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Abstract. Mobile robots are envisioned to provide more and more ser-
vices in a shared environment with humans. A wide range of such tasks
demand that the robot follows a human leader, including robotic co-
workers in factories, autonomous shopping carts or robotic wheelchairs
that autonomously navigate next to an accompanying pedestrian. Many
authors proposed follow-the-leader approaches for mobile robots, which
have also been applied to the problem of following pedestrians. Most
of these approaches use local control methods to keep the robot at the
desired position. However, they typically do not incorporate information
about the natural navigation behavior of humans, who strongly interact
with their environment. In this paper, we propose a learned, predictive
model of interactive navigation behavior that enables a mobile robot to
predict the trajectory of its leader and to compute a far-sighted plan
that keeps the robot at its desired relative position. Extensive exper-
iments in simulation as well as with a real robotic wheelchair suggest
that our method outperforms state-of-the-art methods for following a
human leader in wide variety of situations.

1 Introduction

There is a wide range of applications for mobile robots for which it is desirable
that the robot follows a human leader. For example a robotic co-worker that
provides tools to a human in a factory needs to stay in a position where the
human can reach the robot. Similarly, a mobile shopping cart should always
stay in a position where the human is able to place objects into it. A further
application is a robotic wheelchair that stays side by side to an accompanying
pedestrian, allowing interaction with the pedestrian during the navigation task.

When following a human leader, it is beneficial for the robot to reason about
the natural navigation behavior of pedestrians. During navigation, pedestrians
interact with their environment, which includes obstacles, other nearby humans
and also the robot itself. A robot that has a better understanding of this inter-
active behavior is able to fulfill its task in a socially compliant way, i.e., in a
way that does not unnecessarily hinder nearby pedestrians. Such a robot is able
to predict the behavior of the humans and to plan far-sighted trajectories that
keep the robot close to its desired position in the long run.

There has been a wide range of research on controlling a group of robots in
formation, which have, to some extent, also been applied in the context of social
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robotics [12, 14]. Many of these approaches utilize control-theoretic methods to
steer the robot towards a virtual target that moves along with the leader [5, 14].
However, these methods mostly neglect information about the more complex
navigation behavior of pedestrians that strongly depends on the environment.

In this paper, we propose to utilize a feature-based model of human navi-
gation behavior to predict the path of the leading pedestrian [9]. This model
accounts for the intention of a human to reach a certain goal while keeping a
comfortable velocity, avoiding strong accelerations and to stay clear of obsta-
cles. The individual characteristics of different pedestrians, or distinct behavior
in different environments can be learned from observation.

The contribution of this paper is a method that simultaneously predicts the
most likely trajectory of the pedestrian and computes the trajectory for the robot
that minimizes the distance to its desired relative position along the whole tra-
jectory in a forward-looking manner. Such a predictive planning method leads to
a socially more compliant behavior of the robot. In addition, planning long-term
trajectories mitigates the problem of local minima in a local control function,
especially in the presence of arbitrary, non-convex obstacles in the environment.
We conducted a simulated comparison of our method to related approaches as
well as experiments with a real robot that show the applicability of the proposed
approach to navigate a robotic wheelchair next to an accompanying pedestrian.

2 Related Work

In the past, many authors proposed methods to navigate a group of robots in
formation. Liu et al. [11] cast the joint path planning task of a robot forma-
tion as a linear programming problem. Similar to our approach, they plan the
trajectories to the target position of each robot. However, Liu et al. control the
group of robots in a central manner and each robot executes the optimal trajec-
tory. Balch and Hybinette [1] propose to use social potential fields that pull the
robots towards attraction points to achieve a certain formation. Our experiments
include a comparison to a social potential-based approach.

A different problem arises when the task of the robot is to follow a leader
whose goal is unknown. Chiem and Cervera [4] and Huang et al. [8] propose
to compute a cubic Beziér curve between the leading robot and the follower.
The follower then navigates along this trajectory, using a velocity controller. In
addition, if the robots task is not only to follow the same path but to stay in a
certain formation, they propose to compute virtual targets for each of the robots
and compute Beziér curves to these target positions. However, they follow the
leading robot without active obstacle avoidance. Desai et al. [6] and Das et al.
[5] use control theoretic approaches to keep each robot close to its designated
position within the formation, also considering obstacles in the environment.
If the desired shape of the formation changes, they introduce control graphs
to assign the robots to their new position in the formation. Qin et al. [15] use
artificial forces to navigate each robot close to the desired position in a formation.
Similarly, Tanner and Kumar [16] propose to use navigation functions to keep a
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group of robots in a certain formation. Navigation functions also lead the robot
along the gradient of a smooth function, similar to artificial forces, but there are
no local minima allowed, except of the target position. In general, however, it
is difficult to design such a function for arbitrary environments [10]. Chen and
Wang [3] provide a survey on different approaches to robot formation control.

The abovementioned approaches use local control methods to steer the robot
either directly to the desired position in the formation, or to some local virtual
target position. In contrast, we predict the trajectory of the leader based on its
current state and the state of the environment. At the same time, we compute
the trajectory that minimizes the distance to the desired relative position along
this trajectory while satisfying further constraints. This prevents the robot to
get stuck in local minima of the cost function and allows it to adapt the planned
trajectories to the environment early on.

Similar methods have also been used to enable a robot to follow a human
leader. Pradhan et al. [13] utilize a navigation function method and set the
tracked positions of the pedestrian as virtual target positions. Therefore, the
robot is only able to follow the person, but not to stay at a fixed relative po-
sition. Prassler et al. [14] aim at coordinating the motion of a human and a
robot and also apply it to a robotic wheelchair. They propose to use the ve-
locity obstacles approach [7] to guide the robot to a local virtual target. We
compare our method to a similar approach in our experimental section. Most
similar to our approach is the work of Morales et al. [12]. They optimize a utility
that encodes the desired relative position as well as the walking comfort of the
pedestrian. However, they optimize the planned trajectory locally, whereas we
optimize future trajectories to a distant subgoal, which allows the robot to adapt
its behavior to the environment in a predictive manner.

3 A Socially Compliant Follow the Leader Approach

A better understanding of the natural navigation behavior of pedestrians enables
a mobile robot to follow a human leader in a socially more compliant way. In
this section, we first formalize the problem of following a leader. We consider
the navigation task to stay close to a fixed relative position with respect to its
leader. To solve this task, we propose an approach that predicts the trajectory
of the pedestrian and at the same time computes a forward-looking trajectory
that minimizes the deviation to the desired position.

3.1 Problem Definition

In this work, we consider the 2D navigation behavior of a mobile robot and
a leading pedestrian. A trajectory τ h of the human and τ r of the robot are
mappings τ : R→ R2 from time to a 2D position. The position of the robot, or
the pedestrian, respectively, at time t is thus given by τ (t) and their velocity by
τ̇ (t). We assume a mobile robot with a differential drive that is always oriented
in driving direction. Similarly, we assume that the pedestrian is always headed
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Fig. 1. The desired position of the robot is a fixed location in the local coordinate
system of the pedestrian. The dashed line illustrates the desired trajectory of the robot
τ̂ r given the predicted trajectory τ̂ h of the pedestrian. Deviation from the desired
trajectory yields an additional cost integrated along the trajectory, as illustrated by
the shaded area.

in walking direction. Thus, the orientation θ(t) at time t is the direction of the
vector τ̇ (t).

We define the desired position of the robot by a fixed position o = (ox, oy)
in the local coordinate system of the pedestrian, i.e., the robot is supposed to
always maintain the same position relative to the human. Given the trajectory
τ h(t) of the human, we can compute the desired trajectory of the robot

τ̂ r(t) = τ h(t) + q(θh(t))o, (1)

where q(θh(t)) is the rotation of the human at time t. In practice the robot cannot
always follow this desired trajectory due to obstacles in the environment, or other
dynamic constraints. We cast the resulting navigation goal in a utility-optimizing
manner, where the cost function is a linear combination of the squared norm of
the deviation from the desired trajectory and an additional term gnav(τ , t) that
comprises acceleration and velocity bounds and clearance to obstacles. Therefore,
the desired trajectory minimizes the navigation cost function

c(τ r) =

∫ T

t=0

(
θ1|τ r(t)− τ̂ r(t)|2 + θ2gnav(τ r, t)

)
dt, (2)

where the weights θ1 and θ2 are model parameters to adjust the behavior to the
given application. Fig. 1 illustrates the predicted trajectory of the pedestrian,
the offset in the local reference frame of the pedestrian and the resulting desired
trajectory of the robot. The challenge of this approach is to predict the trajectory
of the human, which determines the desired trajectory of the robot τ̂ r(t). To this
end we utilize a predictive model of natural human navigation behavior, which
we shortly recap in the following.

3.2 Modeling Human Navigation Behavior

Our approach relies on an accurate model of human navigation behavior that
allows the robot to predict the movements of the leading pedestrian. To achieve
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socially compliant behavior of the robot, we want to explicitly model the fact
that the human is also aware of the robot and reacts to the actions of the robot.

Kretzschmar et al. [9] describe a probabilistic model of such an interactive
navigation behavior. For given start and goal positions, the proposed model
yields a distribution over the joint space of the trajectories of each agent in-
volved in the navigation process. This probability distribution depends on a
weighted sum of features f that capture important properties of human naviga-
tion behavior. Each feature is a function that maps a composite trajectory, i.e.,
the set of trajectories for all agents, to a real value. Kretzschmar et al. propose
features that describe the individual properties of each trajectory, such as the
integrated velocity and acceleration along the trajectory, and the time to reach
the target. In addition, they propose features that describe interaction between
the agents, such as their mutual distance. A weight vector θ parameterizes the
model and describes the importance of each feature in the feature vector f .

In the special case of two agents h and r, the model yields the distribution

pθ(τ h, τ r) ∝ exp(−θT f(τ h, τ r)), (3)

where τ h and τ r are the trajectories of the two agents, as introduced in the
previous section. One can interpret θT f(τ h, τ r) as a cost function. The agents
are thus exponentially more likely to select a trajectory with lower cost. To adapt
the model to the individual navigation behavior of different pedestrians or to a
certain environment, we can learn the feature weights θ from observed data,
such that the predicted trajectories accurately resemble the navigation behavior
of real humans in the designated environment. Find details on the proposed
learning approach as well as a description of features that capture important
properties of natural navigation behavior in Kretzschmar et al. [9].

3.3 Unifying Prediction and Planning

We utilize the model proposed by Kretzschmar et al. [9] to predict the trajectory
of the pedestrian, and to plan a trajectory for the robot simultaneously. In
particular, we adopt the proposed features that capture accelerations, velocities,
distances to obstacles and the time to reach the target to predict the natural
navigation behavior of the pedestrian. In addition, we introduce the feature

fd(τ h, τ r) =

∫ T

t=0

|τ r(t)− τ̂ r(t)|2dt, (4)

that describes the squared deviation from the desired position of the robot along
the trajectory, and

fn(τ h, τ r) =

∫ T

t=0

gnav(τ r, t)dt, (5)

to account for further navigation constraints of the robot, as described in Sec. 3.1.
During navigation, we compute the most likely composite trajectory (τ h, τ r)
with respect to the probability distribution given by Eq. (3). Due to the addi-
tional features fd and fn, this most likely composite trajectory not only predicts



6

predicted
path

of pedestrian

Fig. 2. Left: observed trajectories of the robot (red) and the human (blue) during
navigation. The robot falls back behind the pedestrian in the narrow passage. Middle:
observed trajectories in an experiment where the robot bypasses the obstacle on the
lower side to meet the pedestrian after the passage. Right: Experimental setup.

the trajectory of the pedestrian but also computes the trajectory of the robot
that minimizes the navigation cost function of the robot (Eq. (2)). In particular,
this method accounts for the effect that the pedestrian interacts with the robot,
i.e., that the pedestrian behaves cooperatively and navigates in a way that helps
the joint navigation goal. By adjusting the weights of the features we can adapt
the level of cooperative behavior that we ascribe to the human. Fig. 3 and Fig. 4
illustrate the predicted trajectory of the pedestrian and the planned trajectory
for the robot in two different scenarios.

In addition, the predictive model is beneficial in situations where the leading
pedestrian is not in the field of view of the robot’s sensors for some time. In-
stead of stopping the navigation task, the robot is able to predict the trajectory
of the pedestrian and to continue its plan. When the human reappears in the
observation of the robot, the people tracker can use the prediction to solve the
data association problem, i.e., to select the correct pedestrian as leader.

The predictive model yields predictions of trajectories to known target po-
sitions. However, the final target position of the pedestrian is not known in
general. In our experiments, we interpolate the observed trajectory of the pedes-
trian to estimate its target position. In environments where prior information of
the typical paths of pedestrians is available, we can also use more sophisticated
methods to estimate their target position [2, 18].

4 Experiments

In this section, we describe a set of experiments using a real robotic wheelchair
that suggest that our method is applicable to successfully navigate alongside an
accompanying pedestrian in the presence of obstacles. Furthermore, we compare
our approach in simulation to two related methods. These experiments intend
to show the advantages of our predictive planning approach over local control
methods, especially in situations where the environmental conditions hinder the
robot to remain at its desired position. During the navigation task, our method
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Fig. 3. Predictions computed by the wheelchair at four successive time steps. The robot
predicts the human to pass the passage. Since the passage is too narrow for the robot
(red) and the human (blue) the robot leaves its desired position and let the human
pass first. After the passage, the robot resumes its desired position.

continuously computes the most likely composite trajectory by optimizing its
probability at a rate of 5 hz.

4.1 Real Robot Experiments

In the following experiments, we use the method proposed in this paper to
navigate a robotic wheelchair next to a pedestrian at a distance of 1 m. The
robot relies on on-board sensors only. It localizes itself in the environment us-
ing Monte Carlo localization [17] and tracks the pedestrian using a laser based
people tracker. Fig. 2 shows the paths of the wheelchair and the pedestrian as
observed by the wheelchair in two different scenarios.

In the first run (Fig. 2 left), the robot’s desired position is on the left of
the pedestrian. It starts moving alongside the pedestrian, falls back behind the
pedestrian during passing the passage and catches up afterwards. Fig. 3 shows
the predictions of the wheelchair during the navigation task in the same run. As
soon as the pedestrian starts to move, the robot computes the most likely com-
posite trajectory of the robot and the pedestrian. It predicts that the pedestrian
walks through the passage and that the robot itself stays behind and regains the
position to the left of the pedestrian afterwards.

In the second run (Fig. 2 middle), the robot is supposed to keep its position
on the right hand side of the pedestrian. Since there is enough space on the
lower side of the obstacle, the robot decides to pass the obstacle on a this side,
which allows the robot to stay at the human’s side as long as possible. While the
pedestrian is in the passage, the obstacle blocks the laser scanner and the robot
cannot observe the pedestrian. However, since the robot maintains predictions
about the movement of the pedestrian, it is able to follow its planned path and
join the pedestrian after it is tracked again. Fig. 4 shows the predictions of the
robot during this second run. First, the estimated target is still on the left side of
the obstacles due to the low velocity of the pedestrian. However, as soon as the
pedestrian proceeds to its goal position, the robot predicts that the pedestrian
moves through the passage and plans to pass the obstacle on the other side.
While the obstacle occludes the pedestrian, the robot updates its beliefs based
on the current prediction of the pedestrian’s position.
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Fig. 4. Prediction computed by the wheelchair at four successive time steps. In this
experiment, the desired position of the robot is on the right hand side of the human.
The robot stays at the human’s side as long as possible. It then evades the obstacle on
the right side and continues to move to its desired position relative to the human.

4.2 Comparison in Simulation

Fig. 5 and Fig. 6 show a comparison of our method in simulation to a social
forces (SF) based approach [1] and a velocity obstacles (VO) approach, similar
to the method proposed by Prassler et al. [14]. To allow for a fair comparison
of the methods, we scripted the pedestrian’s path on a rectangular path with
a velocity of 0.5 ms−1. The desired position of the robot is 1 m to the left of
the pedestrian for all experiments. We set the parameters of all approaches such
that the robot always kept a safety distance of at least 0.25 m to the pedestrian,
as well as to obstacles in the environment.

Both, SF as well as VO compute control commands towards a virtual target
position. To compute this position, we adopt the method proposed by Prassler
et al. [14]. They linearly extrapolate the current velocity of the pedestrian in a
small time horizon ∆t to avoid that the robot lags behind the desired position.
We adjust ∆t for both methods such that the robot converges to the desired
position when the pedestrian moves on a straight line with 0.5 ms−1.

In the test environments, the challenge for the robot is to catch up to the
desired position after the pedestrian takes turns on its path. Furthermore, there
is a narrow passage in which the robot cannot keep its desired position. Fig. 5
shows that all methods manage to pass the passage. However, the bar plot on
the right shows that our method is able to stay closer to the desired position on
average along the trajectory. This is due to the fact that our method predicts
the trajectory of the pedestrian and computes the trajectory of the robot that
minimizes the deviation along the whole path, while also incorporating properties
of the robot, such as limited acceleration or velocity constraints. Such long term
planning is better suited to accomplish the navigation task compared to greedily
approaching the desired position.

Fig. 6 shows a similar experiment with an additional obstacle that resembles
an open door in a typical indoor environment. The first image shows that our
approach is able to negotiate the passage in a similar way as in the first setup.
The robot falls back behind the pedestrian and catches up afterwards. Both SF
as well as VO, however, get stuck behind the open door, since there is a local
minimum in their local control functions. The bar plot reflects the advantage of
the predictive planning in this experiment. Whereas our method shows a similar
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Fig. 5. Comparing our method to velocity obstacles (VO) and social forces (SF). The
desired position of the robot (red) is one meter to the left side of the human (blue).
The bar plot shows that our method stays closer to the desired position on average.
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Fig. 6. Comparison to VO and SF that illustrates the advantages of our method over
local control methods. Both VO and SF get stuck in the non-convex obstacle.

mean deviation from the desired position as in the first experiment, SF and VO
gain a higher deviation whilst stuck in the local minima.

5 Conclusion

In this paper, we presented a novel method that allows a robot to follow a leading
person in a socially compliant way. Our approach uses a feature-based model of
natural navigation behavior to predict the trajectory of the leading human. In
contrast to previous approaches, our method allows the robot to compute far-
sighted plans that minimize the long-term deviation from the desired trajectory.
In addition to features that describe natural intents of navigating pedestrians,
our method uses features that capture the navigation goals of the robot. The re-
sulting model thus unifies prediction of the human’s behavior, and path planning
of the robot. In several experiments also carried out with a robotic wheelchair
we demonstrated that the proposed model is applicable to real world scenarios
such as navigating alongside an accompanying person in the presence of obsta-
cles. A comparison in simulation suggests that our method outperforms previous
models that rely on local control strategies.
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