
Learning Driving Styles for Autonomous Vehicles from Demonstration

Markus Kuderer Shilpa Gulati Wolfram Burgard

Abstract— It is expected that autonomous vehicles capable of
driving without human supervision will be released to market
within the next decade. For user acceptance, such vehicles
should not only be safe and reliable, they should also provide
a comfortable user experience. However, individual perception
of comfort may vary considerably among users. Whereas some
users might prefer sporty driving with high accelerations, others
might prefer a more relaxed style. Typically, a large number
of parameters such as acceleration profiles, distances to other
cars, speed during lane changes, etc., characterize a human
driver’s style. Manual tuning of these parameters may be a
tedious and error-prone task. Therefore, we propose a learning
from demonstration approach that allows the user to simply
demonstrate the desired style by driving the car manually. We
model the individual style in terms of a cost function and use
feature-based inverse reinforcement learning to find the model
parameters that fit the observed style best. Once the model has
been learned, it can be used to efficiently compute trajectories
for the vehicle in autonomous mode. We show that our approach
is capable of learning cost functions and reproducing different
driving styles using data from real drivers.

I. INTRODUCTION

Recent studies indicate that the pace of innovation and
investment in “self-driving” vehicles is accelerating and that
consumers are open to the idea of such vehicles [8, 9]. Some
of the key factors in user acceptance of autonomous vehicles
are safety, reliability, and comfort. Comfort is subjective and
can be influenced by various factors including driving style,
which is the way in which a driver habitually drives [5] and
is a trade-off among features such as speed, acceleration, jerk,
distance to other vehicles, etc. Studies suggest that driving
styles vary across users [19]. To be comfortable for different
users, an autonomous vehicle should adapt its driving style
according to user preferences in addition to maintaining safety.

Different driving styles for an automated vehicle can be
achieved by varying the model parameters of its motion
planning algorithm. However, manual tuning of these param-
eters is in general difficult to perform because of the high
number of parameters that may have antagonistic effects. If
all the variability in user preferences falls into a small set of
categories, it may be possible to manually tune the parameters
once and choose the parameters for a user based on their
preference category. If not, manual tuning, if at all possible,
is likely to be a tedious and time-consuming process.

In this paper, we propose a learning from demonstration ap-
proach to learn the model parameters for each user from their
observed driving style. We assume that the desired driving

Markus Kuderer and Wolfram Burgard are with the Department of
Computer Science at University of Freiburg, Germany. At the time this
work was conducted, Shilpa Gulati was with Robert Bosch LLC, Chassis
Systems Control, Palo Alto, USA.

Fig. 1. A Bosch highly automated driving development vehicle.

style maximizes some notion of a reward, i.e., the driver’s
style can be explained by a cost function. The challenge
is to find the cost function that best explains the observed
style and that also generalizes to different situations. We
propose a feature-based inverse reinforcement learning (IRL)
method to learn driving styles from demonstrations. Features
are mappings from trajectories to real values which capture
important properties of the driving style that we want to
reproduce. Our model uses a cost function that is a linear
combination of these features. The goal of the learning method
is to find the feature weights that fit the observed style best.

Once the model has been learned, we use it to compute tra-
jectories online during autonomous driving tasks. Especially
for highway driving it is important to also capture higher-
order properties such as velocity, acceleration and jerk. Studies
show that acceleration and jerk have a strong influence on
the comfort of the passengers [7]. To capture these properties,
we propose to use a continuous representation of trajectories.

In the remainder of this paper we discuss related work
and describe the state representation and an IRL approach.
Furthermore, we introduce features that are relevant to the
task of highway driving and present experimental results that
suggest that our method is suitable for learning individual
driving styles from demonstrated trajectories.

II. RELATED WORK

In the past, machine learning techniques in various fashions
have been used to improve the performance of autonomous
vehicles. In 1991, Pomerleau [14] used neural networks to
learn to steer a vehicle on a highway by observing a person
drive. The network receives live input from a camera on
the vehicle and learns a control function of the steering
angle to keep the vehicle on track. Riedmiller et al. [16] use
reinforcement learning to learn a steering controller from



scratch. Their approach learns a controller that is able to
navigate the vehicle on the track within 25 min of driving a
real car. In this work, our goal is to learn a more complex
behavior that does not only allow the vehicle to stay in
the current lane but to maintain a desired speed, keep safe
distance to other vehicles, and also change lanes.

The method we propose in this paper builds on inverse
reinforcement learning (IRL) which was introduced by Ng
and Russell [13] as the problem of deriving a cost function
from observed behavior. Abbeel and Ng [1] use a linear
combination of features to represent the cost function. Ziebart
et al. [21] and Choi and Kim [4] use variants of IRL and
apply their methods to learn taxi drivers’ preferences for road
segments from GPS trace data.

Abbeel and Ng [1] motivate the use of IRL for learning
driving styles [1]. They suggest that drivers typically trade
off many different factors, which we would have to weigh
when specifying a reward function. Even though most drivers
know how to drive competently, it is difficult to state the
exact reward function for the task of driving well. They apply
their method to learn different behavior styles on a highway
simulation with three lanes and five discrete actions.

Babes et al. [2] introduced maximum likelihood inverse
reinforcement learning. Similar to Ziebart et al. [20] they
maximize the likelihood of the data assuming an exponential
family distribution. They furthermore introduce a method
to automatically cluster observed behavior styles and learn
individual feature weights for each cluster. Chen et al. [3]
propose a method to automatically discover a set of relevant
features in IRL. In these approaches, the respective IRL
algorithms are used to learning behavior patterns on a discrete
highway simulator with a small number of states and actions,
similar to Abbeel and Ng [1]. Silver et al. [17] apply
Maximum Margin Planning (MMP) to learn more complex
behavior for autonomous vehicles and show experiments in
which learning by demonstration significantly outperforms
manual tuning of the parameters. MMP is an IRL variant
that aims to minimize the margin between the observations
and the optimal trajectory in an MDP by adjusting the cost
of discrete state-action pairs.

In contrast to a discrete state and action space, we consider
trajectories in continuous state spaces. This allows our method
to learn higher order properties such as lateral jerk, which is
important for the comfort of users. Levine and Koltun [12]
also present a method for IRL in continuous state and action
spaces. They assume locally optimal demonstrations and
approximate the resulting distribution using Taylor expansion.
In contrast to their method, we do not model the dynamics
as an Markov decision process, but compute expected feature
values using a time-continuous spline representation of the
trajectories. These continuous trajectories are directly suitable
for online control of an automated car.

The method we utilize in this paper builds on previ-
ous approaches for learning pedestrian navigation behavior
[10, 11]. However, in the context of highway driving we
encounter different preconditions and challenges. For example,
in contrast to free movement in all directions, vehicles need

to follow their respective lanes. Furthermore, continuous
acceleration and bounded jerk are necessary for driving
comfort especially when driving with high speed.

The approach presented in this paper relies on a finite-
dimensional representation of trajectories. We choose to
encode the 2D position along the trajectories using quintic
splines, similar to Sprunk et al. [18]. They optimize trajecto-
ries with respect to a user defined cost function to navigate
a holonomic mobile robot. Gulati [6] proposes an alternative
trajectory representation. Instead of the positions along the
trajectory, Gulati parametrizes a trajectory using orientation
and speed. This allows boundary conditions with zero speed.
However, this parametrization requires numerical integration
to compute the position along the trajectory, in contrast to an
efficient closed form representation. The learning approach
proposed in this paper is independent of the representation of
trajectories, as long as it allows computation of the features
and their derivatives.

III. LEARNING NAVIGATION BEHAVIOR FROM
DEMONSTRATION

In this section we describe our feature-based approach
for learning from demonstration in the context of highway
driving.

A. Trajectory Representation

We represent the 2D driving style of vehicles using
trajectories r that are mappings r : R → R2 from time to
a 2D position. In general, the space of such trajectories has
infinitely many dimensions. In this work, we use splines as a
finite-dimensional representation of trajectories to overcome
this problem. More precisely, we utilize quintic splines in R2

to represent the x and y position of the vehicle over time.
Each spline segment

sj : [tj , tj+1]→ R2 (1)

is a 2D quintic polynomial that defines the position of the
vehicle in a time interval [tj , tj+1], where 0 ≤ j < S for a
spline with S segments. Thus, the trajectory of the vehicle is
given by

r(t) = sj(t), for t ∈ [tj , tj+1]. (2)

We use the position pj := r(tj), velocity vj := ṙ(tj), and
acceleration aj := r̈(tj) for j ∈ {0, . . . , S} to parameterize
the spline. The set of these control points at time tj and
tj+1 fully defines the spline segment sj , which has six
degrees of freedom. Since two adjacent spline segments share
control points, we have continuous velocity v(t) = ṙ(t) and
acceleration a(t) = r̈(t) along the trajectory. As a result, the
curvature of the path and hence the lateral acceleration is
continuous as long as speed is non-zero, which is necessary
for achieving comfortable motion.

B. Maximum Entropy Inverse Reinforcement Learning

Given a set of N observed trajectories r̃1, . . . , r̃N our goal
is to learn a model that explains the observations and that is
capable of generating trajectories of similar characteristics
in other situations. However, it is not obvious what similar



means in this context. For example, if we have training
examples from a certain highway, an unbiased learning
algorithm without any assumptions might learn that it is
very important to drive on this exact highway. However,
we rather want a system that learns acceleration profiles or
local obstacle avoidance behavior and that is able to generate
similar trajectories on any given highway.

To introduce such domain knowledge, we propose a feature-
based learning algorithm. Each feature fk is a function that
maps a trajectory to a real value, capturing some relevant
characteristic. The vector of all features f is thus a function
that maps trajectories to a real vector

f : r 7→ (f1(r), . . . , fn(r)) ∈ Rn. (3)

In this way, the empirical feature values of the observed
trajectories f̃ = 1

N

∑N
i=1 f(r̃i) encode relevant properties

of the demonstrations, such as accelerations, velocities, or
distances to other vehicles.

Our goal is to find a generative model that yields trajectories
that are similar to the observations, where the features serve as
a measure of similarity. More specifically, given a probabilistic
model that yields a probability distribution over trajectories
p(r | θ), our goal is to find the parameters θ such that the
expected feature values match the observed empirical feature
values, i.e.

Ep(r|θ)[f ] = f̃ . (4)

In general, there are many distributions with this property.
Within the class of all distributions that match features, Ziebart
et al. [20] propose to select the one that maximizes the
entropy. Following the principle of maximum entropy, this
is the distribution that describes the data best since it is
the least biased distribution. The solution of the constraint
optimization problem of optimizing the entropy given the
constraints in Eq. (4) has the form

p(r | θ) = exp
(
−θT f(r)

)
. (5)

One can interpret θT f(r) as a cost function, where agents are
exponentially more likely to select trajectories with lower cost.
Unfortunately, it is not possible to compute θ analytically,
but we can compute the gradient of the Lagrange function
of the constraint optimization problem with respect to θ. It
can be shown that this gradient is the difference between the
expected and the empirical feature values

Ep(r|θ)[f ]− f̃ . (6)

There is an intuitive explanation for this gradient: when
the expected value Ep(r|θ)[fk] for a feature fk is too high,
we should increase the corresponding weight θk, which in
turn assigns lower likelihood to any trajectories with high
feature values fk(r). As a result, the expected feature value
Ep(r|θ)[fk] decreases. More details about the derivation of
this learning algorithm can be found in Ziebart et al. [20]
and Kretzschmar et al. [10].

C. Maximum Likelihood Approximation

The main challenge of the learning approach described
above is to compute the expected feature values Ep(r|θ)[f ].
For the high-dimensional distributions it is in general not
possible to compute the integral

Ep(r|θ)[f ] =

∫
p(r | θ)f(r)dr (7)

analytically. Kretzschmar et al. [10] describe how to sample
trajectories from the high dimensional space of trajectories
using Hamiltonian Markov chain Monte Carlo methods. How-
ever, this sampling method is computationally very expensive.
A possible approximation of the expected feature values is
to compute the feature values of the most likely trajectory,
instead of computing the expectations by sampling [11]:

Ep[f ] ≈ f(arg max
r
p(r | θ)). (8)

The resulting learning method is also known as inverse
optimal control. With this approximation, we assume that the
demonstrations are in fact generated by minimizing a cost
function, in contrast to the assumption that demonstrations
are samples from a probability distribution. Our experiments
suggest that this approximation is suitable in the context of
learning individual driving styles on highways.

D. Learning Highway Navigation Style

We apply the learning algorithm as described above to
driving style learning on highways. In the following, we
propose features that capture relevant properties of driving
styles such as velocities, acceleration and distances to other
agents, the distance to the desired lane, and the desired speed.

1) Acceleration: Integrating the squared acceleration over
the trajectory yields the feature

fa =

∫
t

‖r̈(t)‖2 dt. (9)

2) Normal Acceleration: In addition, we use a feature that
represents the acceleration perpendicular to the direction of
the lane.

fan =

∫
t

(dx(t)r̈y(t)− dy(t)r̈x(t))
2
dt, (10)

where d(t) is the current normalized direction vector of the
lane. Experimental studies showed that passengers of ground
vehicles react very sensitive to lateral accelerations.

3) Jerk: For the comfort of passengers the jerk along the
trajectory is also an important quantity.

fj =

∫
t

‖...r (t)‖2 dt. (11)

4) Normal Jerk: Similar to acceleration, we also capture
the lateral jerk perpendicular to the direction of the lane

fjn =

∫
t

(dx(t)
...
r y(t)− dy(t)

...
r x(t))

2
dt, (12)

where d(t) is the current normalized direction vector of the
lane.



5) Curvature: Since a real vehicle has typically a limited
turning circle, we additionally introduce a feature that
represents the squared curvature

fκ =

∫
t

‖κ(t)‖2 dt. (13)

6) Desired Speed: To represent deviation from a desired
speed, we use the feature

fv =

∫
t

‖vdes − ṙ(t)‖ dt, (14)

where vdes is the desired velocity vector in direction of the
current lane. The desired speed could either be the speed
limit on the given highway, or a lower individual speed that
is comfortable for the user.

7) Lane: When driving on highways, the vehicle should
drive close to the center of the current lane. We represent
this property by the feature

fl =

∫
t

‖l(t)− r(t)‖ dt. (15)

where l(t) is the closest centerline point at time t.
8) Collision Avoidance: Obviously the distance to other

vehicles is important to avoid crashes. Therefore, we introduce
the feature

fd =
∑
c

∫
t

1

‖r(t)− oc(t)‖2
dt, (16)

where oc(t) is the closest point to vehicle c at time t. This
feature increases as the car gets closer to any obstacle.

9) Following distance: When following other vehicles,
we want to keep a safety distance which is greater than
the minimum allowed distance between two vehicles on
neighboring lanes. To account for the distance to the following
vehicle on the same lane, we propose the feature

ffd =

∫
t

max
(

0, d̂− d(t)
)
dt, (17)

where d(t) is the current distance parallel to the lane and d̂
the desired distance.

E. Learning from Demonstration

In this section, we outline the learning process when
approximating the expectations using maximum likelihood
trajectories, as described in Sec. III-C. Given a set of
demonstrated trajectories {r̃1, . . . , r̃N}, the following steps
lead to the desired policy. Here, we outline the process

1) Compute the empirical feature vector averaged over
all demonstrations f̃ = 1

N

∑N
i=1 f(r̃i) by evaluating the

feature functions for all demonstrated trajectories.
2) Initialize the weight vector θ with arbitrary values.
3) For each demonstrated trajectory, fix the environment

state including position, velocity and acceleration at the
start, lane information and the state of nearby vehicles.
Then optimize the free parameters of these trajectories
with respect to the cost function θT f(r). We denote
the optimized trajectories by {rθ1 , . . . , rθN}.

4) Compute the approximated expected feature values
by evaluating the feature functions for all optimized
trajectories Ep(r|θ)[f ] ≈ fθML := 1

N

∑N
i=1 f(r

θ
i ).

5) The gradient for the optimization is given by fθML − f̃ ,
as stated in Eq. (6). Use this gradient to update the
current estimation of the weight vector θ.

6) Repeat from step 3 until convergence.

IV. NAVIGATING AN AUTONOMOUS VEHICLE USING THE
LEARNED MODEL

The learned model allows us to compute trajectories
for navigating an autonomous vehicle. To this end, we
continuously compute the most likely trajectory, which is
the trajectory with lowest cost θTf , using the optimization
algorithm RPROP [15].

A. Efficient Computation of Feature Gradients

For online optimization during navigation, it is crucial to
efficiently compute the gradients

∂θT f(r)

∂(p0,v0,a0, . . . ,pS ,vS ,aS)
(18)

=
∑
k

θk
∂fk(r)

∂(p0,v0,a0, . . . ,pS ,vS ,aS)
(19)

=
∑
k

θk∇fk(r). (20)

For the features accounting for acceleration and jerk, we
can compute the derivatives in closed form, since these
features are integrals over polynomials. For more complex
features we cannot compute the gradients analytically but
use a combination of numerical integration and analytical
derivatives. Applying numerical integration

f(r) =

∫
t

c(r, t)dt (21)

≈
∑

t∈{0,∆t,... }

∆t

2
(c(r, t) + c(r, tn + ∆t)) (22)

allows us to compute the derivatives at each sampling point:

∇f(r) =
∑

t∈{0,∆t,... }

∆t

2
(∇c(r, t) +∇c(r, t+ ∆t)) . (23)

For the features listed in Sec. III-D, it is feasible to compute
the derivatives of the inner function c(r, t) in closed form and
therefore to efficiently compute the feature gradients using
numerical integration.

B. Navigation

We integrated our method into a planning framework for
autonomous vehicles. At each planning cycle, we update the
state of other perceived vehicles on the highway given the
current sensor readings. We predict the future behavior of
these vehicles assuming constant speed along their respective
lanes. Based on this, we use the method described above to
optimize the trajectory of the autonomous vehicles based on
the learned cost function.



0 20 40 60 80
0

50

100

iteration

‖E
p
(r

|θ
)
[f
]
−

f̃‖

0 5 10

−2

0

2

4

time / s

a
n

/
m
/s

2

Fig. 2. Left: evolution of the norm of the difference between the empirical
feature values and the expected feature values during learning on a dataset
of 20 observed trajectories. Right: normal acceleration of a demonstrated
trajectory (blue), the initial guess (black), and the optimized trajectory with
the final learned policy (red).

More precisely, we fix at each planning cycle the position
p0, velocity v0, and acceleration a0 of the first node according
to the trajectory that we sent to the controller in the previous
planning cycle. The remaining spline control points pj , vj ,
and aj for j ∈ {1, . . . , S} are variables for the optimization
with respect to the learned cost function θTf(r). In this way,
we can assure smooth transitions between the trajectories of
subsequent planning cycles.

The cost function, which is a linear combination of the
features described in Sec. III-D, yields a smooth, comfortable
trajectory, keeping a safe distance to obstacles. The learned
feature weighs encode the trade-off between antagonistic
goals, such as the desired speed and limited accelerations.
When a slower vehicle blocks the lane, our system predictively
computes a trajectory that decelerates and keeps a safe
distance until it is safe to drive at the desired speed again.

When we change the desired lane, the cost function assigns
lower cost to trajectories that are near the new desired lane.
As a consequence, the optimized trajectory immediately leads
to a lane change. The features that capture the curvature,
normal acceleration, and normal jerk guarantee a smooth lane
change that shows characteristics as demonstrated before.

V. EXPERIMENTS

In this section we present a set of experiments to evaluate
the performance of our method to learn a policy for automated
highway driving from demonstration.

A. Data Acquisition

To record training data, we used a car that is equipped
with a range of sensors, which allow us to localize in an
existing map. Furthermore, the car observes and tracks other
vehicles in its vicinity. For the experiments in this section,
we recorded the driving style of different drivers on a US
highway with normal traffic. Each driver was instructed to
demonstrate acceleration maneuvers in the velocity range of
20 m/s to 30 m/s, as well as lane change maneuvers. From
these datasets of about 8 min each, we manually selected the
contained acceleration and lane change maneuvers. These
observations consist of the trajectory of the car, the trajectories
of all other vehicles in the vicinity, and lane information.
For each sample, we set the desired speed according to the
last observed speed. Similarly, we set the desired lane to the
closest lane at the end of the observed trajectory. To avoid this

−50 0 50 100 150 200 250

0

3

6

x / m

y
/
m

Fig. 3. Demonstrated trajectory (blue), the initial guess (black), and the
optimized trajectory with the final learned policy (red). The trajectory shows
a change of two lanes to the left. The dashed lines illustrate intermediate
policies during the learning phase.

manual pre-selection step, we could also obtain samples in an
interactive training session, where the car issues commands
such as “perform a lane change to the left lane now”.

B. Learning Individual Navigation Styles

The goal of the learning method is to find weight vectors θ
that yield policies which explain the observed trajectories.
We applied our learning algorithm as described in Sec. III-E
to the observed trajectories of different users. The initial
guess for the feature weights θ was an all-ones vector.
Fig. 2 (left) shows the deviation of the empirical features and
the approximated, expected feature values during the learning
procedure of one of the datasets. After about 30 iterations,
the feature weights converge.

Fig. 3 shows an observed trajectory of changing two lanes
to the left. In addition to the observed trajectory, which was
excluded from the training set, the figure shows the initial
guess as well as the trajectory optimized with the learned
policy. The learned policy yields a trajectory with similar
characteristics compared to the observation, which is also
apparent in Fig. 2 (right) that shows the normal acceleration
during the lane change maneuver.

Fig. 5 shows the velocity and acceleration profiles for a
different trajectory, where the car accelerates from an initial
velocity of 23 m/s to a desired velocity of 29 m/s. The plots show
the observation, the initial guess, and the final learning result.
Similar to the lane change behavior, the learned method better
replicates the behavior compared to the initial guess.

To show the ability of our method to learn distinct policies
for different users, Fig. 4 contains the mean acceleration
and jerk over trajectories demonstrated by two users, and
the learned policies applied to the same start configurations
and desired velocities as observed. The figure shows that
our method is able to reproduce the characteristics when
applied to the test set. Additionally, it also shows that the
characteristics transfer to a distinct test set of trajectories,
which suggests that the learned policies also generalize to
different situations.

In our experiments, the resulting trajectories after optimiza-
tion do not fit the observation perfectly. The reason for this
is twofold. First, the learned policy is an average over the set
of different sample trajectories. Second, the observations do
not exactly meet the optimality criteria for any cost function
that is a linear combination of the features we use. However,
the experimental results suggest that our algorithm learns the



Dem
.

Lea
rn Test

0

0.5

1
ac

c
/
m
/s

2

Dem
.

Lea
rn Test

0

0.1

0.2

0.3

je
rk

/
m
/s

3 user I
user II

Fig. 4. The average acceleration (left) and jerk (right) over trajectories
of datasets of two users, observed on US highways. The plots show the
average accelerations and velocities over the demonstrations, the learned
policy applied to the individual dataset used for learning, and a distinct test
set. The results show that our algorithm captures distinct styles of two users.

0 5 10
0

0.5

1

1.5

time / s

ac
c

/
m
/s

2

0 5 10

24

26

28

time / s

ve
l

/
m
/s

Fig. 5. Speed (left) and acceleration (right) of a demonstrated trajectory
(blue), the initial guess (black), and the optimized trajectory with the final
learned policy (red). The dashed line shows the trajectory of a a car in a
realistic simulation that accelerates from 23 m/s to 29 m/s using the learned
policy.

magnitude of the quantities that contribute to the comfort of
the users. In practice, only the user itself is able to assess
the comfort felt by driving the autonomous car. Planned
future work in this field includes a user study in which
users demonstrate behavior and subsequently evaluate the
performance of the automated car that uses the learned policy.

C. Autonomous Driving

We applied the learned policy to autonomous navigation, as
described in Sec. IV-B. Our system continuously computes the
trajectory with lowest cost with 5 Hz and uses the trajectory to
control a car in a realistic simulation environment. The dashed
line in Fig. 5 shows the acceleration of the simulated car
when changing speed from 23 m/s to 29 m/s. The acceleration
profiles coincide with the trajectories optimized offline for
the same acceleration task. This experiment suggests that the
learned policy is suitable to autonomously control a car with
similar characteristics as observed from real drivers.

VI. CONCLUSION

In this paper, we presented an inverse reinforcement
learning method to learn individual driving styles for self-
driving cars from demonstration. To capture the relevant
properties of highway driving, we propose a set of features
that capture distances to other vehicles, the distance to the
desired lane as well as higher order properties such as
velocities and accelerations. By matching observed empirical
feature values with the expected feature values of the model,
the proposed method allows us to learn a policy that captures
an individual driving style. Experiments carried out with
oberved trajectories from a real car suggest that our method
is able to reliably learn policies from demonstration suitable
for autonomous navigation.

REFERENCES

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse
reinforcement learning. In Proc. of the 21st Int. Conf. on
Machine Learning (ICML), 2004.

[2] M. Babes, V. Marivate, M. Littman, and K. Subramanian.
Apprenticeship learning about multiple intentions. In Proc. of
the 28th Int. Conf. on Machine Learning (ICML), 2011.

[3] S. Chen, H. Qian, J. Fan, Z. Jin, and M. Zhu. Modified reward
function on abstract features in inverse reinforcement learning.
Journal of Zhejiang University SCIENCE C, 11(9), 2010.

[4] J. Choi and K.-E. Kim. Bayesian nonparametric feature
construction for inverse reinforcement learning. In Int. Joint
Conf. on Artificial Intelligence (IJCAI). AAAI Press, 2013.

[5] J. Elander, R. West, and D. French. Behavioral correlates of
individual differences in road-traffic crash risk: An examination
of methods and findings. Psychological bulletin, 113(2), 1993.

[6] S. Gulati. A framework for characterization and planning of
safe, comfortable, and customizable motion of assistive mobile
robots. PhD thesis, The University of Texas at Austin, 2011.

[7] I. D. Jacobson, L. G. Richards, and A. R. Kuhlthau. Models
of human comfort in vehicle environments. Human factors in
transport research, 20, 1980.

[8] KPMG2012. Self-driving cars: the next revolution. http://www.
kpmg.com/US/en/IssuesAndInsights/ArticlesPublications/
Documents/self-driving-cars-next-revolution.pdf, 2012.

[9] KPMG2013. Self-driving cars: are we ready? http://www.
kpmg.com/US/en/IssuesAndInsights/ArticlesPublications/
Documents/self-driving-cars-are-we-ready.pdf, 2013.

[10] H. Kretzschmar, M. Kuderer, and W. Burgard. Learning to
predict trajectories of cooperatively navigating agents. In Proc.
of IEEE Int. Conf. on Robotics and Automation (ICRA), Hong
Kong, China, 2014.

[11] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard.
Feature-based prediction of trajectories for socially compliant
navigation. In Robotics: Science and Systems (RSS), 2012.

[12] S. Levine and V. Koltun. Continuous inverse optimal control
with locally optimal examples. In Proc. of the Int. Conf. on
Machine Learning (ICML), 2012.

[13] A. Ng and S. Russell. Algorithms for inverse reinforcement
learning. In Proc. of the Int. Conf. on Machine Learning
(ICML), 2000.

[14] D. A. Pomerleau. Efficient training of artificial neural networks
for autonomous navigation. Neural Computation, 3(1), 1991.

[15] M. Riedmiller and H. Braun. A direct adaptive method for
faster backpropagation learning: The RPROP algorithm. In
Proc. of the IEEE Int. Conf. on Neural Networks (ICNN), 1993.

[16] M. Riedmiller, M. Montemerlo, and H. Dahlkamp. Learning to
drive a real car in 20 minutes. In Frontiers in the Convergence
of Bioscience and Information Technologies. IEEE, 2007.

[17] D. Silver, J. A. Bagnell, and A. Stentz. Learning autonomous
driving styles and maneuvers from expert demonstration. In
Experimental Robotics. Springer, 2013.

[18] C. Sprunk, B. Lau, P. Pfaff, and W. Burgard. Online generation
of kinodynamic trajectories for non-circular omnidirectional
robots. In Proc. of IEEE Int. Conf. on Robotics and Automation
(ICRA), 2011.

[19] O. Taubman-Ben-Ari, M. Mikulincer, and O. Gillath. The
multidimensional driving style inventoryscale construct and
validation. Accident Analysis and Prevention, 36(3), 2004.

[20] B. Ziebart, A. Maas, J. Bagnell, and A. Dey. Maximum entropy
inverse reinforcement learning. In AAAI Conf. on Artificial
Intelligence (AAAI), 2008.

[21] B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A. Bagnell.
Navigate like a cabbie: Probabilistic reasoning from observed
context-aware behavior. In Proc. of the Int. Conf. on Ubiquitous
Computing. ACM, 2008.


