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Abstract—To effectively navigate in their environments and
accurately reach their target locations, mobile robots require
a globally consistent map of the environment. The problem of
learning a map with a mobile robot has been intensively studied in
the past and is usually referred to as the simultaneous localization
and mapping (SLAM) problem. However, existing solutions to the
SLAM problem typically rely on loop-closures to obtain global
consistency and do not exploit prior information even if it is
available. In this paper, we present a novel SLAM approach
that achieves global consistency by utilizing publicly accessible
aerial photographs as prior information. Our approach inserts
correspondences found between three-dimensional laser range
scans and the aerial image as constraints into a graph-based
formulation of the SLAM problem. We evaluate our algorithm
based on large real-world datasets acquired in a mixed in- and
outdoor environment by comparing the global accuracy with
state-of-the-art SLAM approaches and GPS. The experimental
results demonstrate that the maps acquired with our method
show increased global consistency.

I. INTRODUCTION

The ability to acquire accurate models of the environment is

widely regarded as one of the fundamental preconditions for

truly autonomous robots. In the context of mobile robots, these

models typically are maps of the environment that support

different tasks including localization and path planning. The

problem of estimating a map with a mobile robot navigating

through and perceiving its environment has been studied

intensively and is usually referred to as the simultaneous

localization and mapping (SLAM) problem.

In its original formulation, SLAM does not require any

prior information about the environment and most SLAM

approaches seek to determine the most likely map and robot

trajectory given a sequence of observations without taking into

account any prior information about the environment. How-

ever, there are certain scenarios, in which one wants a robot to

autonomously arrive at a specific location described in global

terms, for example, given by a GPS coordinate. Consider,

for example, rescue or surveillance scenarios in which one

requires specific areas to be covered with high probability to

minimize the risk of potential casualties. Unfortunately, GPS

typically suffers from outages or occlusions so that a robot

only relying on GPS information might encounter substantial

positioning errors. Even sophisticated SLAM algorithms can-

not fully compensate for these errors as there still might be

lacking constraints between some observations combined with

large odometry errors that introduce a high uncertainty in the

current position of the vehicle. However, even in situations

with substantial overlaps between consecutive observations,

the matching processes might result in errors that linearly

propagate over time and lead to substantial absolute errors.

Consider, for example, a mobile robot mapping a linear

structure (such as a corridor of a building or the passage

between to parallel buildings). Typically, this corridor will

be slightly curved in the resulting map. Whereas this is not

critical in general as the computed maps are generally locally

consistent [13], they often still contain errors with respect to

the global coordinate system. Thus, when the robot has to

arrive at a position defined in global coordinates, the maps

built using a standard SLAM algorithm might be sub-optimal.

In this paper, we present an approach that overcomes

these problems by utilizing aerial photographs for calculating

global constraints within a graph-representation of the SLAM

problem. In our approach, these constraints are obtained by

matching features from 3D point clouds to aerial images.

Compared to traditional SLAM approaches, the use of a

global prior enables our technique to provide more accurate

solutions by limiting the error when visiting unknown regions.

In contrast to approaches that seek to directly localize a robot

in an outdoor environment, our approach is able to operate

reliably even when the prior is not available, for example,

because of the lack of appropriate matches. Therefore, it is

suitable for mixed indoor/outdoor operation. Figure 1 shows

a motivating example and compares the outcome of our

approach with the ones obtained by applying a state-of-the-art

SLAM algorithm and a pure localization method using aerial

images.

The approach proposed in this paper relies on the so called

graph formulation of the SLAM problem [18, 22]. Every node

of the graph represents a robot pose and an observation taken

at this pose. Edges in the graph represent relative transforma-

tions between nodes computed from overlapping observations.

Additionally, our system computes its global position for every

node employing a variant of Monte-Carlo localization (MCL)

which uses 3D laser scans as observations and aerial images

as reference maps. The use of 3D laser information allows our

system to determine the portions of the image and of the 3D

scan that can be reliably matched by detecting structures in the

3D scan which potentially correspond to intensity variations

in the aerial image.

GPS is a popular device for obtaining accurate position
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Fig. 1. Motivating example comparing standard SLAM (a), localization using aerial imagery as prior information (b), and our combined approach (c).
Note the misalignment relative to the outer wall of the building in (a). Whereas the localization applied in (b), which relies on aerial images, yields proper
alignments, it cannot provide accurate estimates inside the building. Combining the information of both algorithms yields the best result (c).

estimates. Whereas it has also been used to localize mobile

vehicles operating outdoors, the accuracy of this estimate is

usually not accurate enough to obtain a precise map. Generally,

the position estimate provided by GPS substantially decreases

when the robot moves close to buildings or in narrow streets.

Our approach to deal with this problem is to use aerial images

and to match measurements obtained by the robot to obtain

an accurate estimate of the global position.

The approach proposed in this paper works as follows: we

apply a variant of Monte Carlo localization [3] to localize

a robot by matching 3D range scans to aerial images of the

environment. To achieve this, our approach selects the portions

of the scan and of the image which can be reliably matched.

These correspondences are added as constraints in a graph-

based formulation of the SLAM problem. Note that our system

preserves the flexibility of traditional SLAM approaches and

can also be used in absence of the prior information. However,

when the prior is available our system provides highly accurate

solutions also in pathological datasets (i.e., when no loop

closures take place). We validate the results with a large-scale

dataset acquired in a mixed in- and outdoor environment. We

furthermore compare our method with state-of-the-art SLAM

approaches and with GPS.

This paper is organized as follows. After discussing related

work, we will give an overview over our system followed

by a detailed description of the individual components in

Section III. We then will present experiments designed to

evaluate the quality of the resulting maps obtained with our

algorithm in Section IV. In this section, we furthermore

compare our approach with a state-of-the-art SLAM system

that does not use any prior information.

II. RELATED WORK

SLAM techniques for mobile robots can be classified ac-

cording to the underlying estimation technique. The most pop-

ular approaches are extended Kalman filters (EKFs) [16, 23],

sparse extended information filters [7, 26], particle filters [19],

and least square error minimization approaches [18, 9, 12].

The effectiveness of the EKF approaches comes from the fact

that they estimate a fully correlated posterior about landmark

maps and robot poses [16, 23]. Their weakness lies in the

strong assumptions that have to be made upon both, the robot

motion model and the sensor noise. If these assumptions are

violated, the filter is likely to diverge [14, 27].

An alternative approach designed to find maximum likeli-

hood maps is the application of least square error minimiza-

tion. The idea is to compute a network of relations given

the sequence of sensor readings. These relations represent

the spatial constraints between the poses of the robot. In

this paper, we also follow this approach. Lu and Milios [18]

first applied this technique in robotics to address the SLAM

problem by optimizing the whole network at once. Gutmann

and Konolige [12] proposed an effective way for constructing

such a network and for detecting loop closures while running

an incremental estimation algorithm.

All the SLAM methods discussed above do not take into

account any prior knowledge about the environment. On the

other hand, several authors addressed the problem of utilizing

prior knowledge to localize a robot outdoors. For example,

Korah and Rasmussen [15] used image processing techniques

to extract roads on aerial images. This information is then

applied to improve the quality of GPS paths using a particle

filter by calculating the particle weight according to its position

relative to the streets. Leung et al. [17] presented a particle

filter system performing localization on aerial photographs

by matching images taken from the ground by a monocular

vision system. Correspondences between aerial images and

ground images have been detected by matching line features.

These have been generated from aerial images by a Canny

edge detector and Progressive Probabilistic Hough Transform

(PPHT). A vanishing point analysis for estimating building

wall orientations was used on the monocular vision. In contrast

to laser-based approaches, their method maximally achieved an

average positioning accuracy within several meters. Ding et

al. [4] use vanishing point analysis to extract 2D corners from

aerial images and inertial tracking data, and they also extract



2D corners from LiDAR generated depth maps. The extracted

corners from LiDAR are matched with those from the aerial

image in a multi-stage process. Corresponding matches are

used to gain a fine estimation of the camera pose that is

used to texture the LiDAR models with the aerial images.

Chen and Wang [2] use an energy minimization technique

to merge prior information from aerial images and mapping.

Mapping is performed by constructing sub-maps consisting of

3D point clouds, that are constrained by relations. Using a

Canny edge detector, they compute a vector field from the

image that models force towards the detected edges. The sum

of the forces applied to each point is used as an energy

measure in the minimization process, when placing a sub-

map into vector field of the image. Dogruer et al. [5] utilized

soft computing techniques for segmenting aerial images into

different regions, such as buildings, roads, and forests. They

applied MCL on the segmented maps. However, compared to

the approach presented in this paper, their technique strongly

depends on the color distribution of the aerial images since

different objects on these images might share similar color

characteristics.

Früh and Zakhor [10] introduced the idea of generating edge

images out of aerial photographs for 2D laser-based localiza-

tion. As they stated in their paper, localization errors might

occur if rooftops seen on the aerial image significantly differ

from the building footprint observed by the 2D scanner. The

method proposed in this paper computes a 2D structure from

a 3D scan, which is more likely to match with the features

extracted from the aerial image. This leads to an improved

robustness in finding location correspondences. Additionally,

our system is not limited to operate in areas where the prior is

available. In this cases, our algorithm operates without relevant

performance loss compared to SLAM approaches which do not

utilize any prior. This allows our system to operate in mixed

indoor/outdoor scenarios.

Sofman et al. [24] introduced an online learning system

predicting terrain travel costs for unmanned ground vehicles

(UGVs) on a large scale. They extracted features from locally

observed 3D point clouds and generalized them on overhead

data such as aerial photographs, allowing the UGVs to nav-

igate on less obstructed paths. Montemerlo and Thrun [20]

presented an approach similar to the one presented in this

paper. The major difference to our technique is that they used

GPS to obtain the prior. Due to the increased noise which

affects the GPS measurements this prior can result in larger

estimation errors.

III. GRAPH-SLAM WITH PRIOR INFORMATION FROM

AERIAL IMAGES

Our system relies on a graph-based formulation of the

SLAM problem. It operates on a sequence of 3D scans and

odometry measurements. Every node of the graph represents

a position of the robot at which a sensor measurement was

acquired. Every edge stands for a constraint between the

two poses of the robot. In addition to direct links between

consecutive poses, it can integrate prior information (when

Fig. 2. The graph representation used by our approach. In contrast to
the standard approach, we additionally integrate global constraints (shown
in yellow / light gray) given by the prior information.

available) which in our case is given in form of an aerial

image.

This prior information is introduced to the graph-SLAM

framework as global constraints on the nodes of the graph,

as shown in Figure 2. These global constraints are absolute

locations obtained by Monte Carlo localization [3] on a map

computed from the aerial images. These images are captured

from a viewpoint significantly different from the one of the

robot. However, by using 3D-scans we can extract the 2D

information which is more likely to be consistent with the

one visible in the reference map. In this way, we can prevent

the system from introducing inconsistent prior information. To

initialize the particle filter, we draw the particle positions from

a Gaussian distribution, where the mean was determined by

GPS. We use 1,000 particles to approximate the posterior.

In the following we explain how we adapted MCL to operate

on aerial images and how to select the points in the 3D scans

to be considered in the observation model. Subsequently we

describe our graph-SLAM framework.

A. Monte Carlo Localization

To estimate the pose x of the robot in its environment, we

consider probabilistic localization, which follows the recursive

Bayesian filtering scheme. The key idea of this approach is

to maintain a probability density p(xt | z1:t,u0:t−1) of the

location xt of the robot at time t given all observations z1:t and

all control inputs u0:t−1. This posterior is updated as follows:

p(xt | z1:t,u0:t−1) = (1)

α · p(zt | xt) ·

∫
p(xt | ut−1,xt−1) · p(xt−1) dxt−1.

Here, α is a normalization constant which ensures that p(xt |
z1:t,u0:t−1) sums up to one over all xt. The terms to be de-

scribed in Eqn. (1) are the prediction model p(xt | ut−1,xt−1)
and the sensor model p(zt | xt). One contribution of this paper

is an appropriate computation of the sensor model in the case

that a robot equipped with a 3D range sensor operates in a

map generated from a birds-eye view.

For the implementation of the described filtering scheme,

we use a sample-based approach which is commonly known



as Monte Carlo localization (MCL) [3]. MCL is a variant

of particle filtering [6] where each particle corresponds to a

possible robot pose and has an assigned weight w[i]. The belief

update from Eqn. (1) is performed according to the following

two alternating steps:

1) In the prediction step, we draw for each particle with

weight w[i] a new particle according to w[i] and to the

prediction model p(xt | ut−1,xt−1).
2) In the correction step, a new observation zt is inte-

grated. This is done by assigning a new weight w[i] to

each particle according to the sensor model p(zt | xt).

Furthermore, the particle set needs to be re-sampled according

to the assigned weights to obtain a good approximation of the

pose distribution with a finite number of particles. However,

the re-sampling step can remove good samples from the filter

which can lead to particle impoverishment. To decide when to

perform the re-sampling step, we calculate the number Neff of

effective particles according to the formula proposed in [6]

Neff =
1

∑N

i=1

(
w̃[i]

2
) , (2)

where w̃[i] refers to the normalized weight of sample i and we

only re-sample if Neff drops below the threshold of N
2 where N

is the number of samples. In the past, this approach has already

successfully been applied in the context of the simultaneous

localization and mapping (SLAM) problem [11].

So far we described the general framework of MCL. In

the next section, we will describe our sensor model for

determining the likelihood p(z | x) of perceiving the 3D scan

z from a given robot position x within an aerial image.

B. Sensor Model for 3D Range Scans in Aerial Images

The task of the sensor model is to determine the likelihood

p(z | x) of a reading z given the robot is at pose x. In our

current system, we apply the so called endpoint model or

likelihood fields [25]. Let zk be the k-th measurement of a

3D scan z. The endpoint model computes the likelihood of zk

based on the distance between the scan point z′k corresponding

to zk re-projected onto the map according to the pose x of the

robot and the point in the map d′k which is closest to z′k as:

p(z | x) = f(‖z′1 − d′1‖, . . . , ‖z
′
k − d′k‖). (3)

By assuming that the beams are independent and the sensor

noise is normally distributed we can rewrite (3) as

f(‖z′1 − d′1‖, . . . , ‖z
′
k − d′k‖) ∝

∏

j

e
(z′

j
−d′

j
)2

σ2 . (4)

Since the aerial image only contains 2D information about

the scene, we need to select a set of beams from the 3D

scan, which are likely to result in structures, that can be

identified and matched in the image. In other words, we need

to transform both, the scan and the image in a set of 2D points

which can be compared via the function f(·).

To extract these points from the image we employ the

standard Canny edge extraction procedure [1]. The idea behind

this is, that if there is a height gap in the aerial image, there

will often also be a visible change in intensity in the aerial

image. This intensity change will be detected by the edge

extraction procedure. In an urban environment, such edges

typically correspond to borders of roofs, trees, fences, or other

structures. Of course, the edge extraction procedure returns

a lot of false positives that do not represent any actual 3D

structure, like street markings, grass borders, shadows, and

other flat markings. All these aspects have to be considered

by the sensor model. Figure 3 shows an aerial image and the

extracted canny image along with the likelihood-field.

To transform the 3D scan into a set of 2D points which

can be compared to the canny image, we select a subset of

points from the 3D scan and consider their 2D projection in

the ground plane. This subset should contain all the points

which may be visible in the reference map. To perform this

operation we compute the z-buffer [8] of a scan from a bird’s

eye perspective. In this way we discard those points which

are occluded in the bird’s eye view from the 3D scan. By

simulating this view, we handle situations like overhanging

roofs, where the house wall is occluded and therefore is not

visible in the aerial image in a more sophisticated way.

The regions of the z-buffer which are likely to be visible

in the canny image are the ones which correspond to relevant

depth changes. We construct a 2D scan by considering the 2D

projection of the points in these regions. This procedure is

illustrated by the sequence of images in Figure 4.

An implementation purely based on a 2D scanner (like

the approach proposed by Früh and Zakhor [10]) would

not account for occlusions due to overhanging objects. An

additional situation where our approach is more robust is in

the presence of trees. In this case a 2D view would only sense

the trunk, whereas the whole crown is visible in the aerial

image.

In our experiments, we considered variations in height of

0.5m and above as possible positions of edges that could

also be visible in the aerial image. The positions of these

variations relative to the robot can then be matched against the

Canny edges of the aerial image in a point-by-point fashion

and in a similar way like matching of 2D-laser scans against

an occupancy grid map.

This sensor model has some limitations. It is susceptible

to visually cluttered areas, since it then can find random

correspondences in the Canny edges. There is also the pos-

sibility of systematic errors, when a wrong line is used for

the localization, e.g., in the case of shadows. Since we use

position tracking, this is not critical, unless the robot moves

through such areas for a long period. The main advantages of

the end point model in this context are that it ignores possible

correspondences outside of a certain range and implicitly deals

with edge points that do not correspond to any 3D structure.

The method, of course, also depends on the quality of the

aerial images. Perspective distortions in the images can easily

introduce errors. However, in our experiments we did not find
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Fig. 3. Google Earth image of the Freiburg campus (a), the corresponding Canny image (b), and the corresponding likelihood field computed from the Canny
image (c). Note that the structure of the buildings and the vertical elements is clearly visible despite of the considerable clutter.

(a)

(b) (c)

(d) (e)

Fig. 4. A 3D scan represented as a point cloud (a), the aerial image of the
corresponding area (b), the Canny edges extracted from the aerial image (c),
the 3D scene from (a) seen from the top (d) (gray values represent the maximal
height per cell, the darker a pixel, the lower the height, and the green/bright
gray area was not visible in the 3D scan), and positions extracted from (d),
where a high variation in height occurred (e).

evidence that this is a major complicating factor.

Note that we employ a heuristic to detect when the prior

is not available, i.e., when the robot is inside of a building

or under overhanging structures. This heuristic is based on

the 3D perception. If there are range measurements whose

endpoints are above the robot, no global constraints from

the localization are integrated, since we assume that the

area the robot is sensing is not visible in the aerial image.

While a more profound solution regarding place recognition

is clearly possible, this conservative heuristic turned out to

yield sufficiently accurate results.

C. Graph-based Maximum Likelihood SLAM

This section describes the basic algorithm for obtaining the

maximum likelihood trajectory of the robot. We use a graph-

based SLAM technique to estimate the most-likely trajectory,

i.e., we seek for the maximum-likelihood (ML) configuration

like the majority of approaches to graph-based SLAM.

In our approach, each node xi models a robot pose. The spa-

tial constraints between two poses are computed by matching

laser scans. An edge between two nodes i and j is represented

by the tuple 〈δji,Ωji〉, where δji and Ωji are the mean and

the information matrix of the measurement respectively. Let

eji(xi,xj) be the error introduced by the constraint 〈j, i〉.
Assuming the independence of the constraints, a solution to

the SLAM problem is given by

(x1, . . . ,xn)∗ = argmin
(x1,...,xn)

∑

〈j,i〉

eji(xi,xj)
T Ωjieji(xi,xj). (5)

To account for the residual error in each constraint, we can

additionally consider the prior information by incorporating

the position estimates of our localization approach. To this

end, we extend Eqn. (5) as follows:

(x1, . . . ,xn)∗ = argmin
(x1,...,xn)

∑

〈j,i〉

eji(xi,xj)
T Ωjieji(xi,xj)

+
∑

i∈G

(xi − x̂i)
T Ri(xi − x̂i), (6)



where x̂i denotes the position as it is estimated by the local-

ization using the bird’s eye image and Ri is the information

matrix of this constraint. In our approach, we compute Ri

based on the distribution of the samples in MCL. We use non-

linear conjugate gradient to efficiently optimize Eqn. (6). The

result of the optimization is a set of poses which maximizes the

likelihood of all the individual observations. Furthermore, the

optimization also accommodates the prior information about

the environment to be mapped whenever such information

is available. In particular, the objective function encodes the

available pose estimates as given by our MCL algorithm

described in the previous section. Intuitively the optimization

deforms the solution obtained by the relative constraints path

to maximize the overall likelihood of all the observations,

including the priors. Note that including the prior information

about the environment yields a globally consistent estimate of

the trajectory.

If the likelihood function used for MCL is a good approxi-

mation of the global likelihood of the process, one can refine

the solution of graph-based SLAM by an iterative procedure.

During one iteration, new global constraints are computed

based on the gradient of the likelihood function estimated at

the current robot locations. The likelihood function computed

by our approach is based on a satellite image from which

we extract “potential” 3D structures which may be seen from

the laser. Whereas the heuristics described in Section III-B

reject most of the outliers, there may be situations where

our likelihood function approximates the true likelihood only

locally. We observed that applying the iterative procedure

discussed above may worsen the initial estimate generated by

our approach.

IV. EXPERIMENTS

The approach described above has been implemented and

evaluated on real data acquired with a MobileRobots Powerbot

with a SICK LMS laser range finder mounted on an Amtec

wrist unit. The 3D data used for the localization algorithm

has been acquired by tilting the laser up and down while the

robot moves. The maximum translational velocity of the robot

during data acquisition was 0.35m/s. This relatively low speed

allows our robot to obtain 3D data which is sufficiently dense

to perform scan matching without the need to acquire the scans

in a stop-and-go fashion. During each 3D scan the robot moved

up to 2m. We used the odometry to account for the distortion

caused by the movement of the platform. Figure 5 depicts the

setup of our robot. Although the robot is equipped with an

array of sensors, in the experiments we only used the devices

mentioned above.

A. Experiment 1 - Comparison to GPS

This experiment aims to show the effectiveness of the

localization on aerial images compared with the one achievable

with GPS. We manually steered our robot along a 890m

long trajectory through our campus, entering and leaving

buildings. The robot captured 445 3D scans that were used for

Fig. 5. The robot used for carrying out the experiments is equipped with
a laser range finder mounted on a pan/tilt unit. We obtain 3D data by
continuously tilting the laser while the robot moves.

Fig. 7. Comparison between GPS measurements (blue crosses) and global
poses from the localization in the aerial image (red circles). Dashed lines
indicate transitions through buildings, where GPS and aerial images are
unavailable.

localization. We also recorded the GPS data for comparison

purposes. The data acquisition took approximately one hour.

Figure 7 compares the GPS estimate with the one obtained

by MCL on the aerial view. The higher error of the GPS-based

approach is clearly visible. Note that GPS, in contrast to our

approach, does not explicitly provide the orientation of the

robot.

B. Experiment 2 - Global Map Consistency

The goal of this experiment is to evaluate the ability of our

system to create a consistent map of a large mixed in- and

outdoor environment and to compare it against a state-of-the-

art SLAM approach similar to the one proposed by Olson [21].

We evaluate the global consistency of the generated maps

obtained with both approaches. To this end, we recorded five

data sets by steering the robot through our campus area. In

each run the robot follows approximately the same trajectory.

The trajectory of one of these data sets as it is estimated by

our approach and a standard graph-SLAM method is shown

in Figure 6.

For each of the two approaches (our method using the aerial

image and the graph-based SLAM technique that uses no prior



Fig. 6. Comparison of our system to a standard SLAM approach in a complex indoor/outdoor scenario. The center image shows the trajectory estimated by
the SLAM approach (bright/yellow) and the trajectory generated by our approach (dark/red) overlaid on the Google Earth image used as prior. On the left
and right side, detailed views of the areas marked in the center image are shown, each including the trajectory and map. The upper images show the results
of the standard SLAM approach; detail A on the left and B on the right. The lower images show the results of our system (A on the left side and B on the
right). It is clearly visible, that, in contrast to the SLAM algorithm without prior information, the map generated by our approach is accurately aligned with
the aerial image.

Fig. 8. The six points (corners on the buildings) we used for evaluation are
marked as crosses on the map.

information) we calculated the maximum likelihood map by

processing the acquired data of each run.

For each of the five data sets we evaluated the global

consistency of the maps by manually measuring the distances

between six easily distinguishable points on the campus. We

compared these distances to the corresponding distances in the

maps (see Figure 8). We computed the average error in the

distance between these points. The result of this comparison

is summarized in Figure 9. As ground-truth data we used the

so-called Automatisierte Liegenschaftskarte which is provided

by the German land registry office. It contains the outer walls

of all buildings where the coordinates are stored in a Gauss-

Krüger reference frame.
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Fig. 9. Error bars (α = 0.05) for the estimated distances between the six
points used for evaluation of the map consistency.

Compared to SLAM without prior information, our ap-

proach has a smaller error and it does not require frequent loop

closures to limit the error of the estimate. Note that using our

approach loop closures are not required to obtain a globally

consistent map. Additionally, the standard deviation of the

estimated distances is substantially smaller than the standard

deviation obtained with a graph-SLAM approach that does

not utilize prior information. Our approach is able to robustly

estimate a globally consistent map on each data set.

C. Experiment 3 - Local Alignment Errors

Ideally, the result of a SLAM algorithm should perfectly

correspond to the ground truth. For example, the straight wall

of a building should lead to a straight structure in the resulting



Fig. 10. Close up view of an outer wall of a building as it is estimated by
graph-SLAM (top) and our method with prior information (bottom). In both
images a horizontal line visualizes the true orientation of the wall. As can be
seen from the image, graph-SLAM bends the building.

map. However, the residual errors in the scan matching process

typically lead to a slightly bended wall. We investigated this

in our data sets for both SLAM algorithms by analyzing an

approximately 70m long building on our campus. To measure

the accuracy, we approximated the first part of the wall by a

line and extended this line to the other end of the building.

In a perfectly estimated map, both corners of the building

are located on this line. Figure 10 depicts a typical result. On

average the distance between the horizontal line and the corner

of the building for graph-SLAM is 0.5m whereas it is 0.2m

for our approach.

V. CONCLUSION

In this paper, we presented an approach to solve the SLAM

problem in mixed in- and outdoor environments based on 3D

range information and using aerial images as prior information.

To incorporate the prior given by the aerial images into the

graph-SLAM procedure, we utilize a variant of Monte-Carlo

localization with a novel sensor model for matching 3D laser

scans to aerial images. In this way, our approach can achieve

global consistency without the need to close loops.

Our approach has been implemented and tested in a complex

indoor/outdoor setting. Practical experiments carried out on

data recorded with a real robot demonstrate that our algorithm

outperforms state-of-the-art approaches for solving the SLAM

problem that have no access to prior information. In situations,

in which no global constraints are available, our approach is

equivalent to standard graphical SLAM techniques. Thus, our

method can be regarded as an extension to existing solutions

of the SLAM problem.
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