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Abstract— The problem of modeling the navigation behavior
of multiple interacting agents arises in different areas including
robotics, computer graphics, and behavioral science. In this
paper, we present an approach to learn the composite nav-
igation behavior of interacting agents from demonstrations.
The decision process that ultimately leads to the observed
continuous trajectories of the agents often also comprises discrete
decisions, which partition the space of composite trajectories
into homotopy classes. Therefore, our method uses a mixture
probability distribution that consists of a discrete distribution
over the homotopy classes and continuous distributions over the
composite trajectories for each homotopy class. Our approach
learns the model parameters of this distribution that match,
in expectation, the observed behavior in terms of user-defined
features. To compute the feature expectations over the high-
dimensional continuous distributions, we use Hamiltonian
Markov chain Monte Carlo sampling. We exploit that the
distributions are highly structured due to physical constraints
and guide the sampling process to regions of high probability.
We apply our approach to learning the behavior of pedestrians
and demonstrate that it outperforms state-of-the-art methods.

I. INTRODUCTION

Accurate models of the navigation behavior of interacting
agents are a prerequisite for a variety of applications in diverse
fields including robotics, computer graphics, and behavioral
science. For instance, mobile robots that have models of
pedestrian navigation behavior can predict the trajectories of
nearby pedestrians and thus can navigate among pedestrians
in a safe, efficient, and socially compliant way [25, 21], or,
alternatively, they can mimic the behavior of pedestrians [13].
In computer graphics, Guy et al. [6] proposed such models
for generating realistic simulations of pedestrians and traffic.

We propose an approach to learn a probabilistic model of
the navigation behavior of cooperatively navigating agents
from observations of their trajectories. The decision process
that ultimately leads to the observed trajectories in continuous
state spaces often comprises discrete decisions such as
whether to pass other agents on the left or on the right
side. Furthermore, the navigation behavior of agents such
as humans and animals is not a deterministic process. They
rather exhibit stochastic properties, i. e., their trajectories vary
from run to run when they repeatedly navigate in the same
situation. Our approach therefore learns a model that captures
both the discrete decision process of the agents as well as
the distributions over their continuous trajectories to explain
the observed behavior. It reasons about composite trajectories
of the agents, i.e., the joint behavior of all the agents, by
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Fig. 1. Our method learns a model of the behavior of cooperatively
navigating agents from demonstrations. We learn the model parameters of a
mixture distribution over composite trajectories to capture the discrete and
continuous aspects of the agents’ behavior. The learned model generalizes to
new situations and allows us to draw samples that capture the stochasticity
of natural navigation behavior.

means of a mixture distribution. As illustrated in Fig. 1, this
distribution comprises a discrete distribution that captures the
discrete choices in the navigation process of the agents. The
distribution furthermore consists of continuous distributions
over trajectories that capture the variance of the observed
trajectories. We propose a feature-based maximum entropy
learning approach to infer the distribution that matches the
observed behavior of the agents in expectation.

A key challenge of such a learning approach is the so-
called forward problem, i.e., computing for a given model
the expected feature values with respect to the distribution
over the high-dimensional space of continuous trajectories.
We propose to use Markov chain Monte Carlo (MCMC)
sampling and exploit that the distributions over observed
trajectories of interacting agents are highly structured. The
use of a spline-based representation of the trajectories makes it
possible to efficiently compute the gradient of the probability
density, which allows our method to guide the sampling
process to regions of high probability using the Hybrid Monte
Carlo (HMC) [5] algorithm. Therefore, our method is able
to capture the stochasticity of observed trajectories, which
is in contrast to existing approaches that learn deterministic
models that do not replicate well the stochastic behavior of
natural agents such as humans and animals.

We applied our method to learning a model of the navi-
gation behavior of pedestrians. Our experimental evaluation
suggests that our approach outperforms three state-of-the-art
methods. Furthermore, a Turing test demonstrates that our
method generates trajectories that appear more human-like
than those created by previous methods.



II. RELATED WORK

Atkeson and Schaal [3] developed one of the pioneering
approaches to infer a mapping from state features to actions
to directly mimic observed behavior. More recently, Ng
and Russel applied inverse reinforcement learning (IRL) to
recover a cost function that explains observed behavior [16].
Later, Ratliff et al. [19], Ziebart et al. [25], Kitani et al.
[12] used these techniques to address a variety of problems
including route planning for outdoor mobile robots and
learning pedestrian navigation behavior. In particular, Abbeel
and Ng [1] suggest to match features that capture relevant
aspects of the behavior that is to be imitated. However, feature
matching does not lead to a unique cost function. To resolve
this ambiguity, Maximum Entropy IRL [24] relies on the
principle of maximum entropy [10] and, hence, aims at finding
the policy with the highest entropy subject to feature matching.
These learning methods work well in discrete state-action
spaces of low dimensionality. However, they do not scale well
to continuous trajectories, especially when taking into account
higher-order dynamics such as velocities and accelerations.
Inspired by Abbeel and Ng [1] and Ziebart et al. [24], our
approach aims to find maximum entropy distributions that
match the observed feature values. However, in contrast to
the abovementioned techniques, our approach reasons about
continuous trajectories including their higher-order dynamics.

To learn a model from observed trajectories, several authors
assume utility-optimizing agents that try to minimize a
parametrized cost function that captures relevant proper-
ties of their continuous trajectories. For instance, whereas
Hoogendoorn and Bovy [9] penalize accelerations, drift
from planned trajectories, and closeness to other agents,
Arechavaleta et al. [2] minimize the derivative of the curvature
to model pedestrian navigation behavior. In contrast to these
approaches, we do not assume utility optimizing agents.
Instead, we model the navigation behavior using a probability
distribution over the trajectories since the observed trajectories
are rarely optimal but rather exhibit stochastic variations.

Our previous work [13, 14] models cooperative behavior
by jointly predicting the trajectories of all interacting agents.
The approach to reciprocal collision avoidance presented
by van den Berg et al. [22] ensures that a set of agents
navigates without collisions. Helbing and Molnar [8] learn
the parameters of a potential field to model interaction
behavior from observations. Trautman and Krause [21] model
the coupled behavior of agents using interactive Gaussian
processes. Lerner et al. [15] present a data-driven approach
to modeling the behavior of crowds, where agents behave
according to examples that are stored in a database of
previously recorded crowd movements.

In general, estimating the feature expectations with respect
to a high-dimensional probability distribution over contin-
uous trajectories is a challenging problem. Our previous
approach [13] approximates the feature expectations using
Dirac delta functions at the modes of the distribution. This
approximation, however, leads to suboptimal models when
learning from imperfect human navigation behavior since

its stochasticity is not sufficiently captured. In practice, this
method under-estimates the feature values and thus favors
samples from highly unlikely homotopy classes. Vernaza and
Bagnell [23] constrain the features to have a certain low-
dimensional structure. Kalakrishnan et al. [11] assume the
demonstrations to be locally optimal and sample continuous
trajectories by adding Gaussian noise to the model parameters.
In this paper, we estimate the feature expectations using
Hybrid Monte Carlo sampling [5], which allows for arbitrary
differentiable features of the continuous trajectories. Ratliff
et al. [18] use Hybrid Monte Carlo ideas for globally robust
trajectory optimization. In summary, our method is capable
of accurately modeling natural and potentially non-optimal
real-world behavior.

III. LEARNING TO PREDICT COMPOSITE TRAJECTORIES
OF INTERACTING AGENTS FROM DEMONSTRATIONS

The objective of our approach is to learn a model of the
navigation behavior of interacting agents from samples of
their trajectories. To this end, we consider the product space
of the trajectories of all the agents ai ∈ A, i. e., the space of
composite trajectories x = (xa1(t), . . . , xan(t)), where xai(t)
is the trajectory of agent ai that continuously maps time t to
the continuous configuration of agent ai ∈ A at time t. We
use cubic splines in R2 to represent the x and y positions of
the agents. We refer to the space of all composite trajectories
as X . We assume that the behavior of the agents can be
described in terms of a joint probability distribution p(x)
that depends on a feature vector f comprising features that
capture relevant properties of the composite trajectories.

A. Maximum Entropy and Feature Matching
To learn observed behavior, we aim to model the dis-

tribution that underlies the empirical sample trajectories.
Following Abbeel and Ng [1], we aim to find a model that
induces distributions that match, in expectation, the feature
values fD of the empirical trajectories D, yielding

Ep(x)[f(x)] = fD =
1

|D|
∑
xk∈D

f(xk). (1)

In general, however, there is not a unique distribution that
matches the features. Ziebart et al. [24] resolve this ambiguity
by applying the principle of maximum entropy [10], which
states that the distribution with the highest entropy represents
the given information best since it does not favor any
particular outcome besides the observed constraints. The
resulting distribution and the gradient of its parameters are
well known in information theory and have been used to
infer trajectories in discrete [25, 12] and continuous [13, 23]
spaces. In short, our goal is to find the distribution p? that
maximizes the differential entropy

H(p) =

∫
x

−p(x) log p(x)dx (2)

subject to feature matching. Applying constrained optimiza-
tion maximizes the Lagrangian

H(p)−
∑
i

θi(Ep[fi]− fi,D)− α(

∫
x

p(x) dx− 1) (3)
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Fig. 2. Trajectories of four pedestrians predicted by four different methods in the same situation. Humans: Observed trajectories recorded in the test
environment shown in Fig. 3. Our method: Samples drawn from the policy learned by our method replicate the stochasticity of the observed trajectories.
Kuderer et al. [13]: The Dirac approximation favors samples from highly unlikely homotopy classes. RVO and social forces: Deterministic predictions.

with respect to the distribution p and the Lagrangian multi-
pliers [θ1, . . . , θn] = θ and α, where the last term ensures
that the probability integrates to one. Taking derivatives with
respect to p reveals that the desired probability distribution
belongs to the exponential family pθ(x) ∝ e−θ

T f(x).
One can interpret the term θT f(x) as a cost function

that comprises the feature weights θ, where trajectories with
higher cost are less likely. Computing the parameters θ?

that maximize the Lagrangian is analytically not feasible.
However, we can use the gradient of the dual function with
respect to θ, which is given by fD − Ep[f(x)], to apply
gradient-based optimization. The resulting distribution p?

equals the exponential-family distribution that maximizes the
likelihood of the empirical data D. The derivation of the
discrete maximum entropy distribution follows the same idea,
where integrals are substituted by sums.

B. Modeling the Navigation Behavior of Interacting Agents
Using Mixture Distributions

The decision process of interacting agents that ultimately
leads to their trajectories in continuous spaces often comprises
continuous and discrete decisions. The continuous decisions
affect physical properties of the composite trajectories such
as velocities, accelerations, and clearances when passing
obstacles and other agents. The discrete decisions made by
the agents, such as choices to pass obstacles and other agents
on the left or on the right side, determine the homotopy class
of the resulting composite trajectories.

Our approach aims to learn a model of the behavior that
captures both the continuous and the discrete decisions of the
agents. To this end, our method models the behavior using
a mixture distribution that comprises a discrete probability
distribution P (ψ) over the homotopy classes ψ ∈ Ψ of the
composite trajectories, and continuous distributions pψ(x)
over the composite trajectories x of the corresponding homo-
topy classes ψ. Note that the number of homotopy classes
increases exponentially with the number of agents. However,
techniques that only consider relevant homotopy classes [14]
scale to many agents. We assume that the discrete mixture
proportions P (ψ) and the component densities pψ(x) depend
on features f hom : Ψ 7→ R and f phys : X 7→ R, respectively,
that capture relevant properties of the navigation behavior.
According to the previous section, to learn the navigation
behavior, we aim to find a model that induces distributions
over the continuous composite trajectories as well as over
homotopy classes that match the feature expectations of the

observed composite trajectories D, which leads to

Epψ [f phys] = f phys
D =

∑
x∈D

f phys(x)

|D|
, (4)

EP [f hom] = f hom
D =

∑
x∈D

f hom(ψx)

|D|
, (5)

where ψx is the homotopy class of x. Applying the principle
of maximum entropy subject to feature matching leads to
pψ(x) ∝ e−θ

physf phys(x) and P (ψ) ∝ e−θ
homf hom(ψ).

To capture the homotopy class of a composite trajectory
x, we integrate the derivative of the angle αba(t) between
the vector xb(t)− xa(t) and the vector (1, 0)T over time
for all agents a and b, which leads to κba =

∫
t
α̇ba(t) dt.

This function effectively accounts for the rotation of the
vectors xb(t)− xa(t), which is an invariant of all the
composite trajectories that belong to the same class.

The following features capture physical properties of the
navigation behavior of interacting agents in terms of an intent
to reach the target positions energy efficiently, taking into
account velocities and clearances when avoiding obstacles
and other agents:

f phys
time (x) =

∑
a∈A

∫
t

1 dt, (6)

f phys
acceleration(x) =

∑
a∈A

∫
t

‖ẍa(t)‖2 dt, (7)

f phys
velocity(x) =

∑
a∈A

∫
t

‖ẋa(t)‖2 dt, (8)

f phys
obstacle(x) =

∑
a∈A

∫
t

1

‖xa(t)− oaclosest(t)‖2
dt, (9)

f phys
distance(x) =

∑
a∈A

∑
b 6=a

∫
t

1

‖xa(t)− xb(t)‖2
dt, (10)

where oaclosest is the position of the closest obstacle to
agent a at time t. Our approach aims to find the continuous
distributions pθ(x) over the composite trajectories that, in
expectation, match these features. The feature

f hom
angle(ψ) =

∑
a∈A

∑
b6=a

κba. (11)

captures decisions to avoid other agents on the left or on
the right. Similarly, in case we are able to recognize group
memberships of agents, the following feature indicates if an
agent moves through such a group. An agent that passes two



Fig. 3. Trajectories observed during one hour of interactions of four persons
in our test environment.

members of a group on different sides moves through the
corresponding group. Therefore, we have

f hom
group(ψ)=

∑
a∈A
|{G∈G | ∃b, c∈G :b, c 6=a ∧ κbaκca<0}|,

where G is the set of groups of agents, which allows our
approach to learn to which extent the agents avoid to move
through groups. Furthermore, we allow the features f hom to
depend on the distribution over composite trajectories of the
corresponding homotopy class. For example, the feature

f hom
ml cost(ψ) = min

x∈ψ
θT f(x) (12)

captures the cost of the most likely composite trajectory x
of homotopy class ψ, which allows the model to reason
about the homotopy class the agents choose in terms of
the cost of the composite trajectory that is most likely
according to the learned distribution pψ(x). Based on the
results of our previous experiments [13], we assume that
we can compute this most likely composite trajectory using
gradient based optimization techniques. We furthermore found
the optimization algorithm RPROP [20] to perform best.
After having learned the physical behavior in terms of the
distributions pψ(x), we can evaluate the features f hom to
learn the discrete aspects of the behavior.

C. Computing Feature Expectations with Respect to Distri-
butions over Continuous Trajectories of High Dimensionality

In general, inference about distributions over continuous
trajectories requires a finite-dimensional representation of the
trajectories. However, even computing the feature expectations
with respect to a finite-dimensional representation is not
analytically tractable in general. Monte Carlo sampling
methods yet provide means to approximate the expectations
using a set of sample trajectories drawn from the distribution.
In particular, Markov chain Monte Carlo (MCMC) methods
allow to obtain samples from high-dimensional distributions.
These methods aim to explore the state space by construct-
ing a Markov chain whose equilibrium distribution is the
target distribution. Most notably, the widely-used Metropolis-
Hastings algorithm [7] generates a Markov chain in the state
space using a proposal distribution and a criterion to accept or
reject the proposed steps. This proposal distribution and the
resulting acceptance rate, however, have a dramatic effect on
the mixing time of the algorithm, e. g., the number of steps
after which the distribution of the samples can be considered

to be close to the target distribution. In general, it is difficult
to design a proposal distribution that leads to satisfactory
mixing. As a result, efficient sampling from complex high-
dimensional distributions is often not tractable in practice.

We exploit the structure of the distributions over composite
trajectories to enable efficient sampling. First, the navigation
behavior of physical agents shapes the trajectories according
to certain properties such as smoothness and goal-directed
navigation, which are captured by the features. As a result,
the distributions over the composite trajectories of the same
homotopy class are highly peaked. Exploiting the gradient
of the probability densities allows us to guide the sampling
process towards these regions of high probability. To this end,
assuming that the physical features are differentiable with
respect to the parameterization of the trajectories allows us
to compute the gradient of the density pψ(x). In particular,
we use the Hybrid Monte Carlo algorithm [5], which takes
into account the gradient of the density to sample from the
distributions pψ(x). The algorithm considers an extended
target density pψ(x,u) to simulate a fictitious physical system,
where u ∈ Rn are auxiliary momentum variables. The
method constructs a Markov chain by alternating Hamiltonian
dynamical updates and updates of the auxiliary variables,
utilizing the gradient of the density pψ(x) with respect to x.
After performing a number of these “frog leaps”, Hybrid
Monte Carlo relies on the Metropolis-Hastings algorithm to
accept the candidate samples x? and u? with probability

min
(

1,
p̃ψ(x?)e−

1
2u

?Tu?

p̃ψ(x(τ))e−
1
2u

τTuτ

)
, (13)

where the normalizer Zp in the distribution pψ(x) =
p̃ψ(x)/Zp vanishes.

The resulting generative model allows sampling composite
trajectories from the mixture distribution by means of
ancestral sampling [4], as illustrated in Fig. 1. In practice, we
initialize a Markov chain for each homotopy class at its most
likely composite trajectory, which we can compute efficiently
using gradient-based optimization. Being able to efficiently
sample from the continuous distributions pψ(x) allows us
to compute the feature expectations, which is necessary for
learning.

D. Inferring the Target Positions of the Agents

When using our model to predict the trajectories of the
agents in new situations, the target positions of the agents
might be unknown. Applying Bayes’ theorem allows our
model to reason about their target positions [24]. After having
observed the agents traveling from the composite positions A
to B along the composite trajectory xA→B , the probability
that the agents proceed to composite target C is given by

Pθ(C | xA→B) ∝ p
θ
(xA→B | C)Pθ(C)

∝
e−θ

T f(xA→B)
∫
x∈XB→C

e−θ
T f(x)dx∫

x∈XA→C
e−θ

T f(x)dx
Pθ(C), (14)
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Fig. 4. Evolution of the norm and variance over the five folds of the
discrepancy between the feature expectations of the model and the empirical
feature values while learning pedestrian navigation behavior. Top: Learning
the physical properties of the trajectories. Bottom: Learning the discrete
decisions that determine the homotopy classes of the composite trajectories.

where XA→C and XB→C refer to the set of all composite
trajectories that lead the agents from A to C, and from B to C,
respectively.

IV. EXPERIMENTAL EVALUATION

We applied our approach to the problem of learning a
model of pedestrian behavior. We considered two datasets
of trajectories of interacting pedestrians. The first dataset,
depicted in Fig. 3, comprises one hour of interactions of
four persons that we recorded using a motion capture system,
leading to 81 individual composite trajectories. To distract
the persons from the navigation task, we made them read and
memorize newspaper articles at different locations that were
consecutively numbered. At a signal, they simultaneously
walked to the subsequent positions, which repeatedly gave rise
to situations where the participants had to evade each other.
The second dataset [17] comprises 12 minutes of trajectories
of pedestrians interacting in a hotel entrance, leading to 71
composite trajectories with three to five pedestrians each.

A. Cross Validation

We conducted a five-fold cross validation on the afore-
mentioned datasets to evaluate how well the models learned
by our approach generalize to new situations. We compared
our approach to the approach of Kuderer et al. [13], the
social forces algorithm by Helbing and Molnar [8], and the
reciprocal velocity obstacles (RVO) introduced by van den
Berg et al. [22]. Fig. 2 shows example trajectories of the
different methods. We evaluated the evolution of the dis-
crepancy between the feature expectations and the empirical
feature values on the training sets while learning the model
parameters of our approach. Fig. 4 shows that our method
is able to replicate the observed behavior in terms of the
features. To allow for a fair comparison, we used the same
set of features for all the methods. To optimize the parameters
of the social forces method and RVO, we minimized the norm
of the discrepancy between the feature values as induced by
the methods and the empirical feature values using stochastic
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(a) Dataset by Pellegrini et al. (b) Motion capture dataset

Fig. 5. Cross validation. The results suggest that our approach better
captures pedestrian navigation behavior in terms of the features (top) and
the prediction error in meters (bottom) compared to the approach of Kuderer
et al. [13], the social forces method [8], and reciprocal velocity obstacles [22].
Left: Results on the dataset provided by Pellegrini et al. [17]. Right: Results
on the dataset recorded using our motion capture system.

gradient descend. We additionally evaluated the parameters
provided by Helbing and Molnar [8] and Guy et al. [6], which
turned out to not perform better than the learned parameters.
For all methods, we assumed that the target positions of the
agents were the positions last observed in the datasets. The
results of the cross validation, depicted in Fig. 5, suggest
that our method is able to capture human behavior more
accurately than the other methods in terms of features and
in terms of the prediction error in Euclidean distances.

B. Turing Test

When using models of human navigation behavior to
simulate agents in the context of computer graphics, it is
often important that the generated trajectories appear human-
like. We carried out a Turing test to evaluate how human-
like the behavior generated by our approach compares to
other methods. We asked ten human subjects to distinguish
recorded human behavior from behavior generated by one
of the algorithms. We evaluated how well the subjects
performed on a set of runs that was randomly drawn from
recorded human demonstrations. We showed them animations
of trajectories that were either recorded from the human
demonstrations or from the prediction of one of the algorithms.
In particular, we presented 40 runs to each of the human
subjects, where the trajectories were equally drawn from the
human demonstrations, from the predictions computed by
our approach, by the approach of Kuderer et al. [13], and
Helbing and Molnar [8]. Fig. 6 summarizes the results. The
human subjects correctly identified 79 % of all the human
demonstrations, but they mistook 68 % of the predictions of
our approach, 40 % of the predictions of the approach of
Kuderer et al. [13], and 35 % of the predictions of the social
forces algorithm for human behavior. In summary, the results
of this Turing test indicate that the behavior induced by our
approach is significantly more human-like than the behavior
induced by the other two methods according to a one-sided
paired sample t-test.
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Fig. 6. Turing test to evaluate whether the behaviors induced by our new
approach, our previous work [13], and the social forces model by Helbing
and Molnar [8] qualify as human. The results suggest that the behavior
induced by our approach most resembles human behavior.

C. Robot Navigation

The learned models are applicable to mobile robot naviga-
tion in populated environments. To interact with pedestrians,
the robot constantly maintains a distribution over the com-
posite trajectories of the pedestrians and itself in the current
situation and acts according to the predicted cooperative
behavior. This allows the robot to mimic the behavior of the
pedestrians and to behave according to their expectations. Our
current implementation computes the most likely composite
trajectory comprising 3 agents in less than 100 milliseconds,
which enables mobile robot navigation in real time.

V. CONCLUSION

We presented a novel approach to learning a model of the
navigation behavior of cooperatively navigating agents such
as pedestrians from demonstrations. Based on observations
of their continuous trajectories, our approach infers a model
of the underlying decision process. To cope with the discrete
and continuous aspects of this process, our model uses a
joint mixture distribution that captures the discrete decisions
regarding the homotopy classes of the composite trajectories
as well as continuous properties of the trajectories, such as
higher-order dynamics. Our method computes the feature
expectations with respect to the continuous high-dimensional
probability distributions using Hamiltonian Markov chain
Monte Carlo sampling. A Turing test suggests that the
pedestrian trajectories induced by our approach are perceived
as highly human-like. Furthermore, a cross validation demon-
strates that our method generalizes to new situations and
outperforms three state-of-the-art techniques.
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