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Real-Time Outdoor Illumination Estimation for
Camera Tracking in Indoor Environments

Michael Krawez1, Tim Caselitz1, Jugesh Sundram2, Mark Van Loock2, and Wolfram Burgard1

Abstract—Dynamic illumination is a challenging problem for
visual robot localization and tracking. In indoor environments,
the main source of light during the day is outdoor illumination.
We propose a method that estimates the appearance of an
indoor scene in real-time based on a reflectance map and the
current outdoor lighting. Our outdoor illumination model consists
of three components, namely sun, sky and ground, where the
sun position is obtained from the scene geolocation and the
current time of day. The scene illumination is pre-computed
using radiosity transport for each of those components. To
deal with dynamic illumination resulting from changing weather
conditions, we estimate the outdoor light brightness in each
input frame and scale the pre-computed illumination accordingly.
We evaluate our approach on real-world data covering diverse
outdoor illumination settings and show that our adaptable model
is beneficial for direct camera tracking.

Index Terms—Visual Tracking, Localization, Mapping, RGB-D
Perception

I. INTRODUCTION

V ISUAL camera tracking has been an important research
topic for the last decades in the robotics and computer

vision communities. Indirect methods rely on the detection
of prominent image features such as corners or lines. In
contrast, direct approaches also utilize weak image gradients
improving tracking in featureless areas [1]. However, in the
case of direct frame-to-model camera tracking, this requires
photometric consistency between the live color image and
the model, which is not given under dynamic illumination
conditions. For example, the position and shape of a shadow
on a wall can change according to the scene illumination. If
the model does not account for such changes, camera tracking
may fail in frames where shadows induce the dominant image
gradients.

In our previous work [2], we addressed this problem by
adapting the map to the current scene illumination, where the
map is represented as a 3D mesh with surface reflectance and
radiosity information. We detect and segment artificial light
sources, i.e., lamps, and use radiosity transport [3] to pre-
compute the illumination components for each light source.
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Fig. 1: 3D model of a scene used for camera tracking. We
estimate the outdoor illumination using the current camera
image shown in the left bottom corner. The image in the left
top corner is rendered from the model with the same camera
view.

In camera tracking mode, we detect the set of lamps currently
switched on and combine the corresponding illumination com-
ponents to adapt the scene appearance in real-time. We showed
that tracking against the adapted map is more stable than
without illumination adaptation.

During day time, however, an indoor environment is typi-
cally illuminated by outdoor light coming through windows.
Outdoor illumination depends on several parameters that
change dynamically through the course of a day. Among the
most predominant ones are the position of the sun and the
different weather conditions. Since direct sun light alters the
scene appearance even more dramatically than artificial light
sources, it is desirable to incorporate outdoor illumination into
a lighting adaptable environment model. A novel approach
to consider the effects of outdoor illumination is the major
contribution of this paper.

We build our method upon a dense reflectance map [4] as
before [2]. Our outdoor illumination model consists of three
components, namely direct sun light, sky and ground, where
we make the simplifying assumption that each component has
a uniform brightness. The sun position is computed analyti-
cally from the current time and a given geographical location
and orientation of the scene. Then, we employ radiosity trans-
port to estimate the scene illumination for sun, sky and ground
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Fig. 2: Overview of our system. As input it takes the scene geometry, reflectance and geolocation, as well as an RGB-D image
stream. We operate on three timescales: the normalized radiosities for sky and ground are pre-computed once for the scene
(green box), the normalized sun radiosity is updated on minute scale (yellow box), brightness estimation and camera tracking
are performed for each frame (blue box).

up-to-scale, i.e., normalized to the brightness of the respective
component. Even though models exist which predict the sun
and sky brightness analytically, they are only meaningful for
a clear sky and do not account for dynamic weather changes.
We therefore estimate the outdoor light brightness in real-time
for each frame, where we fit the pre-computed normalized
illumination to the input color image.

Our main contribution is a real-time system that contin-
uously and at 30 frames per second adapts the appearance
of the map to the present outdoor illumination, accounting
for both, long- and short-time light dynamics. The real-time
capability is achieved through splitting the process into pre-
computation of the spatial light distribution and per-frame
scaling of the illumination brightness, where parallelization on
GPU is employed. A further contribution is that our approach
to adapting the model to the outdoor light improves direct
frame-to-model camera tracking. We perform extensive testing
on a wide range of real-world data covering illumination
changes due to season, time of the day and weather. Besides
camera tracking, our system can be used in augmented and
mixed reality applications.

II. RELATED WORK

Feature-based approaches to visual camera tracking rely on
finding descriptive parts of the image, such as corners or lines,
and on matching these across multiple images. One of the most
prominent feature-based methods is ORB-SLAM [5] and its
extensions [6], [7]. Such methods work well in texture-rich
environments but can fail if not sufficient features of choice
are detected [1]. Direct methods align a query image to a
reference frame or model by minimizing an error function
based on raw pixel values, where the error can be, among

others, photometric [8], [9], geometric [10], or based on
mutual information [11]. Thus, direct methods can exploit even
weak image gradients in areas that lack pronounced features.
However, also a combination of feature-based and direct
approaches is possible [12]. Our approach aims to improve
direct, model-based tracking methods. Its most distinct charac-
teristic is how changes in the scene illumination are handled.
Where existing methods try to operate on the illumination-
invariant elements of the map, we propose to explicitly model
aspects of dynamic illumination, e.g., shadows, thus providing
additional information to the tracking algorithm.

Our adaptable map approach is closely related to the prob-
lem of artificial scene re-lighting from the augmented reality
(AR) community. There, however, the goal is to render a
virtual object into a real scene, whereas our objective is to
keep the model appearance itself consistent with the current
scene illumination. We further review works which exploit
outdoor illumination for localization or camera tracking.

Daylight modeling plays an important role in architectural
design, as it is desirable to know how the interior of a
building is illuminated throughout a day and seasons before it
is built. Daylight Coefficients [13] is an illumination model
very similar to the one we employ in our work. It also
considers a sun, a sky, and a ground light component, where
the sky and ground are further subdivided into segments. The
radiosity contribution of each segment to an interior scene
point is pre-computed and can be scaled efficiently by the
light intensities of the segments later on. Over the years
numerous modifications and extensions of this basic model
were proposed [14], [15]. In contrast to our work, the above
neither estimate light brightness from live color images, nor
is the model used to support camera tracking.
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Kolivand et al. [16] blend a virtual building model into a
real outdoor scene. Analogously to our approach, they derive
the sun position from geolocation and time and use it to render
realistically cast shadows. Also, they employ a sky dome to
model ambient illumination. However, the sun and sky color
and intensity are acquired from an atmosphere model and not
estimated from image data as in our work. Madsen et al. [17]
employ an illumination model similar to ours in order to re-
light a virtual object in a photograph of an outdoor scene,
where also the light intensity is estimated from the image.
However, they assume a static camera pose and re-light the
object and not the scene itself.

Ma et al. [18] use the sun direction to improve global
outdoor localization in the context of autonomous driving.
They estimate the sun position relative to the car using a
convolutional neural network and obtain the car orientation
by comparing it to the true sun direction computed from local
time. Similarly, Clement et al. [19] deploy the sun location to
reduce angular drift in their visual odometry method.

Outdoor illumination prediction was also used by Mashita
et al. [20] to improve global feature-based localization. The
authors detect point features on a 3D model of a building and
then predict the feature appearance by rendering the model
for different outdoor lighting conditions. They propose to store
the appearance variation of each feature point as a distribution
over the descriptor vectors and describe how those can be used
for image matching. Similar to our method, the authors use
rendering to predict scene appearance in order to robustify
localization. However, their method is feature-based whereas
we are targeting direct camera tracking. Thus, our method
can be applied in scenes with little or no distinct features by
exploiting weak gradients such as soft shadow borders.

Liu and Granier [21] estimate the dynamic sun and sky
brightness in a video of an outdoor scene captured by a moving
camera. They derive the sun position from geo-location and
time as we do in our approach. The authors cluster sparse point
features based on reflectivity and surface normals, and track
these features across frames to detect illumination changes.
Similarly to [16] and [17], this method aims at AR applications
where the estimated illumination parameters are used to render
an artificial object into the video, but not to improve camera
tracking. In contrast, we adapt the actual scene model to the
illumination estimate, which in turn improves camera tracking.

III. PROPOSED METHOD

Our goal is to improve direct frame-to-model (f2m) camera
tracking by adapting the model appearance to the current
outdoor illumination conditions. As input we use a 3D mesh
with diffuse reflectance values, which can be constructed as
in our previous work [4]. Our outdoor illumination model
(subsection III-A) consists of a sun, a sky, and a ground com-
ponent, for which we pre-compute the normalized radiosities
B̂sun, B̂sky and B̂grd (subsection III-B). Given the brightness
scale sx of a component x ∈ {sun, sky, grd} the radiosity
Bx can then be computed as sxB̂x in real-time. B̂sky and
B̂grd must be calculated only once for a mesh, whereas B̂sun

changes with the sun position and is constantly updated in a
separate thread (subsection III-E).

Fig. 3: Schema of our outdoor illumination model. A set
of directional light sources l with directions n(l), represented
as dots and arrows, are placed uniformly around the scene,
forming a sphere. These are split by the horizon plane into
the subsets Lsky (blue) and Lgrd (green). For a given sun
position, the sun area is modeled as Lsun (red) where the
samples l are placed more densely.

In tracking mode, for every new frame we first employ
frame-to-frame (f2f) tracking to obtain a coarse camera pose
T≈, which is used to render a normalized radiosity image
IB̂x

for each illumination component. Next, the brightness
scales sx are estimated based on the input color image (subsec-
tion III-C). Finally, we generate an RGB image of the adapted
map and use it as reference in f2m tracking (subsection III-D).
Figure 2 summarizes our pipeline.

A. Outdoor Illumination Model

At day time an indoor scene is typically illuminated by light
coming through windows. Ignoring artificial light sources like
street lights, outdoor illumination is ultimately generated by
the sun. That can be further divided into three main compo-
nents, namely direct sun light, sky and ground illumination.
We model the outside world as being projected onto a sphere
with infinite radius as shown in Figure 3. Each point l on
the sphere is considered a directional light source defined
by its direction n(l) and brightness scale sl. The sun, sky
and ground components are modeled as sets of such points,
namely Lsun, Lsky and Lgrd, where for brevity we write Lx

with x ∈ {sun, sky, grd}. We further make the simplifying
assumption that all l in one Lx have the same brightness scale
sx.
Lsun depends on the sun position which can be computed

analytically from the current date and time of the day and the
geographic location of the scene, which we assume as given.
In several approaches dealing with outdoor illumination [16],
[20], [21], the sun is modeled as a light source with a single
direction, i.e., one point on the sky sphere, where in fact the
sun occupies an non-neglectable area on the sky. Thus, the
sun can shine “around” geometry edges producing narrower
shadow borders when compared to the point sun model, as
demonstrated in Figure 4. For many use cases the former
simplification might be sufficient. However, in our camera
tracking application we want to exploit sun light gradients such
as cast shadows, thus a precise shadow geometry is required.
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gt point area

Fig. 4: Differences in cast shadows depending on sun model.
The point sun model generates thicker cast shadows than
in the ground truth (gt) image, best seen on the vertical
window frame shadow in image center. The area sun model
produces smoother shadow borders with the shadow area better
matching the gt.

Therefore, we construct Lsun from multiple points l sampled
uniformly in the area around the computed sun position. The
resulting shadows, shown on the right of Figure 4, are closer
to the real-world data than the point model.

The remainder of outdoor illumination originates either
from sunlight being scattered in the atmosphere or being
reflected by the ground. We sample points l by creating an
icosphere and assign l above the horizon to Lsky and to Lgrd

otherwise. Here, we favor a computationally efficient sky and
ground model in order to support real-time capability, but it
would be straightforward to extend it if needed. Thus, Lsky

and Lgrd could be partitioned into a number of subsets in order
to account for spatial brightness differences of the ground and
sky. Further, Lgrd could be computed using a 3D mesh, if
actual outdoor geometry is available.

B. Normalized Radiosity

Given the three illumination components Lx we aim to
adapt the radiosity in the model to the scene’s current lighting
condition in real-time. We observe that Lsky and Lgrd are
static, while Lsun may change quickly, and that only the
brightness scales sx can be highly dynamic depending on the
weather conditions. Our idea is thus to pre-compute the scene
illumination for each Lx with all sx set to 1 to obtain what
we call normalized radiosites B̂x. Once the sx are estimated
as shown in subsection III-C we can perform fast re-scaling
to obtain the radiosities Bx = sxB̂x.

To simulate light propagation within the scene we employ
radiosity transport where we refer the reader to the original
paper [3] for detailed background and derivation, or to our
previous papers [2], [4]. In this paper, we present a variant
of the algorithm suited to the considered problem. We operate
on a mesh with the set of vertices V , where each v ∈ V
has a reflectance value ρ(v). The radiosity B(v) here is the
amount of light reflected by the surface patch at v, and Bx(v)
the radiosity originating from light component Lx. In order to
estimate Bx(v), we first compute the radiosity Bl(v) induced
by a single directional light source l ∈ Lx and then sum up
these parts.

We use an iterative version of the basic radiosity algorithm,
with

B0
l (vi) = ρ(vi)slF (l, vi)G(l, vi) (1)

gt lin crf

Fig. 5: Comparison of illumination scales estimated with the
linear-least-squares (lin) and CRF-based error function. The
lin approach tends to underestimate the brightness in over-
exposed image regions, as seen in the sun-lit part of the table.
The CRF method, in contrast, is significantly closer to the
ground truth (gt).

being the light reaching the scene directly from l, and

Bk+1
l (vi) = ρ(vi)

∑
j 6=i

Bk
l (vj)F (vi, vj)G(vi, vj) (2)

being an iterative estimate for light inter-reflections within
the scene. The form factor F (vi, vj) is computed as in our
previous work [4], for a directional light source F (l, vi)
simplifies to −cos(n(l)·n(vi)). The visibility term G(vi, vj) is
1 if the line of sight between vi and vj is free, and 0 otherwise.
Similarly, G(l, vi) = 1 only when the ray with direction
n(l), starting at vi, does not intersect any scene geometry.
We set Bl(vi) = BK

l (vi), with K = 10 in our experiments,
and Bx(vi) =

∑
l∈Lx

Bl(vi). Setting sl = 1 in Equation 1
gives us B̂x, and once the sx are estimated, the scaled scene
appearance in radiosity space is B =

∑
x∈X sxB̂x with

X = {sun, sky, grd}.
The above radiosities and scales are computed separately for

each of the three color channels. B̂sun is constantly adapted
to the current sun position in a thread running in parallel to
camera tracking, more details are given in subsection III-E.

C. Brightness Scale Estimation

The brightness of the sun, sky and ground can change
dynamically, demanding a constant update of the model il-
lumination. In each frame we thus compute the scales sx
taking the current input RGB image IC as reference. Using
the corresponding camera pose T≈ and B̂x we render a nor-
malized radiosity image IB̂x

for each illumination component.
To reduce computational costs we operate on a pixel subset
Ω, which is sampled from IC in a uniform grid of 15 pixels,
meaning that at most 1/152 of all pixels are used. We further
filter Ω by removing pixels with missing model geometry or
with low model reflectance, since the radiosity estimate in such
areas tends to be unreliable. Here, we choose a reflectance
threshold of 0.03. For a pixel u we define

IB(u) =
∑

x∈{sun,sky,grd}

sxIB̂x
(u) (3)

and with that the error function

Ecrf =
∑
u∈Ω

(
IC(u)− f

(
∆t · IB(u)

))2

, (4)
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DS1.T1 DS1.T2 DS1.T3 DS1.T4 DS1.T5 DS1.T6

DS2.T1 DS2.T2 DS2.T3 DS2.T4 DS2.T5 DS2.T6

Fig. 6: Illumination conditions and GT camera trajectories for scene DS1 (top) and DS2 (bottom).

where f() is the camera response function (CRF) and ∆t
the exposure time of IC . The scales sx are then obtained by
minimizing Ecrf :

s∗x = arg min
sx

Ecrf (5)

The simulation of the image formation process by the CRF
in the error function is crucial to correctly handling over-
exposed pixels in the reference image. Such pixels essentially
tell us a lower bound of the model radiosity and not its exact
value. Formulating the error function as a linear least squares
problem can lead to under-estimation of the brightness in over-
exposed areas which are ubiquitous in our daylight scenario.
We demonstrate this in Figure 5 by minimizing an alternative
error function

Elin =
∑
u∈Ω

(
I liveB (u)− IB(u)

)2

, (6)

with I liveB = f−1(IC)/∆t being the live color image trans-
formed into radiosity space before the minimization.

Changes of outdoor lighting usually occur on a time scale
of seconds [21], so that we can expect the brightness to vary
only marginally between consecutive frames. That allows us
to average the per-frame brightness scale estimates in a short
time window, here 30 frames, leading to more robust scales
sx while remaining flexible enough to cope with dynamic
lighting.

D. Camera Tracking
For each frame at time t we aim to estimate the camera

pose Tt ∈ SE(3) relative to the scene. To that end, we follow
our previously used tracking method [2] which solves

T ∗ = arg min
T

EC(T ) + wGEG(T ), (7)

where EC is a photometric error term [8], EG a geometric
error [10] used for additional robustness, and wG the weight
between EC and EG, set to 10 in the experiments. The live
depth image is utilized in EG and is also used for projective
data association.
Tt is obtained in a two-step approach. First, we perform

frame-to-frame tracking by solving Equation 7 with the pre-
vious frame t − 1 as reference. This gives us the initial pose

estimate T≈t . With that, we adapt the brightness scales of the
model as described in subsection III-C where T≈t is used for
rendering and the input color image IC as reference for scale
estimation. Given the scales, we render the color image IrefC

as well as the depth image IrefD which serve as reference in
Equation 7 for the frame-to-model tracking. The minimization
procedure is initialized with T≈t and returns the final pose
estimate Tt.

E. Implementation Details

We aim for a real-time tracking system which operates at a
frame rate of at least 30fps. To achieve this we make heavy
use of parallel processing on modern GPU hardware. Here we
outline the details of our implementation we consider crucial
for real-time performance.

The system is implemented in C++, where the Optix library
is used for ray tracing. Most of the image processing and
radiosity estimation is implemented in CUDA. Equation 4
for brightness estimation is minimized with the Levenberg-
Marquardt algorithm using the ALGLIB1 library.

In camera tracking mode, brightness estimation and tracking
run in the same CPU thread, while in a parallel thread
the normalized radiosity B̂sun for the next sun position is
computed. The linearity in Equation 1 and Equation 2 allows
us to divide the B̂sun estimation into chunks, with only one
chunk executed per frame. First, by choosing a proper chunk
size, we can control how much GPU processing resources are
needed for the sun update per frame, thus guaranteeing a stable
frame rate in the tracking thread. Second, we know how many
frames the sun update will take and therefore choose the next
sun position accordingly.

The direct sun light component B̂0
sun requires |V | · |Lsun|

ray tracing operations, where we compute one B̂0
l per frame

for all l ∈ Lsun. In contrast, one iteration of B̂k+1
sun requires

|V |2 ray computations. With |V | typically being on a scale
of 106 this becomes intractable in practice, thus we partition
the model into a set of uniformly sized patches P , where each
p ∈ P groups connected vertices in planar regions. Equation 2
is modified to compute radiosity propagation from patch to

1ALGLIB (www.alglib.net), Sergey Bochkanov
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vertex instead of vertex to vertex, as described in [4]. This
reduces the above costs to |V | · |P | with |P | � |V |.

Further, the visibility term G in Equation 2 depends only on
the scene geometry which is assumed to be static. Therefore
we can pre-compute G for all patch-vertex pairs and use the
results to avoid ray tracing in the sun update. As CPU to
GPU memory copies are expensive, the complete visibility
data is uploaded as a bit array to GPU memory only once
during program start. The memory requirement for that data
is |V | · |P | bits and can be fit to available GPU memory by
modifying the number of patches.

IV. EXPERIMENTAL EVALUATION

In this section we present the experiments we performed
to validate our approach. First, we describe the experimental
setup, the recorded datasets, and details on model construction.
Then we present our experiments on camera tracking and
discuss the results. Finally, we perform a run-time analysis
of our method.

A. Setup

The experiments were carried out in a 4.5x4.8x2.9m sized
room with one window, where we set up two scenes, DS1 and
DS2, as shown in Figure 6. DS1 is richly decorated such that
a high number of geometric and texture features is provided.
In contrast, DS2 contains just a minimal amount of texture
and geometry.

For tracking evaluation we recorded twelve RGB-D se-
quences using an Asus Xtion Pro camera. The sequences
DS1.T1-T6 and DS2.T1-T6 each capture the respective scene
with different daylight illumination, where distinct times of the
day, seasons and weather conditions are covered. Accordingly,
data acquisition for DS1 took place over the course of three
days in winter and for DS2 on a single day in summer. T1-T5
depict both scenes under clear sky conditions, whereas DS1.T6
and DS2.T6 display dynamics in sun brightness due to cloud
movement. We disabled the camera’s auto-exposure and in
each sequence set the exposure and gain to a fixed value,
appropriate to the corresponding illumination. The camera
trajectories and illumination conditions are shown in Figure 6.

Ground truth (GT) poses were acquired by means of the
HTC Vive tracking system with one base station being placed
in each corner of the room and a tracker being mounted on top
of the camera. Vive’s global coordinate frame is not static [22]
and may change if the tracker is switched off, however, we
require all GT poses in one scene to be in the same reference
frame. To this end, we mounted a second tracker at the ceiling
in sight of all four base stations and computed the GT poses
relative to this static tracker. Reflective surfaces and bright
sunlight can negatively affect the tracking stability of the Vive
system, resulting in occasional jumps in reported poses. Thus,
we manually filtered out such poses and excluded them from
the evaluation.

B. Model Construction

We first constructed an initial geometric model with the
hashed voxel method [23] with a resolution of 0.5cm for DS1

Fig. 7: Window geometry recovery. On the left, the recon-
struction from raw TSDF exhibits geometric noise as a result
of glass reflections. On the right the geometry is augmented
by a CAD model.

and 0.7cm for DS2. Since direct sunlight causes depth data
loss in Asus Xtion depth images, both scenes, DS1 and DS2,
were scanned after sunset with ceiling lamps switched on.

Window glass poses a fundamental problem for an active
depth sensor, since it partially reflects the light of the infrared
projector. This causes depth image noise on glass areas,
resulting in geometry clutter blocking the window opening.
Further, parts of the window frame geometry behind the glass
are missing in the reconstruction. We addressed this problem
by replacing the window frame in the TSDF volume with
a manually created CAD model. Further, we augmented the
scene geometry by fitting large flat surfaces, such as walls,
ceiling, and floor, to planes. The difference in geometry before
and after augmentation is demonstrated in Figure 7. After
the mesh had been extracted from the TSDF volume, we
proceeded as in [4] to recover the scene reflectance.

C. Camera Tracking

We carry out an ablation study to analyze the contribution
of the illumination adaptation to tracking performance. First,
the refl-f2m baseline differs to the proposed method in that
the reference image in f2m tracking is rendered from the
reflectance map and scaled to fit the mean brightness of the
live color image. The idea here is to provide texture gradients
which are not affected by illumination. Second, depth-only
employs only depth information for both the f2f and f2m steps,
i.e., EC is not considered in Equation 7. Finally, no-color-f2m
performs f2f tracking with both, EC and EG, but uses only EG

in model tracking. In other words, it utilizes all information
as the proposed approach except the model color.

We evaluate the baselines and the proposed method on the
twelve test sequences by computing two metrics, the root mean
square error (RMSE) [24] and the number of tracking losses
per sequence. For the RMSE, we only count poses deviating
from GT less than 10cm in translation and 10◦ in rotation.
Otherwise, we consider the tracking to be lost and reset the
tracker to the corresponding GT pose.

Table I summarizes the results of these experiments. The
bottom row of the table shows the average values over all test
sequences. There, the proposed method has 3.6cm RMSE and
2% tracking loss, which outperforms all considered baselines.
All baselines are slightly worse on the RMSE score but have
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Sequence refl-f2m depth-only no-color-f2m proposed

DS1.T1 0.0418 0.0433 0.0433 0.0360
9.67% 1.67% 1.63% 0.33%

DS1.T2 0.0527 0.0491 0.0491 0.0457
17.28% 12.15% 12.06% 1.20%

DS1.T3 0.0448 0.0397 0.0397 0.0240
22.24% 7.92% 7.90% 2.70%

DS1.T4 0.0374 0.0487 0.0488 0.0279
7.41% 10.94% 10.86% 2.24%

DS1.T5 0.0429 0.0508 0.0508 0.0453
23.80% 10.16% 10.16% 4.38%

DS1.T6 0.0356 0.0428 0.0427 0.0353
1.89% 2.38% 2.34% 0.00%

DS2.T1 0.0655 0.0417 0.0418 0.0359
59.55% 8.48% 9.10% 0.47%

DS2.T2 0.0713 0.0406 0.0408 0.0252
80.43% 11.23% 11.28% 0.26%

DS2.T3 0.0671 0.0526 0.0524 0.0279
51.53% 28.22% 27.93% 0.22%

DS2.T4 0.0626 0.0438 0.0437 0.0270
40.00% 24.84% 24.73% 0.16%

DS2.T5 0.0654 0.0508 0.0508 0.0443
63.61% 37.84% 37.94% 3.47%

DS2.T6 0.0649 0.0434 0.0434 0.0463
44.28% 10.98% 11.05% 9.65%

Average 0.0499 0.0453 0.0453 0.0361
31.98% 11.89% 11.90% 2.16%

TABLE I: Tracking experiment results by method. The top
number of each cell is the RMSE in meters of the tracking
method on the corresponding sequence. The bottom number
is the percentage of tracking loss w.r.t. the number of frames
in that sequence. The lowest values on one sequence, for both
metrics, are highlighted.

much higher tracking loss numbers of over 11% for depth-
only and no-color-f2m, the clearly worst performing baseline
is refl-f2m with over 30% tracking loss.

The results on individual sequences mirror this performance
hierarchy with the proposed method being at the top, with two
exceptions: On DS1.T5 the proposed method is marginally
outperformed on RMSE by refl-f2m with the latter, however,
having a significantly higher tracking loss. On DS2.T6, no-
color-f2m scores slightly lower on RMSE and slightly higher
on tracking loss, making the results comparable to the pro-
posed approach.

We interpret the above results as follows. The attempt to
match the live image with a high amount of illumination-
induced gradients against a reflectance-based reference image,
naturally lacking these gradients, causes tracking to fail in
many cases. This explains the poor performance of the refl-
f2m baseline. In contrast, depth-only and no-color-f2m operate
only on the geometric model and therefore perform more
stably, however, they also lack the additional color constraints
given by the illumination-adapted model. Thus we conclude
that a model with color information is beneficial for direct
camera tracking, but only if it can be adapted to the current
illumination.

We further examined how the brightness scale estimation
parameters influence tracking. Decreasing the size of the time
window for scale averaging below 30 frames did not have a

Fig. 8: Average frames-per-second depending on number of
patches processed per frame (red line) and corresponding time
required for one sun radiosity update (blue line).

significant effect on the tracking performance. However, this
resulted in noticeable color balance jumps between frames
which might be problematic for, e.g., AR applications. Choos-
ing the linear error function defined in Equation 6 instead of
the CRF-based as in Equation 4 significantly increased the
tracking loss from 2% to 10% averaged over all trajectories.

Another aspect worth discussing is depth value loss in direct
sunlight. Pixels with missing depth values are not considered
in the geometric error term, thus, tracking becomes less robust
for images where large scene portions are lit by direct sun.
Also, since the live depth image is used for data association,
these pixels are neither utilized in the photometric error.
However, the latter is only a minor issue as missing depth
values coincide with overexposed pixels that produce virtually
no gradients, i.e, carry no additional information.

D. Run-Time Analysis

The time profiling is carried out on a system with an
AMD Ryzen 7 3700x CPU, an RTX 2080 Ti GPU and 32GB
of RAM. We perform the run-time analysis on the DS2.T2
sequence with 4169 frames and 2.1 million vertices in the
scene mesh. We choose a patch size of 10x10cm with 11.000
patches in total and K = 10 iterations for inter-reflection
estimation.

Figure 8 shows the system performance in frames-per-
second (fps) depending on the number of processed patches
per frame (ppf), where 0 ppf means that we tracked on a
pre-computed sun radiosity without a background update. The
average fps is 35 for 0 ppf and drops linearly to 17 fps for 100
ppf. Two settings allow real-time camera tracking with over 30
fps, namely those with 10 and 20 patches processed per frame.
In the latter case, a full sun radiosity update is completed in
less than 4 minutes. For higher ppf numbers the workload per
frame is increasingly dominated by the sun update, decreasing
the frame rate and asymptotically pushing the update time to
75 seconds.

In Table II we also analyze the average per-frame run-time
of the main system components, namely f2f and f2m tracking,
rendering of the radiosity images, and brightness estimation.
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patches components
per frame f2f f2m rendering estim.

0 6.8 5.8 0.6 15
20 9.2 5.8 2 15
100 9.6 5.8 24.8 15

TABLE II: Average per-frame run-time (ms) of individual
components.

Without the sun update, processing time is evenly split be-
tween tracking and brightness estimation with approx. 15ms
both and rendering being neglectable with 0.6ms. However,
during a sun update with 100 ppf, the rendering time rises to
25ms, while the other components remain relatively constant.
We explain this by the fact that rendering is the component
relying most on the GPU, which is heavily used for sun
updating.

V. CONCLUSION

In this paper, we presented an approach to adapting the
appearance of a dense 3D map to the current outdoor illumi-
nation. We use an outdoor illumination model consisting of
sun, sky and ground components. The scene illumination is
pre-computed for each component and is then scaled in real-
time to match the present illumination brightness, which is
estimated for each input image. In our experiments we show
that direct camera tracking is more robust and accurate using
the adapted map compared to a map without light adaptation.

One possible direction for future work is the automatic
removal of geometry clutter on windows. An interesting ap-
proach in this context is to derive window geometry from
shadows cast by the window frame, captured at different time
points [25]. Further, it might be interesting to investigate how
outdoor illumination can be exploited in the context of global
localization.
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