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Abstract— Recently, the problem of autonomous navigation
of automobiles has gained substantial interest in the robotics
community. Especially during the two recent DARPA grand
challenges, autonomous cars have been shown to robustly
navigate over extended periods of time through complex desert
courses or through dynamic urban traffic environments. In
these tasks, the robots typically relied on GPS traces to
follow pre-defined trajectories so that only local planners
were required. In this paper, we present an approach for
autonomous navigation of cars in indoor structures such as
parking garages. Our approach utilizes multi-level surface maps
of the corresponding environments to calculate the path of the
vehicle and to localize it based on laser data in the absence of
sufficiently accurate GPS information. It furthermore utilizes a
local path planner for controlling the vehicle. In a practical
experiment carried out with an autonomous car in a real
parking garage we demonstrate that our approach allows the
car to autonomously park itself in a large-scale multi-level
structure.

I. INTRODUCTION

In recent years, the problem of autonomous navigation of

automobiles has gained substantial interest in the robotics

community. DARPA organized two “Grand Challenges” to

make progress towards having one third of all military

ground vehicles operating unmanned in 2015. There also

is a wide range of civilian applications, for example in the

area of driver assistance systems that enhance the safety by

performing autonomous maneuvers of different complexities

including adaptive cruise control or emergency breaking.

During the two Grand Challenges, cars have been shown

to navigate reliably along desert courses and in dynamic

urban traffic scenarios. However, most of these scenarios

rely on GPS data to provide an estimate about the pose

of the vehicles on pre-defined trajectories. Therefore, only

local planners [7], [18] were needed to control the vehicles.

However, autonomous navigation in environments without

sufficiently accurate GPS signals such as in parking garages

and the connection to the navigation in GPS-enabled settings

has not been sufficiently well targeted in these challenges.

In this paper, we propose an approach to autonomous

automotive navigation in large-scale parking garages with

potentially multiple levels. This problem is relevant to a

variety of situations, for example, for autonomous parking

behaviors or for navigation systems that provide driver

assistance even within buildings and not only outdoors where

a sufficiently accurate GPS signal and detailed map infor-

mation is available. Even state-of-the-art inertial navigation

systems are not sufficient to accurately estimate the position
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Fig. 1. Multi-level parking garage used for the experiment. The garage
has four levels. The start point was close to the entrance, the goal point is
on the upper level.

in large-scale indoor structures such as the one depicted in

Fig. 1, which is the parking garage used for the experiments

carried out for the work described in this paper. To enable

a mobile vehicle to park itself at an arbitrary, pre-defined

position in that garage given it starts at the entrance of the

building at the lowest level, several requirements need to be

met. First, the vehicle needs an appropriate representation

of the building to calculate the path to be taken. Second, it

needs to be able to localize itself in this three-dimensional

building. Third, it needs to be able to follow this path so that

it safely arrives at the designated target location.

Our approach utilizes multi-level surface maps to com-

pactly represent such buildings. We apply a graph-based

optimization procedure to establish the consistency of this

map. The map is then used to plan a global path from

the start to the goal position and to robustly localize the

vehicle based on laser range measurements. We use a local

planner to follow this path and to avoid unforeseen obstacles.

As a result, the vehicle can autonomously navigate in such

multi-level environments without any additional information

provided by a user. Our approach has been implemented and

tested with a real Volkswagen Passat Wagon.

The remainder of this paper is organized as follows. After

discussing related work in the next section, we describe the

underlying map data structure and the mapping algorithm

in Section III. Our localization approach is presented in

Section IV. In Section V we describe the planning algorithm.

Finally, in Section VI, we present experimental results illus-

trating the abilities and advantages of our approach.

II. RELATED WORK

The system described in this paper addresses several as-

pects of autonomous robots including localization, mapping,

path planning, and autonomous navigation. Several authors

have studied the problem of mobile robot localization in

outdoor environments with range sensors or cameras in

the past. For example, Adams et al. [1] extract predefined



features from range scanners and apply a particle filter for

localization. Davison and Kita [6] utilize a Kalman filter

for vision-based localization with point features on non-flat

surfaces. Agrawal and Konolige [2] presented an approach to

robot localization in outdoor terrains based on feature points

that are tracked across frames in stereo images. Lingemann

et al. [19] described a method for fast localization in in- and

outdoor environments. Their system operates on raw data

sets, which results in huge memory requirements. Recently,

Levinson et al. [17] presented an algorithm for mapping

and localization in large urban environments. Their approach

localizes the vehicle using 2D intensity images of the road

surface which are obtained by the reflectivity measurements

of a range scanner. Building maps of outdoor environments

using range or vision data also gained interest in recent

years. To reduce the memory requirements of outdoor ter-

rain representations, several researchers applied elevation

maps [3], [11], [15], [24]. This representation only stores one

height value per cell which represents the drivable surface

but is not sufficient to represent vertical or overhanging

objects. Therefore, Pfaff et al. [25] extended elevation maps

to also deal with vertical and overhanging objects. To also

address the issue of multiple levels in the environment, e.g.,

a bridge and the corresponding underpass, Triebel et al. [28]

presented multi-level surface (MLS) maps. The literature

on path planning for wheeled robots is also extensive.

Our local planner builds on the existing work in discrete

search in unknown environments (e.g., [13], [8], [21]), as

well as kinematic forward search [12], [16], [26] and non-

linear optimization in the space of 2D curves [4]. Whereas

strategies for specific dedicated parking maneuvers have been

developed [22], [23] and nowadays are even available in

off-the-shelf vehicles, these systems perform autonomous

navigation only in a short range and are not able to plan

complex navigation tasks through entire parking structures.

The work probably most closely related to ours is that of

Schanz et al. [27] who developed an autonomous parking

system in a subterranean parking structure. Compared to our

work described in this paper, their system can only deal

with given two-dimensional map representations and lacks

the capability to detect obstacles in 3D. Additionally, their

system cannot deal with multiple levels or drive on non-flat

surfaces like ramps.

III. MAPPING OF THE PARKING GARAGE

A. Map Representation

To model the environment, we apply MLS maps [28],

which store the structure of the environment in a 2D grid

of cells, where each cell cij , i, j ∈ Z contains a list

of so-called surface patches P 1
ij , . . . , P

L
ij . For each patch,

we store its height estimate µl
ij so that one can easily

calculate the possibility to traverse the cell at a specific

height. Additionally, we store for each patch the variance

σl
ij to represent the uncertainty in the height of the surface.

Furthermore, we represent a depth value to model the vertical

extend of each patch. Fig. 2 depicts a local MLS-map

close to one of the entrances of the parking garage used to

Fig. 2. Local MLS-map example. MLS-maps allows us to efficiently
represent the drivable surface and the vertical objects, that are useful for
localization.

carry out the experiments described in this paper. The local

map consists of 15 point clouds. The MLS data structure

allows us to represent complex outdoor environments in a

compact manner. For example, the data set shown in the

experiments consists of approximately 4 GB of raw data,

while the complete MLS-map with a cell size of 20 cm

requires only 128 MB. This amount of data easily fits into the

main memory of modern computers and could in practical

applications easily be downloaded to the navigation system

of the car from the information system of the garage.

B. Mapping with GraphSLAM

Our mapping system addresses the SLAM problem by its

graph-based formulation. A node of the graph represents a

6DoF pose of the vehicle and an edge between two nodes

models a spatial constraint between them. These spatial con-

straints arise either from overlapping observations or from

odometry measurements. In our case the edges are labeled

with the relative motion between two nodes which determine

the best overlapping between the 3D scans acquired at the

nodes locations.

To compute the spatial configuration of the nodes which

best satisfies the constraints encoded in the edges of the

graph, we use an online variant of a stochastic gradient

optimization approach [9]. Performing this optimization pro-

cedure allows us to reduce the uncertainty in the pose

estimate of the robot whenever constraints between non-

sequential nodes are added.

The graph is constructed as follows: whenever a new ob-

servation zt has to be incorporated into the system, we create

a new node in the graph at position xt = (x, y, z, ϕ, ϑ, ψ).
We then create a new edge et−1,t between the current posi-

tion xt and the previous one xt−1. This edge is then labeled

with the transformation between the two poses xt⊖xt−1. We

determine the position of the current node with respect to the

previous one by 3D scan-matching. To this end, we use an

approach based on the iterative closest points (ICP) algorithm

to obtain a maximum likelihood estimate of the robot motion

between subsequent observations. In our implementation we

perform ICP on local MLS-maps instead of raw 3D point

clouds.

Whereas this procedure significantly improves the estimate

of the trajectory, the error of the current robot pose tends

to increase due to the accumulation of small residual errors.

This effect becomes visible when the vehicle revisits already



known regions. To solve this problem, we need to re-localize

the robot in a region of the environment which has been

visited long before. To resolve these errors, (i.e., to close the

loop), we apply our scan matching technique on our current

pose xt and a former pose xi, whereas i ≪ t. To detect a

potential loop closure, we identify all former poses which

are within a constant error ellipsoid and whose observations

overlap with the current observation. If a match is found,

we augment the graph by adding a new edge between xi

and xt labeled with the relative transformation between

the two poses computed by matching their corresponding

observations.

This procedure works well as long as the relative error

between the two poses lies within the error ellipsoid. In

general, the longer the path between the two nodes xt and xi

is, the higher the relative error becomes so that our simple

strategy might fail. In the absence of a globally consistent

position estimate like GPS to restrict the search of loop

closures one might use more sophisticated techniques [5],

[10]. While we acknowledge this drawback, during our

experiments our strategy never introduced a wrong constraint

and the resulting map was always consistent.

C. Level Information

As mentioned above, the MLS-map stores information

about the surface which encloses the occupied volume of the

environment. We can exploit this fact to assign progressive

IDs to the different drivable levels in the map. We refer to

a multi-level environment, if the robot has the possibility to

reach a specific cell cij at least at two different height levels.

To label the environment, we proceed as follows: First we

generate a connectivity graph G of the surface described by

the MLS map. This is done by connecting all the patches

P 1
ij , . . . , P

L
ij of the cell cij with their neighboring patches

of the cells {ci+k ,j+l | k, l ∈ {0, 1}, k + l ≥ 1} with

an undirected edge. The edge is only introduced, if the

height difference between the two surface patches is below a

threshold. The step threshold is given by the characteristics

of the robot.

This connectivity graph is then used to initiate a region

growing procedure. The initial frontier consists of the lowest

surface patch. We keep the frontier sorted according to the

surface height. The algorithm keeps track on how often each

cell has been visited at different height levels. This counter is

incremented whenever the cell is reached. In case the counter

of the current cell is less than the counter of the predecessor,

we set it to the level counter of the predecessor.

In our approach, the level information is needed for

the update of local two-dimensional data structures of our

system. Whenever the car moves to a different level, we

need to recompute these structures according to the current

level. An example of a two-dimensional data structure which

needs to be updated upon a change of the level is the two-

dimensional obstacle map.

IV. LOCALIZATION

Whenever the GPS signal is lost, even high-end integrated

navigation units which combine GPS, wheel odometry via

a distance measurement unit, and inertial measurements to

obtain a global position expressed in latitude, longitude, and

altitude are not able to accurately localize the robot. In this

case, the lack of GPS measurements prevents the system

to compensate for the drift in the (x, y, z) position. This

drift results from the integration of small errors affecting

the relative measurements obtained by the encoders and the

inertial sensors. In particular, we observed a significant error

along the z component of the pose vector, which represents

the height of the vehicle. This high error does not allow us to

directly use the z estimate of the inertial system to estimate

the level in case of multi-level indoor environments.

To this end, we extended our former localization ap-

proach [14] which utilizes a particle filter to localize the

car within a 3D map of the environment.

The inertial navigation system integrates velocities and

wheel odometry to calculate the position of the vehicle.

This gives a locally consistent estimate, which is updated

at 200 Hz. In addition we observed that the orientation,

namely the roll, pitch, and yaw angles, is measured with

high precision and also drift-free by the system. We also

found, that the pose estimate is not significantly improved

by filtering the attitude. Hence, we reduce the localization

problem to three dimensions instead of six.

Let xt = (x, y, z)T denote the pose of the particle

filter at time t. The prediction model p(xt | ut−1,xt−1)
is implemented by drawing a 3D motion vector out of a

Gaussian whose mean ut−1 is given by the relative 3D

motion vector of the inertial system since time step t − 1.

In addition, we constraint the height coordinate z of each

particle to remain in a boundary around the surface modeled

in the map. This is motivated by the fact, that positions above

or below the surface are not admissible and we want to focus

the limited number of particles in the high density regions

of the probability density function. In all our experiments

this boundary was set to 20 cm around the drivable surface.

The range measurement zt is integrated to calculate a new

weight for each particle according to the sensor model p(zt |
xt). The sensor model is implemented as described in our

previous work [14]. Furthermore, the particle set needs to

be re-sampled according to the assigned weights to obtain a

good approximation of the pose distribution.

We bootstrap our localization algorithm by initializing

the particles based on the GPS measurements. Therefore,

the map of the environment also contains the surrounding

outdoor area where the GPS signal is available. In the

outdoor part of the map, GPS provides a sufficiently accurate

pose estimate to initialize the particle filter for position

tracking.

V. PATH PLANNING

Given a search space, in our case the surface connectivity

graph G described in Section III-C, we want to find a feasible

path between a starting and a goal location. By defining

a cost function for each motion command the robot can

execute, and an admissible heuristic which efficiently guides

the search, we can use A∗ to efficiently search for the path.



Fig. 3. Local planner. The red curve is the trajectory produced by phase
one of our search (local-A∗). The blue curve is the final smoothed trajectory
produced by conjugate-gradient optimization.

Given a global path through the multi-level graph G, we

use a local planner to navigate through the current level of

the structure. The local planner uses the 2D obstacle map

generated in real-time for the current level. Our local planner

is based on the path planner used in the DARPA Urban

Challenge by the Stanford racing team [7]. For completeness,

we briefly outline the main components of this planner below.

The task of the local planner is to find a safe, kinemati-

cally feasible, near-optimal in length, and smooth trajectory

across the current 2D level of the environment. Given the

continuous control set of the robot, this yields a complex

optimization problem in continuous variables. For computa-

tional reasons, the local planner breaks the optimization into

two phases.

The first phase performs an A∗ search on the 4-

dimensional state space of the robot 〈x, y, θ, d〉, where

〈x, y, θ〉 define the 2D position and orientation of the vehicle

and d = {0, 1} corresponds to the direction of motion

(forward or backwards). A∗ uses a heuristic that combines

two components. The first component models the non-

holonomic nature of the car, but ignores the current obstacle

map. This heuristic—which can be pre-computed offline—

ensures that the search approaches the goal with the right

heading θ. The second component of the heuristic is dual to

the first one in that it ignores the non-holonomic nature of the

vehicle, but takes into account the current obstacle map. Both

components are admissible in the A∗ sense, so we define our

heuristic as the maximum of the two. The output of the first

phase using the (A∗) search yields a safe and kinematically-

feasible trajectory. However, for computational reasons we

can only use a highly-discretized set of control actions in

the search, which leads to sub-optimal paths.

The second phase of local planning improves the quality

of the trajectory via numerical optimization in continuous

coordinates. We apply a conjugate-gradient (CG) descent

algorithm to the coordinates of the vertices of the path

produced by A∗ to quickly obtain a locally optimal solu-

tion. Our optimization uses a carefully constructed potential

function defined over 2D curves (see [7] for more details)

to produce a locally optimal trajectory that retains safety

and kinematic feasibility. In practice, the first phase (A∗)

typically produces a solution that lies in the neighborhood

of the global optimum, which means that our second phase

(CG) then produces a solution that is not only locally, but

globally optimal.
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Fig. 4. The car used for the experiment is equipped with five different
laser measurement systems and a multi-signal inertial navigation system.

An example trajectory generated by the local planner is

shown in Fig. 3. The red curve shows the output of phase

one (A∗); the blue curve shows the final smooth trajectory

produced by CG.

In summary, our path planning uses a global planner

operating on the topological graph G to produce a global

path through the multi-level structure. The global planner

iteratively calls a local planner to find a safe, feasible,

and smooth trajectory through the current 2D level of the

environment.

VI. EXPERIMENTS

Our approach has been implemented and evaluated on

a modified 2006 Volkswagen Passat Wagon (see Fig. 4),

equipped with multiple laser range finders (manufactured

by IBEO, Riegl, Sick, and Velodyne), an Applanix GPS-

aided inertial navigation system, five BOSCH radars, two

Intel quad core computer systems, and a custom drive-by-

wire interface. The automobile is equipped with an electro-

mechanical power steering, an electronic brake booster, elec-

tronic throttle, gear shifter, parking brake, and turn signals. A

custom interface-board provides computer control over each

of these vehicle elements.

For inertial navigation, an Applanix POS LV 420 system

provides real-time integration of multiple dual-frequency

GPS receivers which includes a GPS Azimuth Heading

measurement subsystem, a high-performance inertial mea-

surement unit, wheel odometry via a distance measurement

unit (DMI), and the Omnistar satellite-based Virtual Base

Station service. The real-time position and orientation errors

of this system were typically below 100 cm and 0.1 degrees,

respectively.

Although the car is equipped with multiple sensor systems

only data from the Velodyne LIDAR and the two side

mounted LD-LRS lasers were used for the experiment. The

Velodyne HDL-64E is the primary sensor for obstacle de-

tection. The Velodyne laser has a spinning unit that includes

64 lasers which are mounted on upper and lower blocks of

32 lasers each. The system has a 26.8 degree vertical FOV

and a 360 degree FOV collecting approximately 1 million

data points each second. The spinning rate in our setup is

10 Hz which means that one full spin includes approximately

100,000 points. The maximum range of the sensor is about

60 m. Due to the high mounting of the sensor and the shape

of the car, areas close to the car are occluded. We use two

additional LD-LRS laser scanners to cover this area.



Fig. 5. Necessary steps for the 2d map building. First, the sensor measurements from the Velodyne laser (left image) are analyzed for obstacles. The
obstacle measurements are discretized in 15 cm grid cells (red cubes in the middle image). These cells are used to generate a virtual 2D scan (right image)
for updating a two-dimensional map. Yellow beams indicate that no obstacle is measured in this direction and a fixed range is used for the update. The
two-dimensional map is used for the low level parking planner.

The software utilized in this experiment is based on

the system used in the DARPA Urban Challenge. The

architecture includes multiple modules for different tasks

in the system like communication to the hardware, obstacle

detection, 2D map generation, etc. [20]. Here, we focus on

the modules relevant for the experiment. First, there is the

low level controller that executes a given trajectory. The

speed is based on the curvature of the trajectory and the

maximum speed was set to 10 km/h. Second, there is the local

planner described in Section V. Additionally an obstacle

detection module analyzes the sensor data (see Fig. 5 (left)),

discretizes the found obstacles points in a fixed sized (2D)

grid (see Fig. 5 (middle)), and builds a 2D grid map. It

generates a virtual 2D scan from the obstacle data (see Fig. 5

(right)) to update the map. The resulting map is then used by

the local planner to generate the trajectory. The localization

described in Section IV sends translational correction param-

eter to the other modules to compute the correct position.

Finally, there is the global path planner that computes a full

trajectory on the surface map to the goal point using A∗.

The global path is then divided into sub-goals. The program

watches the progress of the car and updates the sub-goal

to keep a fixed distance of approximately 20 m to the car.

This way, the global path planner leads the car along the

computed trajectory and allows the local planner to avoid

local obstacles like parked cars that are not included in the

map.

We did three different experiments to show the function-

ality of the system. First we demonstrate that we can build a

MLS-map from collected sensor data of the parking garage.

Second we illustrate that the described localization technique

is essential for our experimental setup, and finally we show

that based on our implementation, a car can autonomously

drive and park in a multi-level parking structure.

A. Mapping

To obtain the data set, we steered the robot along a

7,050 m long trajectory through the parking garage and the

surrounding environment. The trajectory contains multiple

nested loops on different levels of the garage. The robot

collected more than 15,000 3D point clouds by its Velodyne

sensor. This data has been merged into 1,660 local MLS-

maps used for scan matching to learn the map. The outcome

of our SLAM algorithm can be seen in Fig. 6. The cell size

of the generated map was set to 20 cm. The parking garage

Fig. 6. The MLS map used for the experiment. The trajectory of the robot
as it is estimated by the SLAM system is drawn in blue.

Fig. 7. Bird’s eye view of the parking garage. The red trajectory shows
the position as it is estimated by the inertial navigation system, whereas the
blue trajectory is estimated using our localization approach.

used for the experiments consists of four levels and covers

an area of approximately 113 m by 100 m.

B. Localization

The described localization algorithm was evaluated on

several separate data sets, that have been acquired at dif-

ferent points in time. Hence, the environment was subject

to change, i.e., parked cars sensed during map building are

no longer present. In all our experiments the particle filter

was able to accurately localize the vehicle in real-time. The

algorithm is able to perform pose correction with the update

rate of the sensors using 1,000 particles, whereas the proposal

distribution is updated at 200 Hz. Fig. 7 depicts the outcome

of the localization algorithm. Note the trajectory as it is

estimated by the inertial navigation system contains large

errors, while driving without GPS coverage. Actually, the

estimated trajectory is outside the boundaries of the parking

garage after the car reached the third level. Not until the

car reaches the top level and again receives GPS fixes, it is

able to reduce this error. In contrast to this, our localization

algorithm using the MLS-map and the range measurements
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Fig. 8. Trajectory of the autonomous driving inside the parking structure.
The left image shows the complete trajectory from the start point in the first
level to goal point in the fourth level. The right image shows the last part
of the trajectory to the goal point behind an obstacle (lamp pole).

is able to accurately localize the vehicle all the time. The

accuracy of our localization is confirmed by the inertial

navigation system whenever it receives valid GPS fixes, as

the trajectories overlay at that time.

C. Autonomous Driving

The following experiment is designed to show the abilities

of our approach to autonomously drive in a multi-level

parking garage. The task of the vehicle was to drive from the

start position, which was close to the entrance, to a parking

spot on the upper level of the parking garage. Fig. 1 depicts

an aerial image of the parking garage, in which the start and

goal have been marked. The car autonomously traveled to the

target location. The resulting 3D trajectory of the vehicle is

depicted in Fig. 8 (left). The trajectory has a total length

of 375 m and it took 3:26 minutes to reach the goal with an

average speed of 6.6 km/h (maximum speed 9.5 km/h). Fig. 8

(right) depicts the trajectory of the local planner to the goal.

VII. CONCLUSIONS

In this paper, we presented a novel approach for au-

tonomous driving in complex GPS-disabled multi-level struc-

tures with an autonomous car. We described the individual

approaches for mapping, SLAM, localization, path plan-

ning, and navigation. Our approach has been implemented

and evaluated with a real Volkswagen Passat Wagon in a

large-scale parking garage. The experimental results demon-

strate that our approach allows the robotic car to drive

autonomously in such environments. The experiments fur-

thermore illustrate, that a localization algorithm is needed

to operate indoors, also in the case in which the robot is

equipped with a state-of-the-art combined inertial navigation

system.
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