor data should cover major
parts of the scene. Especially reconstructing the light emitters
is crucial, which currently prevents our method to handle
light transmitted through windows. While we consider these
constraints during data acquisition, active approaches for
robotic mapping could incorporate them in their objective.

We perform intrinsic and extrinsic calibration of the cam-
era geometry [15] enabling an accurate registration of depth
and color images. We also apply a depth sensor model that
we fitted to account for depth-dependent systematic errors
in the measurements. Additionally, radiometric calibration
of the color camera is used to obtain the camera response
function (CRF) and to correct vignetting effects [16].

C. Geometry Reconstruction

After capturing a scene, we use ORB-SLAM2 [17] to
estimate the camera poses for images taken with a single
exposure setting, i.e., for a non-flickering sequence extracted
from the color image stream. A global bundle adjustment is
performed to refine the estimates and poses for images not
used for camera tracking are interpolated. Subsequently, we
use our Truncated Signed Distance Function (TSDF) imple-
mentation based on [18] to integrate the depth measurements.
To extract a triangle mesh, we implemented a parallelized
variant of the Marching Cubes algorithm [19].

Fig. 2: Estimated radiosity map before (left) and after
(right) outlier removal. We apply multiple criteria to filter
out erroneous samples.

D. Radiosity Estimation

Our approach to recover HDR radiosity is based on fusing
multiple LDR images. As our camera is not static but
moving through the environment, we perform the fusion
within our map rather than in image space. Even though the
radiosity could be estimated during geometric reconstruction,
we perform it as a post-processing step on the mesh. This
enables us to estimate a radiosity distribution for every mesh
vertex, as each keeps a record of all associated samples.
The purpose of this approach is to remove outliers that can
significantly degrade the quality of the radiosity estimates.

To associate samples to mesh vertices vi, we use the
known camera intrinsics, a set of camera poses, and the
corresponding LDR images with known exposure times
and gains. We include the keyframes provided by ORB-
SLAM2 in the pose set and add consecutive frames captured
with different exposure settings to enable HDR recovery.
Subsequently, all vi are projected into the images using ray
tracing to check visibility. Visible samples, consisting of the
LDR image pixel intensity Zj as well as the exposure time
∆tj and gain cj , are associated to vi. Given all (non-outlier)
samples, we obtain a radiosity estimate

ln(B(vi)) =

∑
j w(Zj)

(
ln(f−1(Zj))− ln(cj∆tj)

)∑
j w(Zj)

(1)

with

w(z) =

{
z − Zmin for z ≤ 1

2 (Zmin + Zmax)

Zmax − z for z > 1
2 (Zmin + Zmax)

(2)

and f−1 being the inverse CRF [12]. Following Zhou and
Koltun [20], we additionally weight the samples depending
on the distance and viewing angle, i.e., multiply w given by
Equation 2 with a corresponding factor.

Storing each sample separately enables us to reason about
outliers, which we exclude from the estimation in Equation 1.
This is especially important when samples from bright parts
like light emitters are accidentally associated to wrong ver-
tices. This can have severe consequences on the accuracy
of the irradiance computation presented in the next section.
Also specular reflections can be reduced, which assists our
assumption of diffuse reflection. To reject outliers we apply
multiple criteria on the sample distribution:



Fig. 3: Radiosity (top) and irradiance (bottom) maps ren-
dered with virtual exposure times of 3ms, 10ms, and 30ms.
(The green spot on the ceiling is a hole in the surface.)

1) We discard samples with very low intensities as they
are mainly caused by sensor noise.

2) We discard all samples with under- and overexposed
intensities, except for the longest and shortest exposure
setting, respectively, as these are the boundaries of our
measurement range and therefore are the best estimates
we can obtain. For these cases we modify Equation 2
and set a non-zero weight.

3) We remove the outer 5-quantiles in the gray and
subsequently in each individual color channel. While
an outlier in gray is removed from all color channels,
outliers in the color channels are treated separately.

4) Samples with extremely high radiosity are removed,
if the vertex distribution contains only few of these
samples.

Figure 2 motivates the outlier removal by showing a
radiosity map before and after the correction. The green
sprinkles are removed by criterion 1, whereas criteria 3 and
4 are responsible for removing outliers on the walls caused
by light sources. Criterion 2 is more important in the other
dataset containing ceiling lights, as those are brighter and
are overexposed even in the shortest exposure setting.

A radiosity map rendered with different virtual exposure
times is shown in the top row of Figure 3 to demonstrate the
capabilities of HDR radiosity mapping. While the rendered
LDR images contain under- and overexposed parts, the
radiosity map does not miss information in these areas.

E. Light Source Segmentation

The main light sources typically have a considerably
higher radiosity than the rest of the scene. To detect them,
we first define

Bmax(vi) = max{Br(vi), Bg(vi), Bb(vi)} (3)

where Br, Bg and Bb are the red, green and blue radiosity
components. A vertex is considered as part of a light source
if Bmax(vi) > BL, where the threshold BL is set to one
standard deviation of the Bmax-distribution over all vi. We
found this specific value to yield a robust separation between
the light sources and the rest of the scene in our experiments.
An example of the segmentation is shown in Figure 4.

Fig. 4: Segmentation of the reconstructed scene: light
sources (middle), superpatches used for irradiance estimation
(right). Bright areas such as light sources are covered more
densely with patches compared to dark ones like the shadow
under the table.

F. Irradiance Computation

Our approach aims at estimating the irradiance H for all
vertices vi based on the scene geometry and radiosity. We
assume the scene to be closed and consist of diffuse planar
surface patches P1...PK . Thus, we can employ the radiosity
equation [21], which describes light propagation in diffuse
scenes, to approximate the irradiance at patch Pi by

H(Pi) =

K∑
j 6=i

B(Pj)F (Pi,Pj)G(Pi,Pj) (4)

with the so-called form factor

F (Pi,Pj) =
cosφicosφjA(Pj)
πd(Pi,Pj)2

, (5)

where φi,j is the angle between n(Pi,j) and p(Pi)−p(Pj).
The visibility term G(Pi,Pj) is 1 if the normals of Pi and
Pj are facing each other and their straight-line connection
does not intersect any other scene geometry, and 0 other-
wise. G(Pi,Pj) is computed by ray tracing, which is the
computational bottleneck in evaluating Equation 4. The best
accuracy would be obtained by assigning Pi = {vi} for all
vi in the mesh. However, for N vertices this leads to O(N2)
ray tracing operations, which is intractable for large meshes.

To speed up computation, we create K superpatches Pj
using region growing such that all patches are approximately
planar and have a total radiant flux similar to the mean
flux of the top c percent of all Φ(vi) (in our experiments
c = 0.01%). This ensures that bright areas, such as light
sources, are sampled more densely than dark areas, and that
each superpatch contributes a similar amount of light to the
scene illumination (see Figure 4). Denoting {vi} as vi for
the remainder of this section, the irradiance contributions of
all Pj to one vi is then given by

H(vi) =

K∑
vi 6⊂Pj

B(Pj)F (vi,Pj)G(vi,Pj). (6)

The term B(Pj)F (vi,Pj) is only a good approximation as
long as d(vi,Pj) is large compared to the size of Pj . There-
fore, we separately compute the irradiance contributions to
H(vi) for far and close superpatches depending on d(vi,Pj)



(a) (b) (c) (d) (e)

Fig. 5: Reflectance refinement at shadow borders. (a) Radiosity map with cast shadows. (b) Irradiance before refinement.
(c) Reflectance before refinement. Shadow borders and slight color inconsistencies in core shadows are still visible (best
viewed on screen). (d) Shadow border (blue) and core shadow (green), as detected by our method. (e) Refined reflectance.

(a) (b) (c) (d) (e)

Fig. 6: Reflectance refinement at geometry artifacts. (a) Radiosity of a flat wall. (b) Unsmooth irradiance due to geometry
artifacts. (c) Radiosity gradient magnitudes. (d) Irradiance gradient magnitudes. (e) Reflectance is smoothed where irradiance
gradients are larger than radiosity gradients.

being above or below the threshold dPj = 4
√
A(Pj):

Hfar(vi) =
∑
Pj far

B(Pj)F (vi,Pj)G(vi,Pj) (7)

Hclose(vi) =
∑
Pj close

∑
vl∈Pj

B(vl)F (vi, vl)G(vi,Pj) (8)

The total irradiance for vi is Hfar(vi) + Hclose(vi). As a
result the number of ray tracing operations is reduced to
O(NK) with typically K � N . An example of recovered
scene irradiance is shown in the bottom row of Figure 3.

G. Reflectance Refinement

Given the estimated radiosity B(vi) and computed irradi-
ance H(vi), we can directly obtain an initial reflectance map
ρ(vi) = B(vi)/H(vi). However, this approach only provides
accurate reflectance estimates under idealized conditions,
such as perfectly reconstructed scene geometry and radiosity.
In practice, even small geometric errors lead to mismatches
between cast shadows in the radiosity and irradiance maps,
which are noticeable in the reflectance. Furthermore, the
radiosity tends to be noisy in shadow regions due to the
low sensitivity of the color camera, resulting in reflectance
inconsistencies as can be seen in Figure 5 (c). Finally, faulty
geometry and surface normals produce noisy irradiance
where the radiosity is actually flat, hence those spots are
also noisy in the reflectance.

We refine the reflectance by modifying the irradiance using
several ideas from intrinsic image decomposition approaches,
foremost from the work of Lee et al. [5]. The central
idea is that shadows mainly cause changes in radiosity
brightness but not chromaticity, whereas strong differences

in chromaticity occur due to texture in surface reflectance.
Thus, we intend to smooth the reflectance between vertices
that differ little in radiosity chromaticity, e.g., shadow bor-
ders, while the objective for other regions is to keep the
irradiance smooth. For both cases we apply a correction to
the irradiance of each vertex by minimizing the following
energy function:

E(vi) =
∑

vj∈N (vi)

ωni,j [ω
ρ
i,j(ρ(vi)− ρ(vj))

2 (9)

+(H(vi)−H(vj))
2]

with ωρi,j =

{
ωρ if(1− bi · bj)) < τρ

0 otherwise
(10)

where bi and bj are the normalized radiosity vectors of vi
and vj , i.e., b = (Br, Bg, Bb)

T /‖(Br, Bg, Bb)‖. Hence, the
term bi · bj represents similarity in chromaticity between
H(vi) and H(vj). The weight

ωni,j =

{
1 if(1− n(vi) · n(vj)) < τn

0 otherwise
(11)

allows information propagation only on surfaces with
smoothly varying normals. This exploits the observation
that strong irradiance changes and changes in reflectance
texture co-occur with gradients in surface normals. We set
τn = 0.002 in the experiments.

The assumptions described above only hold to a certain
degree in practice since shadows can also produce chro-
maticity changes (in the case of colored light sources) and
reflectance texture can also exhibit gradual intensity changes.



(a) (b) (c) (d) (e)

Fig. 7: Examples of our reflectance refinement for a wider view (top) and details on the table (bottom). The columns
correspond to (a) radiosity, (b) initial and (c) refined irradiance, (d) initial and (e) refined reflectance. Significant changes
in the reflectance are indicated by green arrows. The bottom image in (e) indicates partial texture degradation after post-
processing.

In such situations, shadows may not get removed completely
or reflectance texture can be wrongly flattened (see Figure 7,
bottom row), where the trade-off between both problems is
regulated by τρ. We choose τρ = 0.001 and ωρ = 500 in
order to favor shadow removal, while trying to keep possible
texture degradation at a minimum.

To limit the negative effects of this approach, we only
apply our refinement in shadow regions in which the direct
light contribution of a light source is blocked. Although light
reflected by (diffuse) surfaces causes shadows as well, those
are typically weak and shall be neglected. We define vi to
lie in a shadow if there is a light source vertex vl such that
G(vi, vl) = 0. Further, this vertex vi lies on a shadow border
if it has at least one neighbor that is not in the shadow cast
by the same vl, i.e., for

∃vl [G(vi, vl) = 0 ∧ ∃vj ∈ N (vi) [G(vj , vl) = 1]] (12)

We slightly expand the border regions to compensate for
the radiosity-irradiance shadow mismatch (in our experi-
ments by 1cm). Vertices in a shadow, but not on its border,
are labeled as core shadow vertices (see Figure 5). For all
border vertices we apply Equation 9 as before, while for
core shadows we set ωρi,j to zero, enforcing the corrected
irradiance values to propagate from the border into the core
shadow.

Additionally, we refine the reflectance in situations where
the radiosity is smooth, but the irradiance is not, which is of-
ten caused by faulty geometry. We first compute the radiosity
and irradiance gradients ∇B(vi) and ∇H(vi) with respect
to their neighbors. Subsequently, we group the vertices into
superpatches Pa with equal area and compare the mean
radiosity and irradiance gradients in each patch. A vertex in
a patch Pa is labeled if ‖∇H(Pa)‖ > 1.5‖∇B(Pa)‖ holds
and the vertex is not already labeled as shadow. Finally, we
apply Equation 9 with ωρi,j = 0 and ωni,j = 1 at marked
vertices to smooth the irradiance, similar to the treatment of
core shadows. This is particularly suited to correct artifacts in

the irradiance caused by geometric errors. Figure 6 illustrates
the method, Figure 7 (top row) shows another example.

We adjust H(vi) for all labeled vi employing the Iterated
Conditional Mode (ICM) algorithm [22], i.e., we compute
arg minH(vi)E(vi) for each vi individually rather than per-
forming a global optimization. Multiple iterations of the
procedure are performed, until convergence is reached. The
convergence can be sped up by initializing the irradiance of
the labeled vertices with zero and restricting Equation 9 to
neighbors with non-zero irradiance. Thus, we avoid adjusting
irradiance values in the marked regions and instead directly
propagate the corrected values from the shadow region bor-
ders. We efficiently perform this local optimization scheme
on the GPU.

IV. EXPERIMENTAL EVALUATION

In this section we present the experiments we have
conducted to validate our approach. After reporting details
on the experimental setup we present reconstruction results
and compare our method to intrinsic image decomposition
approaches.

A. Setup and Configuration

We captured multiple datasets of a room (4.8m× 4.5m×
2.9m) with an ASUS Xtion Pro Live RGB-D camera. We
implemented a driver that allows to switch the color image
exposure time and gain every two frames and provides depth
frames at 30Hz. We only use depth values in the range of
0.5m to 5.0m for the reconstruction. The resolution of the
TSDF grid is set to 1cm, such that the resulting meshes have
approximately 1.4 million vertices. We used two different
illumination settings:

1) One dataset with two warm-white ceiling lights.
Used gains/exposures: 1 · 1ms, 1 · 25ms, 3 · 30ms

2) Three datasets with one white and one red/green/blue
light bulb covered by an ellipsoidal lampshade.
Used gains/exposures: 1 · 1ms, 1 · 10ms, 10 · 30ms



Wall Floor

R G B R G B
Blue Lamp 0.959 0.967 1.103 0.343 0.336 0.386
Green Lamp 0.941 0.977 0.964 0.349 0.352 0.365
Red Lamp 0.932 0.905 0.902 0.337 0.331 0.334

TABLE I: Consistency of estimated reflectance values

The sensitivity of the color camera poses a natural limitation
on HDR mapping, as usable exposure times and gains are
bounded. In our experiments, lights were partially so bright
that they were overexposed, even in the lowest possible
exposure time. Therefore the estimated irradiance can be too
low, resulting in reflectances larger than 1. For visualization
purposes we rescale the reflectance images, i.e., a reflectance
value of 1 is displayed with a pixel value of 255/1.3.

Processing is performed offline on a system with an i7-
4790K CPU and a GTX 1080Ti GPU. A dataset is captured
in about 10 minutes and contains approximately 20,000
RGB-D frames. The pose estimation by ORB-SLAM2 runs
in real-time. Geometry reconstruction with our TSDF imple-
mentation requires about 7 minutes, estimating the radiosity
including outlier removal approximately 5 minutes. The
bottleneck in terms of speed is the irradiance computation
with about 30 minutes for the initial ray tracing and 3
minutes for the reflectance refinement.

B. Reconstruction Results

The main objective of our approach is to reconstruct con-
sistent reflectance maps under changing lighting conditions.
This is particularly challenging in the presence of colored
light sources. The evaluation of our second illumination
setting, including a red, green, or blue lamp is shown in
Figure 8. Although the radiosity maps are apparently colored
by the illumination, our method is able to reconstruct nearly
invariant reflectances, as can be seen from Table I that
presents averaged reflectance values from a wall and a floor
patch. Due to the reasons mentioned above, the estimated
reflectance values might be slightly too high. As the sensi-
tivity of the camera varies between the color channels, we
suppose that this effects the channels to a different extend
which explains their difference in reflectance consistency.

For our first dataset we compare the initial reflectance
to the refined one after our correction procedure shown in
Figure 7. Our post-processing improves the overall quality
of the reflectance map, in particular artifacts on the wall
and floor are removed (top row). However, the quality of
textures can be degraded (bottom row). This can be noticed
in the refined irradiance map, which is affected by the texture
of the table. We limit this negative effect by restricting the
correction to cast shadows from light emitters.

Fig. 8: The same scene illuminated by light bulbs with dif-
ferent colors. While the radiosity maps (top) clearly show the
different lighting conditions, the reflectance maps (bottom)
demonstrate their invariance against the present illumination.

C. Comparison to Intrinsic Image Decomposition

This subsection shows that our method, which exploits a
significant amount of data, has crucial advantages over meth-
ods that work on a single image only. Using an image cap-
tured for scene reconstruction, we compare our reflectance
and irradiance map viewed from the corresponding camera
pose against the intrinsic image decomposition approaches
of Chen and Koltun [6] and Jeon et al. [7], which only take
a single RGB-D image as input. The input color and depth
image are shown in Figure 9 (a). It can be seen that the
intrinsic image decomposition approaches do not properly
reconstruct the irradiance (shading) of the image. Although
the tabletop is one of the most irradiated parts of the scene,
caused by a lamp directed towards it, the method shown in
Figure 9 (b) reconstructs it as one of the least irradiated and
instead contributes a too high intensity to the reflectance.
Similar issues, like bright spots in the irradiance of the table
legs, exist in the other approach shown in Figure 9 (c). As
a consequence, the shadows cannot be consistently removed
from the corresponding reflectance images. Moreover, both
approaches are not able to cope with the red tint of the light
source and thus fail to recover the monochrome reflectance
of the wall. Our approach does not suffer from these issues
due to the globally consistent irradiance map.

V. CONCLUSIONS

In this paper we introduced a novel technique to build
globally consistent reflectance maps of indoor environments
using a consumer-grade RGB-D camera. Our method recon-
structs the geometry and radiosity of a surface and computes
the corresponding irradiance using ray tracing to obtain a
reflectance estimate that we additionally refine. We imple-
mented our approach and tested it in real-world settings with
varying lighting conditions. The experiments demonstrate
that our method is suited to perform the reconstruction
task. Overall, we believe that our model-free approach for
building illumination-invariant environment models provides
a valuable tool for robotic applications. In the future we will
utilize our method for more robust visual localization and
object recognition.



(a) (b) (c) (d)

Fig. 9: Comparison of our approach to two intrinsic image decomposition approaches. (a) Depicts the input color (top) and
depth (bottom) image. The recovered reflectance (top) and irradiance (bottom) is shown for the approach of (b) Chen and
Koltun [6] and (c) Jeon et al. [7] and (d) our method. Note that our approach uses the reconstructed irradiance map (shown
from the same viewpoint), while the others directly work on the input images.
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