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Abstract— In graph-based SLAM, the pose graph encodes
the poses of the robot during data acquisition as well as
spatial constraints between them. The size of the pose graph
has a substantial influence on the runtime and the memory
requirements of a SLAM system, which hinders long-term
mapping. In this paper, we address the problem of efficient
information-theoretic compression of pose graphs. Our approach
estimates the expected information gain of laser measurements
with respect to the resulting occupancy grid map. It allows
for restricting the size of the pose graph depending on the
information that the robot acquires about the environment or
based on a given memory limit, which results in an any-space
SLAM system. When discarding laser scans, our approach
marginalizes out the corresponding pose nodes from the graph.
To avoid a densely connected pose graph, which would result
from exact marginalization, we propose an approximation to
marginalization that is based on local Chow-Liu trees and
maintains a sparse graph. Real world experiments suggest that
our approach effectively reduces the growth of the pose graph
while minimizing the loss of information in the resulting grid
map.

I. INTRODUCTION

Maps of the environment are needed for a wide range of
robotic applications. In the past, several effective approaches
to mapping have been developed. The graph-based formula-
tion of the simultaneous localization and mapping (SLAM)
problem models the poses of the robot as nodes in a graph.
Spatial constraints between poses resulting from observations
and odometry are encoded as edges. Graph-based approaches
typically marginalize out features or local grid maps and
reduce the mapping problem to trajectory estimation without
prior map knowledge.

Most of the SLAM approaches assume that map learning
is carried out as a preprocessing step and that the robot then
uses the acquired model for tasks such as localization and
path planning. A robot that has to extend the map of its
environment during long-term operation cannot apply most
of the existing graph-based mapping approaches since their
complexity grows with the length of the robot’s trajectory.
The reason for this is that standard graph-based approaches
constantly add new nodes to the graph. As a result, memory
and computational requirements grow over time, preventing
long-term mapping applications. A constantly growing graph
slows down graph optimization and makes it more and more
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Fig. 1: The goal of our work is to prune the SLAM pose graph
(top), maintaining a sparse pose graph (bottom), while minimizing
the loss of information in the graph and the resulting map.

costly to find constraints between the current pose and former
poses, i.e., to identify loop closures.

In this paper, we present a novel information-theoretic
pruning approach that allows graph-based SLAM systems to
operate in static environments over extended periods of time.
Fig. 1 depicts a motivating example. The top image shows
the pose graph and the resulting map obtained by a standard
graph-based approach to SLAM. The bottom image displays
the corresponding pose graph along with the map resulting
from our information-theoretic pruning approach.

This paper makes two contributions. First, we present an ap-
proach to select laser scans for removal such that the expected
loss of information with respect to the map is minimized.
Our unbiased selection applies the information-theoretic
concept of mutual information. The second contribution is
an efficient approximation to marginalize out the pose nodes
corresponding to the discarded laser scans. Marginalizing
out a pose node from the graph means summarizing the
information in the edges that are incident to that node in
the edges between the nodes that are kept. The fill-in caused
by exact marginalization, however, causes the pose graph to
become dense and therefore leads to high memory usage and
furthermore dramatically slows down graph optimization. In
contrast to that, our approach preserves the sparse structure of
the graph while summarizing most of the information in the
constraints between poses that are kept. To maintain sparsity,
our method uses Chow-Liu trees to locally approximate
elimination cliques. The combination of both techniques
is highly relevant to long-term mapping, particularly when
the robot frequently re-traverses already visited areas. Our
approach also allows us to build an any-space SLAM system
that aims at minimizing the expected loss of information.



II. RELATED WORK

Most of the current graph-based approaches to SLAM do
not provide means to effectively prune the pose graph. Instead,
they add more and more nodes to the graph over time. One
way to limit the number of nodes in the graph is to sample the
trajectory of the robot at an appropriate spatial decimation [5].
A similar method is to only add a new node to the graph if
it is not spatially close to any existing node [9]. Konolige
and Bowman [10] presented an approach to lifelong mapping
that uses a single stereo camera and that is able to update the
map when the environment changes. Their method discards
views based on a least-recently used algorithm. The above-
mentioned techniques do not rely on information-theoretic
concepts to determine which measurements to discard.

In contrast to that, Davison [3] analyzes mutual information,
particularly in the case of Gaussian probability distributions,
to guide image processing. In the vision community, Snavely
et al. [15] aim to find a skeletal subgraph with the minimum
number of interior nodes that spans the full graph while
achieving a bound on the full covariance. Their technique is
used for reconstructing scenes based on large, redundant photo
collections. Kaess and Dellaert [8] examine the information
that measurements contribute to the state estimate in the
iSAM framework. In contrast to that, our approach estimates
the mutual information of laser scans and the occupancy
grid map. Ila et al. [7] propose to only incorporate non-
redundant poses and informative constraints based on the
relative distance between poses in information space and
the expected information gain of candidate loop closures.
As opposed to our maximum-likelihood approach to SLAM
based on pose graphs, their method applies an information
filter and does not marginalize out already added poses.

Recently, Eade et al. [4] presented a view-based monocular
SLAM system that reduces the complexity of the graph
by marginalization and subsequent suppression of edges
incident to nodes of high degrees. Their heuristic discards
the constraints that most agree with the current state estimate.
This, however, introduces a bias into the system.

Unlike our previous work [12], which neglects the uncer-
tainty of constraints, our approach presented in this paper
uses Chow-Liu trees to efficiently preserve sparsity while
minimizing the loss of information without biasing the system.

III. GRAPH-BASED SLAM

Graph-based approaches to SLAM model the poses of
the robot as nodes in a graph. The edges of the graph
model spatial constraints between the nodes. These constraints
naturally arise from odometry measurements and from feature
observations or scan matching. The so-called SLAM front-
end interprets the sensor data to extract the spatial constraints.
The so-called SLAM back-end typically applies optimization
techniques to estimate the configuration of the nodes that
best matches the spatial constraints.

A. The SLAM Front-end

Our laser-based front-end uses correlative scan matching
to estimate a constraint between the current node and the

previous node. Our method also generates loop closure
hypotheses by matching the current laser scan against a set of
scans that is determined by the relative positional uncertainties
and then rejects false hypotheses using the spectral clustering
approach described by Olson [14]. Our method incrementally
optimizes the pose graph while adding the poses and the
constraints to it. Once the poses are estimated, the laser
scans are used to render an occupancy grid map of the
environment. The robot therefore needs to store the laser
scans corresponding to the pose nodes.

B. The SLAM Back-end

The back-end aims at finding the spatial configuration x∗

of the nodes that maximizes the log likelihood of the
observations. Let x = (xT1 , . . . , x

T
n )T be a vector where xi

describes the pose of node i. Let zij and Ωij be the mean
and the information matrix of an observation of node j seen
from node i assuming Gaussian noise. Let eij(x) be an error
vector which expresses the difference between an observation
and the current configuration of the nodes. Let C be the set
of pairs of nodes for which a constraint exists. Assuming the
constraints to be independent, we have

x∗ = argmin
x

∑
〈i,j〉∈C

eij(x)TΩijeij(x). (1)

Our approach applies the technique proposed in [6], which
uses sparse Cholesky factorization to efficiently solve the
system of linearized equations that is obtained from Eq. (1).

C. Pose Graphs as Gaussian Markov Random Fields

A pose graph can be seen as a Gaussian Markov random
field (GMRF) that models the belief of the robot. Markov
random fields are useful to analyze the conditional inde-
pendence structure of probability distributions. GMRFs are
a subset of Markov random fields suitable for expressing
multivariate Gaussian distributions. Thus, a pose graph can
directly be interpreted as a GMRF that is given by a graph
G = (V,Ψ). The nodes in the pose graph correspond to the
random variables in V . All the potential functions in Ψ are
either unary or binary. The unary potentials are typically set
to unity, except the one for the initial pose, which is bound
to the origin. The likelihood functions associated with the
edges of the pose graph correspond to the binary potentials
in Ψ. The belief is given by

p(x1, . . . , xt) =
1

Z

t∏
i=1

ψi(xi)
∏
〈i,j〉∈C

ψi,j(xi, xj). (2)

IV. SELECTING THE MOST INFORMATIVE LASER SCANS

Our first contribution is an approach to select the laser
scans that are most informative with respect to the map
estimate. Our technique aims at minimizing the expected loss
of information in the resulting map without introducing a
bias during the selection of the laser scans. Such a technique
is important to allow for long-term robot mapping since
a robot that keeps all scans will run out of resources at
some point. In addition to that, our method can be used to



directly implement an any-space SLAM system. Whenever
the memory limit is reached, our algorithm discards the laser
scans that are expected to be least informative about the map
and marginalizes out the corresponding pose nodes.

A. Finding the Most Informative Subset of Laser Scans

We define the map M as a random variable describing
the state of the world. It is highly correlated to the random
variables Z1:t describing the laser scans z1:t recorded at the
poses x1:t. We use Zji to refer to an individual beam of laser
scan Zi. To estimate the state of the world m, we consider
the posterior probability distribution of the map M given the
laser measurements z1:t. In this section, we are interested in
finding the subset Z∗ ⊆ Z1:t of at most n laser measurements
that is expected to result in the smallest uncertainty about
the map M .

Following the notation of [13], the average reduction in
the uncertainty of the map M due to a set Z of laser
measurements is given by the mutual information

I(M ;Z) = H(M)−H(M | Z). (3)

Hence, we want to find the subset Z∗ ⊆ Z1:t of at most
n laser measurements such that the mutual information of
the map M and the subset Z∗ is maximized, giving

Z∗ = argmax
Z⊆Z1:t,|Z|≤n

H(M)−H(M | Z). (4)

The conditional entropy H(M | Z) of the map M given the
set Z of measurements is the expected value, over the space
of all possible measurements, of the conditional entropy of
the map given the individual measurements z:

H(M | Z) =

∫
z

p(z)H(M | Z = z) dz. (5)

B. Efficiently Estimating Mutual Information

Unfortunately, computing the conditional entropy given
in Eq. (5) is infeasible without approximations since inte-
grating over the space of all possible combinations of up to
n laser measurements is practically impossible. In addition to
that, computing the entropy H(M | Z = z) of a map given a
set of measurements z typically requires model assumptions
about the world.

To efficiently compute H(M | Z), we make the following
assumptions. We assume the laser measurements and the
individual laser beams to be independent. Furthermore, we
model the map M as an occupancy grid map, i.e., a grid
of independent discrete binary random variables C that take
the values Val(C) = {“free”, “occupied”}. The entropy of
an occupancy grid map M given a set of measurements z is
then given by

H(M | Z = z) =
∑
C∈M

H(C | Z = z) =

−
∑
C∈M

∑
c∈Val(C)

P (C = c | z) logP (C = c | z). (6)

In addition to that, we ignore the distribution over x1:t and
operate on the most likely estimate x∗1:t, which is given

in Eq. (1). Furthermore, similar to most works on robot
localization, we assume the likelihood of sensing objects
to decrease with range. The a-priori probability of the j-th
beam of a range measurement zi, denoted as zji , without any
knowledge of the map M can be described by the exponential
distribution

p(zji ) =

{
ηλe−λz

j
i zji ≤ zmax,

0 zji > zmax,
(7)

where zmax is the maximum range of the scanner, λ a
parameter of the measurement model, and η a normalizer.

There are three possible outcomes of a measurement of
a laser beam with respect to a particular grid cell that is
located along the ray of the beam and given no prior map
information. The laser beam either traverses the cell and thus
observes the cell as free, the laser beam ends in the cell and
thus observes the cell as occupied, or the laser beam does not
observe the cell. The probability distribution of the outcome
can be computed by integrating over the density p(zji ). For
instance, the probability that the beam Zji does not reach
a particular grid cell C that is located along the ray of the
beam is given by

P (Zji does not observe C) =

∫ d(x∗
i ,C)

0

p(zji ) dz
j
i , (8)

where d(x∗i , C) is the distance between the pose x∗i
(see Eq. (1)) from which the laser scan Zi is taken and
the border of the grid cell C. Similarly, we can compute
the probability of the cell being observed as free and the
probability of the cell being observed as occupied. To compute
the mutual information

I(C;Z) = H(C)−
∑
z∈AZ

P (z)H(C | Z = z) (9)

of the grid cell C and the set Z of laser measurements,
we need to consider the set AZ of all possible measurement
outcomes z with respect to the grid cell C of all k laser scans
that are recorded close enough to potentially measure C.

In general, the number of possible combinations of grid
cell measurement outcomes is exponential in k. It is therefore
practically infeasible to enumerate all the combinations in
a tree. However, we use a standard sensor model, p(c | zji ),
for laser range scanners that assigns to each cell one of the
three occupancy values lfree, locc, and l0. Since the effect of
a set of observations on a particular cell does not depend
on the order the measurements were obtained, this model
allows us to efficiently prune the tree. In fact, the result only
depends on the number of free and occupied observations,
i.e., the histogram of measurement outcomes. Therefore,
ignoring the order, the number of histograms that we have
to compute is quadratic in k. Computing their probabilities
is cubic in k. Fortunately, the number k of scans that the
algorithm has to consider is typically bounded: First, the
maximum measurement range of laser scanners restricts the
set of scans that have to be considered. Second, our technique
discards laser scans online while building the graph and thus k
typically stays small during mapping. We can further reduce



the computational burden by only considering at most l laser
scans when computing the histograms. One good way of
choosing the l laser scans is selecting the ones with the
highest likelihood of measuring the cell according to Eq. (7).
This approximation yields a linear complexity in k.

Finally, the mutual information I(M ;Z) of the map M
and the set Z of laser scans is given by

I(M ;Z) =
∑
C∈M

I(C;Z). (10)

All terms needed to compute Z∗ in Eq. (4) are specified and
can be computed or approximated efficiently.

C. Discarding Laser Scans Online

Our approach can be used in two ways. First, by introducing
a bound on the total number of laser scans, our method results
in an any-space SLAM system. Second, setting a threshold on
the expected information gain of laser scans, our algorithm
only keeps scans that are expected to provide at least a certain
amount of information about the map.

Computing the subset Z∗ of n laser measurements that
most reduces the uncertainty about the map has been shown
to be at least NP-hard [11]. Fortunately, the problem is
submodular. Hence, greedily selecting measurements results
in obtaining a set of measurements that is at most a constant
factor (≈ 0.63) worse than the optimal set. Motivated by this
insight, our approach estimates the subset Z∗ by successively
discarding laser scans. In each step, it discards the laser scan
that is expected to be least informative.

V. APPROXIMATE MARGINALIZATION OF POSES

The second contribution of this paper is an efficient approx-
imation to marginalize out the pose nodes that correspond
to the laser scans that were discarded using the approach
described in the previous section. Marginalizing out a pose
node from the graph implies summarizing the information
stored in the edges that connect that node in the edges between
nodes that are kept. Our approach aims at preserving sparsity
while, at the same time, it seeks to minimize the loss of
information. We refer the reader to [1] for a discussion on
how to compound and merge geometric constraints with
associated errors.

A. Marginalization Ceases Sparsity

The GMRF framework helps us understand the effects of
marginalization on the belief of the robot. Suppose the belief
is given by the joint Gaussian probability distribution p(α, β)
over two stacked vectors α and β which together comprise
the poses of the robot. In information form, the belief p(α, β)
can be expressed as

p(α, β) = N−1
([

ξα
ξβ

]
,

[
Ωαα Ωαβ
Ωβα Ωββ

])
, (11)

where ξ are information vectors and Ω information matrices.
To remove β from the belief, we compute the marginal density
p(α) =

∫
p(α, β) dβ. In information form, marginalization
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Fig. 2: Eliminating a pose from the robot’s belief. Left: GMRFs
Right: Information matrices, where gray shades indicate nonzero val-
ues. Top: x9 is slated for removal. Middle: Belief after marginalizing
out node x9. The former neighbors of x9 form an elimination clique
making the graph dense. Bottom: Belief resulting from Chow-Liu
tree approximation of the elimination clique.

requires computing the Schur complement over the variables
which should be kept. Hence, the parameters of p(α) are

ξ = ξα − Ωαβ Ω−1ββ ξβ , (12)

Ω = Ωαα − Ωαβ Ω−1ββ Ωβα. (13)

Unfortunately, as, for instance, discussed in [5], the Schur
complement in Eq. (13) introduces new constraints between
all pairs of variables that are directly related to the eliminated
variables, adding a so-called elimination clique to the graph.
This fill-in destroys the natural sparsity pattern that is typical
to SLAM problems. See Fig. 2 for an illustration.

Representing a dense matrix typically requires significantly
more memory resources than representing a sparse matrix.
Furthermore, the density adversely affects the computational
costs of subsequent marginalizations and of the underlying
pose graph optimization. In the worst case, the number of
dependencies increases quadratically with the number of
variables. Hence, exact marginalization ceases the sparsity of
the belief and therefore introduces a complexity that is not
suited for long-term map learning.

B. Approximate Marginalization

In this paper, we propose to reduce the number of
constraints in the elimination cliques, which emerge when
marginalizing out pose nodes. We motivate this technique by
the fact that this part of the graph has just become dense due
to the fill-in resulting from marginalization.

To measure the effect of the approximation, we make use of
the relative entropy or Kullback-Leibler divergence, which is
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Fig. 3: Chow-Liu tree approximation. Left: Graphical model of a
probability distribution p(x̃), where the mutual information of some
pairs of variables is indicated by the numbers and by the thickness
of the edges. Right: Chow-Liu tree approximation of p(x̃).

a standard measure of the difference between two probability
distributions p and q. It is given by

DKL(p || q) =

∫
x

p(x) log
p(x)

q(x)
dx. (14)

Let x̃ = (xT1 , . . . , x
T
k )T be the stacked vector of the set of

variables in the elimination clique. Furthermore, let p(x̃) be
the density which arises from the constraints within the clique.
A key idea of our approach is to reduce the computational
burden by approximating the density p(x̃) with a distribution
that has fewer conditional dependencies. This implies treating
some pairs of variables as conditionally independent.

We propose to reduce the number of constraints in the
elimination cliques by locally approximating the density p(x̃)
with a probability distribution q(x̃) such that each variable
is conditioned upon only one of the other variables:

p(x̃) = p(xk)

k−1∏
i=1

p(xi | xi+1, . . . , xk) (15)

≈ p(xk)

k−1∏
i=1

p(xi | xi+1) = q(x̃). (16)

Consequently, the graphical model of q(x̃) is tree-shaped.
Note, however, that we do not propose to transform the entire
graph into a tree, only the nodes of the resulting elimination
cliques. Importantly, our approximation preserves the global
graph structure and, in particular, global loop closures.

C. Chow-Liu Tree Approximation

Chow-Liu trees [2] approximate a probability distribu-
tion p(x̃) by a distribution qopt(x̃) such that each variable is
conditioned upon at most one other variable and such that
the Kullback-Leibler divergence between p(x̃) and qopt(x̃) is
minimized. Let the mutual information graph of a probability
distribution be a fully connected graph such that each edge
between two nodes xi and xj has weight equal to the mutual
information I(xi;xj) of these variables. Chow and Liu proved
that the optimal approximation qopt(x̃) with first-order tree
dependence to the probability distribution p(x̃) has the same
structure as the maximum-weight spanning tree of the mutual
information graph of p(x̃). The maximum-weight spanning
tree of a graph and thus the Chow-Liu tree approximation can
be computed efficiently using Kruskal’s algorithm (see Fig. 3
for an illustration).

Davison [3] shows that in the Gaussian case the mutual
information of two variables xi and xj can be efficiently
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Fig. 4: In this long-term experiment, the total number of nodes was
restricted to 200.
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Fig. 5: In this long-term experiment, our algorithm discarded all
laser scans whose expected information gain was below a threshold.

computed as

I(xi;xj) =
1

2
log2

(
|Σ̃ii|

|Σ̃ii − Σ̃ijΣ̃
−1
jj Σ̃ji|

)
, (17)

where Σ̃ij refers to the entry in the covariance matrix Σ̃ of
probability distribution p(x̃) which relates xi and xj based
on the constraints in the elimination clique. Consequently,
our optimal tree-shaped approximation is local to the elimi-
nation clique. The covariance matrix Σ̃ can be obtained by
inverting p(x̃), i.e., the information matrix corresponding to
the clique. This can be done efficiently since this matrix is
bounded in size due to the sparsity of the graph.

In sum, our technique allows for efficient marginalization
and preserves sparsity in the pose graph while seeking to
minimize the loss of information.

VI. EXPERIMENTAL EVALUATION

To evaluate the presented approach, we carried out several
experiments using a real ActivMedia Pioneer-2 robot equipped
with a SICK laser range finder and applied it to benchmark
datasets. We compare our pruning approach to the same
SLAM system when no scans are discarded (referred to as
“no pruning” or “standard approach”, see Sec. III).

A. Memory and Runtime Requirements

In this section, we analyze the memory requirements in
terms of the size of the pose graph. In a first experiment, the
robot moved around in our lab environment for an extended
period of time (see Fig. 4 to Fig. 6). The plots clearly suggest
that this setting leads to an explosion in terms of memory
requirements when using the standard approach. This has
a direct influence on the computational complexity for two
reasons. First, the pose graph optimization scales with the
number of edges, which grows roughly quadratically since



Fig. 6: Long-term experiment. First: Standard approach. 2597 laser
scans, 15695 edges Second: Our approach at an intermediate time
step, 200 laser scans, 264 edges. Third: Our approach, 200 laser
scans, 315 edges. Fourth: Our approach when setting a threshold
on the mutual information, 148 laser scans, 250 edges.

the robot moves in the same environment. Second, the loop
closing component of the SLAM front-end, which uses a scan
matcher to find constraints between the current scan and all
former scans that were recorded in the vicinity of the robot,
has to consider an increasing number of nodes in each step.
Our approach prunes the pose graph such that the number
of nodes in the graph remains constant. Setting a threshold
on the mutual information, the complexity does not grow as
long as the robot does not explore new territory (see Fig. 5).

Fig. 6 depicts four pose graphs along with the correspond-
ing maps. The first one depicts the pose graph of the standard
approach. The second one shows the state of our approach
before the robot entered the left side of the corridor. The
limit of 200 nodes is used to model the right part only.
The third image shows the pose graph modeling the entire
environment. Note how our aproach redistributed the nodes
in the environment, still complying with the 200 node limit.
Finally, the fourth image shows the map when setting a
threshold on the mutual information. The motivating figure
(Fig. 1) depicts another example.

Our approach saves computing time but also causes an
overhead, which depends on the chosen parameters (particu-
larly l, see Sec. IV-B) and on the environment that is mapped.
This overhead is bounded since our algorithm constantly
discards nodes. In our experiments, the speed of our pruning
approach approximately ranges from running twice as fast
as the standard approach to running four times slower than
the standard approach. Our approach is beneficial when the
robot frequently re-traverses already mapped areas. There is
no gain if the robot mainly explores new territory.

B. Effects on the Most Likely Occupancy Grid Map

We furthermore analyzed the effects of our pruning
technique on the resulting occupancy grid maps. We therefore
compared the maps at a resolution of 10 cm and counted the
number of cells that changed their most likely state (free,
occupied, unknown) due to our pruning technique.

When mapping the Intel Research Lab, our pruning
approach retained 349 of 1802 laser scans. As a consequence
of this, 0.9% of the cells changed. In the long-term experiment,
our method kept 148 of 2597 laser scans and 1.6% of the cells
changed. When mapping the FHW, our approach maintained
250 of 2049 scans and 1.2% of the cells changed. Hence, the
changes in the most likely maps are small.

C. Approximate Marginalization

Eliminating nodes from the belief by means of exact
marginalization causes the pose graph to become dense. A
sparse pose graph, however, is highly advantageous since
it can be stored and optimized efficiently. Fig. 8 shows the
evolution of the number of nodes and edges for both ap-
proaches while mapping the Intel Research Lab. Fig. 7 shows
a comparison of the graphs resulting from exact marginal-
ization and from our approximate marginalization technique
when processing the Intel Research Lab dataset. The figure
illustrates that our approach preserves the sparsity of the pose
graph by using Chow-Liu trees to locally approximate the
elimination cliques. On the right hand side, the figure depicts
the 3σ covariance ellipses of the poses in the graphs. Our
approach keeps less than 9% of the edges of the original graph
(349 of 3916) but only 2.8% of the probability mass of the
original pose graph is not covered by our approximation.
The covariance estimates of our approach are typically
more conservative (in this experiment by 41%) since less
information is used during mapping.

D. Scan Alignment and Map Quality

In this section, we discuss how our online graph pruning
technique may affect scan matching. Ignoring measurements
leads to a belief with higher uncertainty. However, occupancy
grid-based mapping approaches typically involve some form
of scan alignment or scan matching to extract constraints.
These systems have the following disadvantage when it comes
to long-term map learning. Whenever the robot obtains a
laser measurement, the scan matcher aims at aligning the new
scan with existing scans in order to solve the data association
problem. The probability that the scan matcher thereby makes



Fig. 7: Intel Research Lab. First: Standard approach, 1802 laser scans, 3916 edges. Arrows indicate misalignments in the map. Second:
Exact marginalization of poses, 349 laser scans, 13052 edges. Third: Our approach preserves the sparsity of the pose graph, 250 laser
scans, 349 edges. Fourth: 3σ covariance ellipses of the poses.
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Fig. 8: Intel Research Lab. Left: The evolution of the number of
nodes. Right: The evolution of the number of edges.

a small alignment error is nonzero. A scan that is incorporated
at a slightly wrong position blurs the map. As a result, the
probability that the scan matcher misaligns subsequent scans
increases since scan matching is performed with misaligned
scans. Hence, the probability of making alignment errors
increases with the number of incorporated scans. In the long
run, the map tends to become increasingly blurred and the
mapping approach is likely to diverge. Fig. 6 and 7 depict
the maps and graphs obtained from the Intel Research Lab
dataset and the long-term experiments that we conducted in
our office environment. The occupancy grid maps generated
by the standard approach exhibit visibly more blur in several
parts of the maps (see the arrows and the zoomed map view
in the corresponding images). In general, the more often the
robot re-traverses already visited terrain, the more blur is
added to the maps. In contrast to the standard approach, our
graph pruning method discards scans and thus produces maps
with sharper obstacle boundaries even in cases in which the
robot frequently re-traverses already visited places. Although
we do not claim that these sharp maps are better estimates of
the world, they reduce the risk of divergence in the mapping
process.

VII. CONCLUSION

In this paper, we presented a method for efficient
information-theoretic pruning of pose graphs in graph-based
SLAM. Our approach seeks to select the most informative
set of laser scans and allows for restricting the size of
the pose graph either based on a memory limit, resulting

in an any-space mapping system, or based on a threshold
on the minimum of information that a laser scan provides.
When marginalizing out pose nodes in the graph, exact
marginalization leads to a densely connected graph. To
preserve the sparsity of the pose graph, we proposed to
approximate the elimination cliques by local Chow-Liu trees,
seeking to minimize the loss of information. Real world
experiments illustrate the effectiveness of our method.
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[6] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg.
Hierarchical optimization on manifolds for online 2d and 3d mapping.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
Anchorage, AK, 2010.

[7] V. Ila, J.M. Porta, and J. Andrade-Cetto. Information-based compact
pose slam. IEEE Transactions on Robotics, 26(1):78–93, 2010.

[8] M. Kaess and F. Dellaert. Covariance recovery from a square root
information matrix for data association. Journal of Robotics and
Autonomous Systems (RAS), 57:1198–1210, Dec 2009.

[9] K. Konolige and M. Agrawal. FrameSLAM: From bundle adjustment to
realtime visual mappping. IEEE Transactions on Robotics, 24(5):1066–
1077, 2008.

[10] K. Konolige and J. Bowman. Towards lifelong visual maps. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
pages 1156–1163, St. Louis, MO, USA, 2009.

[11] A. Krause and C. Guestrin. Near-optimal nonmyopic value of
information in graphical models. In Proc. of Uncertainty in Artificial
Intelligence (UAI), 2005.

[12] H. Kretzschmar, G. Grisetti, and C. Stachniss. Lifelong map learning for
graph-based SLAM in static environments. KI – Künstliche Intelligenz,
2010.

[13] D.J.C. MacKay. Information theory, inference, and learning algorithms.
Cambridge Univ Press, 2003.

[14] E. Olson. Robust and Efficient Robotic Mapping. PhD thesis, MIT,
Cambridge, MA, USA, June 2008.

[15] N. Snavely, S.M. Seitz, and R. Szeliski. Skeletal graphs for efficient
structure from motion. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 1–8, Anchorage, AK, 2008.


