
Online Generation of Homotopically Distinct Navigation Paths

Markus Kuderer Christoph Sprunk Henrik Kretzschmar Wolfram Burgard

Abstract— In mobile robot navigation, cost functions are a
popular approach to generate feasible, safe paths that avoid
obstacles and that allow the robot to get from its starting
position to the goal position. Alternative ways to navigate around
the obstacles typically correspond to different local minima in
the cost function. In this paper we present a highly effective
approach to overcome such local minima and to quickly propose
a set of alternative, topologically different and optimized paths.
We furthermore describe how to maintain a set of optimized
trajectory alternatives to reduce optimization efforts when
the robot has to adapt to changes in the environment. We
demonstrate in experiments that our method outperforms a state-
of-the-art approach by an order of magnitude in computation
time, which allows a robot to use our method online during
navigation. We furthermore demonstrate that the approach of
using a set of qualitatively different trajectories is beneficial in
shared autonomy settings, where a user operating a wheelchair
can quickly switch between topologically different trajectories.

I. INTRODUCTION

Approaches to mobile robot navigation typically employ
a cost function or constraints to encode desirable trajectory
properties. These properties typically include penalties for
increasing closeness to obstacles, which partition the space
of possible paths to the goal into different ways to navigate
around them. Consequently, these topological variants or so-
called homotopy classes often correspond to local minima of
the cost function.

If the employed cost function accounts for higher order
properties such as velocities and accelerations, it is in
general difficult to find the globally optimal solution due
to the high dimensionality of the search space. Especially
methods for online application therefore often rely on an
initialization computed in a lower-dimensional space such
as a 2D grid. Approaches following this principle exist
in the spectrum between reactively following a guidance
path [8] and initializing trajectory optimization regimes with
a lower-dimensional path [16, 18]. Typically, gradient-based
optimization approaches can only find solutions that are
in the same homotopy class as their initializations since
they are unable to “jump” over obstacles [14]. Unfortunately,
methods that provide an initialization leading to the global
minimum are not available. Therefore, many approaches resort
to sampling techniques to increase the chance of finding the
global minimum [10]. Existing methods generate a substantial
number of initial paths from the same homotopy class, which
in turn lead to the same local minimum after optimization.

All authors are with the Department of Computer Science, University of
Freiburg, Germany.

This work has partly been supported by the German Research Foundation
(DFG) under contract number SFB/TR-8 and under grant number EXC 1086,
and by the Hans L. Merkle-Foundation.

Fig. 1. Application of our approach in a shared autonomy wheelchair
navigation scenario. Our method quickly provides a set of homotopically
different trajectories. The user can easily choose between topological
alternatives or bias the selection process by high-level direction preferences.

In this paper, we propose an online method to explicitly
compute a set of homotopically different paths to the goal,
i.e., a set of paths that cannot be smoothly transformed
into each other without colliding with obstacles. Trajectory
optimization approaches can benefit from parallel initialization
with these paths from multiple homotopy classes by selecting
the best result after individual optimization. In addition,
instead of discarding the remaining optimized trajectories after
selecting the best one, it can also be beneficial to maintain a
set of optimized homotopically different trajectories during
navigation. This allows robots to instantly switch to readily
available fallback trajectories should the previously selected
solution become more costly or even infeasible due to changes
in the environment. Furthermore, it enables human-in-the-loop
or shared autonomy applications that provide qualitatively
different trajectories to the user as illustrated in Fig. 1.

In particular, our method computes a graph representation
of the Voronoi diagram from a grid map of the environment.
For any given path, the Voronoi diagram contains a corre-
sponding path in the same homotopy class [2]. Hence, our
graph representation faithfully captures the information about
the different homotopy classes, enabling efficient exploration
of homotopic alternatives. We employ our method to maintain
during navigation a set of optimized trajectories that are
homotopically distinct. To reduce optimization efforts in
online applications, we only add alternatives to a set of
optimized trajectories if the corresponding homotopy class is
new. To this end, we propose an efficient method to capture
information about the homotopy class of given trajectories.

start goal start goal

A B C D E

Fig. 2. Overview of the proposed method. (A) Voronoi diagram (red) of an office environment. (B) We add Voronoi cells around the start and the goal
location for a robust connection to the diagram. (C) Graph representation of the Voronoi diagram with connected vertices for start and goal location. Each
path in this graph corresponds to a homotopically distinct path from start to goal, the three shortest paths are shown in red (dashed), blue (dotted) and green
(solid). (D) Trajectories generated from the three shortest paths. (E) Trajectories after optimization with respect to a higher order cost function.

We apply our method to shared autonomy wheelchair
navigation, where the user can influence which trajectory
the system follows by providing high-level control input.
This enables handicapped users to control the wheelchair
despite limited fine-motor skills. Our experiments furthermore
suggest that for the task of extracting homotopically different
paths our method outperforms a state-of-the-art technique by
an order of magnitude.

II. RELATED WORK

Finding feasible and collision-free paths from a start to a
goal location is one of the most intensively studied problems
in mobile robotics. Obstacles in the environment partition
the space of trajectories into homotopy classes. Trajectories
are homotopic if they are smoothly transformable into each
other without interacting with obstacles. Bhattacharya et al.
[3] propose a method to compute paths of distinct homotopy
classes. They perform an A∗ search on an arbitrary graph
representation of the environment that they augment with
the H-signature to capture topological information. However,
their graph may contain multiple paths to the goal within the
same homotopy class. To lower the computational burden, we
compute a graph in which each path corresponds to a unique
homotopy class. We use these paths to seed optimization of
smooth trajectories, accounting for higher order properties
such as velocities and accelerations.

Vernaza et al. [19] use a method similar to Bhattacharya
et al. [3] to find winding constrained paths for autonomous
vehicles. They point out that the vector of winding angles
around each obstacle is invariant for all trajectories of a given
homotopy class. We also use the vector of winding angles
to compute an identifier that captures information about the
homotopy class of a trajectory.

Demyen and Buro [6] propose a method for efficient
triangulation-based path planning that searches an abstract
graph representing the environment. Similar to our work,
the resulting path in this graph is then mapped back to a
trajectory in the original 2D environment. They assume a
polygonal representation of the environment. In contrast, we
allow arbitrary obstacles on grid cells, which enables us to
incorporate online real-world sensor data.

Many authors presented approaches to find optimal trajec-
tories with respect to a given cost function. Sprunk et al.
[18] use a spline-based representation of the trajectories

and optimize the corresponding control points to find time-
optimized, curvature continuous trajectories with acceleration
and velocity constraints. Similarly, Gulati et al. [9] optimize
trajectories for an assistive mobile robot with respect to user
comfort. Ratliff et al. [16] present a general framework for
trajectory optimization, which they apply to high-dimensional
motion planning for robots. It is well-known that such
gradient-based optimization methods often fail to find globally
optimal solutions since they are prone to get stuck in local
minima. Kalakrishnan et al. [10] propose to use stochastic
trajectory optimization to overcome these local minima.
However, the large state spaces in complex settings make
it infeasible to efficiently find globally optimal solutions by
sampling trajectories. Our method provides an initialization
for optimization strategies using trajectories in different
homotopy classes which often correspond to local minima of
the cost function.

Mandel and Frese [15] compare different interfaces that en-
able handicapped people to steer automated wheelchairs. Their
first method allows the user to select a route from a discrete
set of paths on a Voronoi graph using speech. Their second
method directly maps head poses to steering commands. We
also apply our approach to automated wheelchair navigation.
We combine the advantages of both methods, i.e., the user
is in the control loop but not required to provide low-level
steering commands. To this end, we let the user influence the
path selection online by providing high-level commands that
make the wheelchair transition smoothly between different
possible paths.

III. HOMOTOPICALLY DISTINCT PATHS FOR NAVIGATION

This section describes our novel approach to efficiently
compute a set of homotopically different trajectories from
a start location to a target location through a complex
environment that contains obstacles. As illustrated in Fig. 2,
our method first computes a Voronoi diagram on the current
map of the environment. Our approach then builds a search
graph that allows us to find the k shortest simple paths
on the Voronoi diagram that are homotopically different.
We are only interested in simple paths, i.e., paths that
contain any vertex at most once, since loops are typically
not desired for robot navigation. Our method uses these
paths to initialize global optimization in different homotopy
classes. By selecting the best trajectory after optimization

in each class our method overcomes local minima of a cost
function that encodes desirable trajectory properties. Our
approach efficiently recognizes homotopic properties of a
given trajectory, which allows the robot to re-use previously
optimized trajectories during navigation.

A. Discretized Voronoi diagram

The generalized Voronoi diagram is defined as the set
of points in free space to which the two closest obstacles
have the same distance [5]. We compute a discretized form
on an obstacle grid map bounded by occupied cells and
represent it as a binary grid map VD in which a cell (x, y) ∈
N2 can either belong to the Voronoi diagram or not, i.e.,
VD(x, y) ∈ {true, false}. Fig. 2 (A) shows such a discretized
Voronoi diagram over the obstacle map and depicts the cells
for which VD(x, y)= true in red.

In this work, we build upon the approach of Lau et al.
[13] for an efficient, incrementally updatable computation
of the Voronoi diagram. This method employs a wavefront
algorithm to calculate distance transforms. It simultaneously
starts wavefronts from each obstacle cell that propagate
distances to the closest obstacle over the grid map. Wherever
these wavefronts meet, it considers cells as candidates for
the discretized Voronoi diagram as they are approximately
equidistant to at least two obstacle cells. In general, a cell
in a grid map will not exactly meet the Voronoi condition
of being equidistant to two obstacle cells. Therefore, if two
cells are at the boundary of two wavefronts it inserts the one
that least violates the condition. It also takes thresholding
measures to prevent Voronoi lines from appearing between
neighboring obstacle cells and performs pattern matching-
based post-processing to reduce discretization artifacts.

In this work, we add a further post-processing method that
removes “loose ends” of the Voronoi diagram that typically
reach into concave structures like room corners. We detect
such loose ends via pattern matching and process them until
we reach a branching point on the Voronoi diagram. As a
result, we obtain a discretized Voronoi diagram as shown in
Fig. 2 (A): the Voronoi lines are sparse (no double lines)
and four-connected, i.e., each cell with VD(x, y)= true has
up to four neighbors that are also contained in the Voronoi
diagram, see also the magnified part in Fig. 3 (right).

We also employ the “bubble technique” proposed by Lau
et al. [13] for Voronoi diagrams. Here, dummy obstacles at
the start and the goal provide a robust way to connect to the
Voronoi diagram, see Fig. 2 (B) vs. (A).

B. Abstract graph representation of the Voronoi diagram

From the discretized representation of the Voronoi diagram
described in the previous section, we build a graph that
effectively captures the connectivity of the free space. This
substantially reduces the number of states compared to the
original grid map representation of the Voronoi diagram.
Fig. 2 shows the Voronoi diagram in an office environ-
ment (A,B) and the corresponding abstract graph (C).

In particular, vertices V in the graph G = (V,E) represent
the branching cells of the Voronoi diagram, also known as

start

b1start

b2start

Fig. 3. Left: area in the Voronoi diagram that contains the start point.
Highlighted are the branching cells b1start, b

2
start connected to this area. The

start vertex of the resulting graph is connected to these vertices. Right:
branching cells are connected to at least three neighbor cells.

Voronoi vertices in the literature. In branching cells more
than two lines meet. They thus correspond to locations that
are equidistant to more than two obstacles. We can easily
identify such branching cells since they have at least three
neighbors in the Voronoi diagram. Fig. 3 (right) shows a
close-up of such a branching point. The edges E capture
the connectivity between the branching cells, i.e., each edge
represents a connected line of cells that belong to the Voronoi
diagram.

In addition, we need to connect the start and goal position
to the graph. As described in the previous section, we insert
dummy obstacles at the start and goal location such that they
effectively become enclosed by “bubbles” which are obstacle
free by construction of the Voronoi diagram. Using a floodfill
algorithm we mark all cells inside these areas and identify
the attached branching cells {bistart} and {bigoal}, as illustrated
in Fig. 3. Then, we connect the corresponding graph vertices
to the start and the goal vertex, respectively. Finally, we
remove the edges that connect the vertices corresponding
to {bistart} and {bigoal}, as illustrated by scissor symbols
in Fig. 2 (C). This process removes edges that result from
the dummy obstacles to ensure that each simple path in the
graph corresponds to one unique homotopy class.

Finally, we set the weights of the edges according to the
length of the lines in the Voronoi diagram. The k best paths
in the graph then correspond to the k shortest paths in the
Voronoi diagram. This graph grows linearly with the number
of obstacles in the environment [1]. This follows from viewing
the Voronoi graph as a planar graph where the number of
faces f corresponds to the number of obstacles. Since each
vertex in the Voronoi graph has a minimum degree of three,
the sum over the degrees of all vertices

∑
v∈V deg(v) is at

least three times the number of vertices |V |. Furthermore,
any undirected graph satisfies

∑
v∈V deg(v) = 2|E|. Hence,

we have 2|E| ≥ 3|V |. Combining this with the Euler relation
|V | − |E|+ f = 2 for planar graphs leads to |E| ≤ 3f and
|V | ≤ 2f , i.e., the number of edges and vertices is linear in
the number of obstacles.

C. Finding the k best simple paths in a graph

In the graph introduced in the previous section different
paths always correspond to different homotopy classes in
the environment. Therefore, searching for the k best homo-
topically different simple paths in this graph is equivalent
to searching for the k best simple paths. The best known

ωi(τ1) ωi(τ2)=ωi(τ3)

τ1
τ2

τ3∆ω1 ∆ω2
∆ω3

∆ω4

. .
.

pi

start

goal

Fig. 4. Computation of the winding angles with respect to obstacles.
The figure shows three paths τ1, τ2 and τ3 that bypass the obstacle i.
The infinitesimal angles ∆ω sum up to the winding angle ωi around the
representative point pi of the obstacle. The two paths on the right yield the
same winding angle ωi(τ2) = ωi(τ3) in contrast to the path on the left.

algorithm for this problem has a runtime complexity in
O(k(|E|+ |V | log |V |)) [11], which follows from the com-
plexity of O(|E|+ |V | log |V |) of Dijkstra’s algorithm [7]. As
the number of vertices and edges in our graph depends linearly
on the number of obstacles o, it follows that our algorithms
to extract the k best homotopically different simple paths has
a complexity in O(k(o log o)).

D. Cost functions for navigation

For navigation, we convert the k best paths obtained from
the graph search to trajectories τ(t) : R→ R2 that map time
to locations. To this end, we retrieve the paths from the grid
map representation that correspond to the graph edges E and
augment these paths with time information. We use splines to
represent the resulting trajectories and use the optimization
method RPROP [17] to optimize them with respect to the
cost function

c(τ) = θT f(τ). (1)

This cost function is a weighted sum of features fi that each
map a trajectory τ to a real value fi(τ) ∈ R. We can manually
set the feature weights θ according to the desired behavior,
or learn them from demonstration [12]. In our experiments,
we use a cost function accounting for travel time, velocities,
accelerations and closeness to obstacles along the trajectories.

E. Maintaining a set of optimized trajectories

The convergence time of optimization-based techniques
typically decreases when the initial guess is already close
to the optimum. Thus, during navigation, it is desirable to
re-use previously optimized trajectories. In particular, from
one planning cycle to the next the current position of the
robot as well as the environment do not change substantially
in most situations. Therefore, we propose to maintain a
set T of optimized, homotopically different trajectories
during navigation. However, whenever a new homotopy class
emerges due to changes in the environment, we need to add
a corresponding optimized trajectory to the set T . When
an obstacle vanishes, two homotopy classes fall together.
Then, T contains two trajectories in the same homotopy class
and we can delete one of them. For inserting trajectories

τ(t0 + ∆t)
τ(t0)

desired direction ddes

αdev

Fig. 5. The angle αdev used in the feature modeling preferred user direction.

corresponding to new homotopy classes as well as for deleting
duplicates we need to identify the homotopy class of a given
trajectory, which we will describe in the following.

F. Identifying homotopy classes

To maintain a set of optimized trajectories as described
above, we need to efficiently decide whether two given
trajectories belong to the same homotopy class. For efficiency
reasons, we identify the homology class of trajectories instead,
which is a suitable substitute for the concept of homotopy in
practically relevant scenarios [3]. As Vernaza et al. [19] point
out, the homology class of a path can be represented as the
vector of winding angles around the regions of interest, i.e.,
the obstacles in the environment. The winding angle ωi(τ)
of a trajectory τ is defined as the sum of infinitesimal angle
differences ∆ω to a representative point pi of the obstacle i
along the trajectory, as illustrated in Fig. 4.

To determine one representative point for each obstacle,
we use a standard flood fill algorithm to determine the cells
in each “bubble” in the current Voronoi diagram. In each
of these regions we take an arbitrary obstacle grid cell as
a representative point to compute the winding angles. Then,
we evaluate the trajectory at discrete time steps and sum up
the angle differences ∆ω as shown in Fig. 4. The step size
of this discretization does not change the computed winding
angle as long as it still captures the “winding direction”.
We exploit this by adapting the step size dynamically as
we walk along the trajectory to efficiently compute the
winding angles. To uniquely identify the homology class
of a trajectory, we compute the vector of winding angles
ω(τ) = 〈ω1(τ), . . . , ωi(τ), . . . , ωn(τ)〉 around all obstacles
1, . . . , n. This vector is invariant for all trajectories of a
homology (and homotopy) class . Note that we need to
compute the angles each time the environment changes, since
homotopy classes can emerge or fall together. This affects
the set of maintained trajectories, as described in Sec. III-E.

IV. APPLICATION TO SHARED AUTONOMY NAVIGATION

Our method maintains a set of trajectories each of which is
locally optimized with respect to a user-defined cost function.
We realize shared autonomy navigation for mobile robots by
adding features that incorporate user preferences online. The
robot follows the trajectory that has lowest cost according to
a tradeoff between these user preferences and the parts of the
cost function that penalize properties such as high velocities
or closeness to obstacles. The feature weights determine how
strongly the robot follows the user preferences.

Let us assume a wheelchair scenario in which the handi-
capped user is only capable of issuing high-level commands
rather than low-level controls. For example, such a user

1 5 10 249 (all)

0

5

10

15

number of homotopy classes computed

co
m
p
u
ta
ti
o
n
ti
m
e
[s
]

Ours, incremental

Ours, with init.

Bhattacharya et al.

Fig. 6. Comparison of our approach to the one presented by Bhattacharya
et al. [3] for the environment shown in Fig. 7. As can bee seen, our approach is
substantially faster. Whereas the method proposed by Bhattacharya et al. [3]
computes the 10 best paths 15.5 s, our approach finds all 249 possible simple
paths in 0.7 s, including map initialization.

might want to express navigation preferences by joystick
deflection, by head posture [15] or even through brain-
machine interfaces [4]. To achieve this with our approach,
we introduce a feature fdir that penalizes the deviation αdev
of a trajectory from the preferred user direction:

fdir(τ) = α2
dev = arccos2

d(τ) · ddesired

‖d(τ)‖‖ddesired‖
, (2)

where d(τ) is the direction of the trajectory and ddesired is
the direction selected by the user, as illustrated in Fig. 5.
To compute d(τ) we use the location of trajectory τ at the
time ∆t in the future, i.e., d(τ) = τ(t0 + ∆t)− τ(t0). Note
that we use this feature only for evaluating the costs of the
optimized trajectories in the selection process, not for the
optimization itself.

V. EXPERIMENTAL EVALUATION

In this section we present a set of experiments that
demonstrate the performance of our method and show that it
outperforms a state-of-the-art technique to compute multiple
homotopically different trajectories. We furthermore show
that our method is suitable for online mobile robot navigation
in dynamic environments. Finally, we apply our method to
shared autonomy control of a wheelchair.

A. Runtime evaluation

In this section we evaluate the efficiency of our method
and show that it is suitable for online computation of paths
from different homotopy classes. To compare our method
to the one presented by Bhattacharya et al. [3], we use
the same environment as they use in their experiments,
a 1,000× 1,000 discretized environment with circular and
rectangular obstacles, as illustrated in Fig. 7. For our method,
we used an Intel Core2 Duo with 2.6 GHz, which seems
comparable to the computer used by Bhattacharya et al. [3].
As Fig. 6 shows, our method outperforms their approach
by an order of magnitude. Note that our method needs to
initialize only once and can then answer queries for multiple
start and goal positions incrementally. Our algorithm finds
all 249 possible simple paths on the Voronoi diagram in 0.7 s
including map initialization.

Please also note that the objectives of the compared
algorithms are slightly different. Bhattacharya et al. [3] aim

1st path 2nd path 3rd path

O
ur

ap
pr

oa
ch

B
ha

tta
ch

ar
ya

et
al

.

Fig. 7. The first three homotopically different paths computed by our method
(top) and the corresponding paths as computed by the method proposed
by Bhattacharya et al. [3] (bottom). Our method computes paths using the
Voronoi diagram, therefore the paths have higher distance to obstacles.

to find the k best paths that differ in their homotopy class
with respect to the A∗ cost function whereas our algorithm
explores paths that lie on the Voronoi diagram (see Fig. 7 for
the differences between the resulting paths in corresponding
homotopy classes). However, the 20 best paths returned by
both methods have an overlap of 17 homotopy classes for
the scenario shown in Fig. 7.

B. Trajectory alternatives in dynamic environments

In this experiment, we evaluate the proposed scheme
of maintaining a set of trajectories in distinct homotopy
classes, optimized with respect to a cost function comprising
velocities, accelerations, the time to reach the target, and
closeness to obstacles. We implemented our method and
evaluated it on an autonomous wheelchair. The wheelchair
localizes itself in the environment using laser-based Monte
Carlo techniques and follows the computed trajectories with
an error feedback controller. Furthermore, it uses the readings
of the laser scanner to constantly update the location of
obstacles in the environment.

We evaluated the performance of our method in the corridor
shown in Fig. 1. While the wheelchair was traveling through
the otherwise empty corridor, a person traversed the corridor
from right to left. Fig. 8 shows the reaction of the system:
(A,B) The appearance of the person causes the system to
generate and optimize a second homotopic alternative. At
first, the new variant is not selected due to closeness to the
obstacles; (C,D) As the human proceeds to the left the costs
of the new trajectory decrease; (E) Only one homotopy class
remains after the human leaves the sensor’s field of view. Our
method is able to evaluate the homotopy classes and optimize
the set of trajectories on a standard desktop computer at 5 Hz.

C. Shared autonomy wheelchair control

We also apply our method to shared autonomy control of
the wheelchair. We allowed the user to bias the system by
adding the feature fdir to the cost function. Fig. 9 shows how
the wheelchair navigated the corridor in which we placed
additional static obstacles: (A) Our system has computed a set

A B C D E

Fig. 8. Online wheelchair navigation in a dynamic environment. The figure
shows obstacles detected by a laser scanner (red dots) and the trajectory
selected by the wheelchair (green) as well as homotopic alternatives (red,
dashed). As a person walks from the right to the left, the system selects the
trajectory of the newly emerged second homotopy class.

of optimized trajectories in different homotopy classes; (B)
Without user preferences, the system selects and follows the
green trajectory since it has lowest costs; (C) The wheelchair
discarded one of the trajectory alternatives that require turning
around since its costs have exceeded a threshold; (D) In front
of the second obstacle, the user turns the joystick to the left,
which biases the costs of each trajectory, and the wheelchair
selects the left trajectory; (E) The wheelchair follows the left
trajectory since it now has the lowest costs.

VI. CONCLUSION

In this paper, we presented a novel approach for online-
generation of a set of trajectories from start to goal locations
that are homotopically distinct. It computes these trajectories
from the Voronoi graph calculated from a given map. It then
optimizes these trajectories to obtain efficient alternatives that
correspond to distinct homotopy classes. It thus effectively
overcomes local minima of the navigation cost function. To
quickly adapt to changes in the environment, it employs an
efficient method to capture information about the homotopy
class of a given trajectory. We demonstrated that our method
is suitable for navigation in dynamic environments and shared
autonomy wheelchair control. We furthermore showed that
it outperforms a state-of-the-art approach by an order of
magnitude in computation time.

REFERENCES

[1] F. Aurenhammer. Voronoi diagrams – a survey of a fundamental
geometric data structure. ACM Computing Surveys (CSUR),
23(3):345–405, 1991.

[2] B. Banerjee and B. Chandrasekaran. A framework of voronoi
diagram for planning multiple paths in free space. Journal
of Experimental & Theoretical Artificial Intelligence, 25(4):
457–475, 2013.

[3] S. Bhattacharya, M. Likhachev, and V. Kumar. Topological
constraints in search-based robot path planning. Autonomous
Robots, 33(3):273–290, 2012.

[4] T. E. Carlson and J. d. R. Milln. Brain-Controlled Wheelchairs:
A Robotic Architecture. IEEE Robotics and Automation
Magazine, 20(1), 2013.

[5] H. Choset and J. Burdick. Sensor-based exploration: The
hierarchical generalized voronoi graph. Int. Journal of Robotics
Research (IJRR), 19(2):96–125, February 2000.

A B C D E

Fig. 9. Shared autonomy control of a wheelchair in a corridor with two static
obstacles. The figure shows the best trajectory according to the cost function,
which the wheelchair executes (green) and an additional set of optimized
trajectories in different homotopy classes (red, dashed). The joystick in the
lower right indicates the direction preference of the user.

[6] D. Demyen and M. Buro. Efficient triangulation-based
pathfinding. In Proceedings of the 21st National Conf. on
Artificial Intelligence (AAAI), 2006.

[7] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, 1959.

[8] D. Fox, W. Burgard, and S. Thrun. The dynamic window
approach to collision avoidance. IEEE Robotics & Automation
Magazine (RAM), 4(1):23–33, 1997.

[9] S. Gulati, C. Jhurani, B. Kuipers, and R. Longoria. A
framework for planning comfortable and customizable motion
of an assistive mobile robot. In IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2009.

[10] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and
S. Schaal. Stomp: Stochastic trajectory optimization for motion
planning. In IEEE Int. Conf. on Robotics and Automation
(ICRA), 2011.

[11] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for
k shortest simple paths. Networks, 12(4):411–427, 1982.

[12] M. Kuderer, H. Kretzschmar, and W. Burgard. Teaching mobile
robots to cooperatively navigate in populated environments. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
Tokyo, Japan, 2013.

[13] B. Lau, C. Sprunk, and W. Burgard. Efficient grid-based spatial
representations for robot navigation in dynamic environments.
Robotics and Autonomous Systems, 61(10):1116–1130, 2013.

[14] S. M. LaValle. Planning algorithms. Cambridge University
Press, 2006. Section 14.7.

[15] C. Mandel and U. Frese. Comparison of wheelchair user
interfaces for the paralysed: Head-joystick vs. verbal path
selection from an offered route-set. In European Conf. on
Mobile Robots (ECMR), 2007.

[16] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. CHOMP:
Gradient optimization techniques for efficient motion planning.
In IEEE Int. Conf. on Robotics and Automation (ICRA), 2009.

[17] M. Riedmiller and H. Braun. A direct adaptive method for
faster backpropagation learning: The RPROP algorithm. In
Proc. of the IEEE Int. Conf. on Neural Networks (ICNN), 1993.

[18] C. Sprunk, B. Lau, P. Pfaff, and W. Burgard. Online generation
of kinodynamic trajectories for non-circular omnidirectional
robots. In IEEE Int. Conf. on Robotics and Automation (ICRA),
2011.

[19] P. Vernaza, V. Narayanan, and M. Likhachev. Efficiently finding
optimal winding-constrained loops in the plane. In Proceedings
of Robotics: Science and Systems (RSS), 2012.

	Introduction
	Related Work
	Homotopically Distinct Paths for Navigation
	Discretized Voronoi diagram
	Abstract graph representation of the Voronoi diagram
	Finding the k best simple paths in a graph
	Cost functions for navigation
	Maintaining a set of optimized trajectories
	Identifying homotopy classes

	Application to Shared Autonomy Navigation
	Experimental Evaluation
	Runtime evaluation
	Trajectory alternatives in dynamic environments
	Shared autonomy wheelchair control

	Conclusion

