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Abstract The problem of learning a map with a mobile navigating through and perceiving its environment has been
robot has been intensively studied in the past and is usistudied intensively and is usually referred to as the siaault
ally referred to as the simultaneous localization and mapreous localization and mapping (SLAM) problem.

ping (SLAM) problem. However, most existing solutions to  Originally, the SLAM problem has been formulated in-
the SLAM problem learn the maps from scratch and have ndependently of any specific prior about the environment and
means for incorporating prior information. In this papee, w most SLAM approaches seek to determine the most likely
present a novel SLAM approach that achieves global conmap and robot trajectory given a sequence of observations
sistency by utilizing publicly accessible aerial photqdra  without taking into account special priors. However, psior
as prior information. It inserts correspondences found began greatly improve solutions to the SLAM problem. Con-
tween stereo and three-dimensional range data and thé aeréider, for example, a scenario, in which a globally consiste
images as constraints into a graph-based formulation of th@ap is required or in which the robot has to navigate to a tar-
SLAM problem. We evaluate our algorithm based on largeget location specified in global terms such as given by a GPS
real-world datasets acquired even in mixed in- and outdoogoordinate. Corresponding applications include rescue or
environments by comparing the global accuracy with statesurveillance missions in which one requires specific ar@as t
of-the-art SLAM approaches and GPS. The experimental rebe covered. Unfortunately, GPS typically suffers from out-
sults demonstrate that the maps acquired with our methoglges so that a robot only relying on GPS information might
show increased global consistency. encounter substantial positioning errors. At the same,time
even sophisticated SLAM algorithms cannot fully compen-
sate for these errors as there still might be lacking coimésra
between certain observations combined with large odometry
errors. However, even in situations with substantial agerl
between consecutive observations, the matching processes

The ability to acquire accurate models of the environmenfnight result in errors that linearly propagqte over time and
is widely regarded as one of the fundamental precondition?ad qu subztanual 5"930'“"? errors. Consider, ;or exa,mpl_e
for truly autonomous robots. In the context of mobile robots @ MOIE 1O (_)t mapping a linear structure (such as a cort-
these models typically are maps of the environment th.sﬁjor ofa bL_uIdmg or the passage betwgen two parallgl build-
support different tasks including localization and patingl Ings). Typically, this corridor will be slightly curved irne

ning. The problem of estimating a map with a mobile robotres.ultmg map. Whereas this is not critical in many apphj
cations as the computed maps are generally locally consis-

All authors are with the tent[Howard, 2004, it might be sub-optimal in application
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Fig. 1: Motivating example comparing standard SLAM (a) diimation using aerial imagery as prior information (b)dan
our combined approach (c). Note the misalignment relativihé outer wall of the building in (a). Whereas the localiza-
tion applied in (b), which relies on aerial images, yieldsg@r alignments, it cannot provide accurate estimatedertsie
building. Combining the information of both algorithms lge the best result (c).

obtained by matching features from the sensor data of the GPS is a popular device for obtaining position estimates.
robot to the aerial image. In particular, we consider 3D poinWhereas it has also been used to localize mobile vehicles op-
clouds obtained by a laser range finder and the data providestating outdoors, we found that the accuracy of this estimat
by a stereo camera. is in general not sufficient to obtain precise maps, esggcial

d ditional H H ¥vhen the robot moves close to buildings or in narrow streets.
Compared to traditional SLAM approaches, the use o The approach proposed in this paper works as follows:

a global prlor enaplgg our technique to prgwde more accuy,q apply a variant of Monte Carlo localizati¢Dellaertet
rate solutions by limiting the error when visiting unknown

, | trast t hes that K to directhid al., 1999 to localize a robot by matching sensor data to
regions. In confrast to approacnes that seek fo direc H € aerial images of the environment. To achieve this, our ap-
ize a robot in an outdoor environment, our approach is abl

i te reliabl hen th o i able. f I‘ﬁroach selects the portions of the sensor information and of
0 operate refiably even when the prioris not avaliable, 1ok, image that can be reliably matched. These correspon-

example, because of the lack of appropriate matches. Ther ences are added as constraints in a graph-based formula-

fore,1|t 'ﬁ suitable f?.r n:_|xed mdoo:/outd(;)or operanor;ﬁﬂ tion of the SLAM problem. Note that our system preserves
ure ~ SNows a motivating example and compares the c.)u{ﬁe flexibility of traditional SLAM approaches and can also
come of our approach with the ones obtained by applyin

tate-of-the-art SLAM algorith d localizafi $e used in absence of any prior information. However, when
a Sﬂ? ed-o “ne-art. I algorithm and a pure focallzationy, . prior is available our system provides highly accurate s
method Using aerial Images. lutions also in pathological datasets (i.e., when no loop cl

The approach proposed in this paper relies on the s8ures take place). We validate the results with a largesscal
called graph formulation of the SLAM problefiLu and dataset acquired in a mixed in- and outdoor environment.
Milios, 1997: Olsonet al, 2004. In this variant of the Ve furthermore compare our method with state-of-the-art
SLAM problem, every node of the graph represents aLAM approaches and with GPS.
robot pose and an observation taken at this pose. Edges in This paper is an extended version of an already pub-
the graph represent relative transformations betweensnodéshed previous worKummerleet al, 2009 in which
computed from overlapping observations. Additionally; ou We presented a sensor model for 3D point clouds that re-
system computes its global position for every node employﬂeCtS three-dimensional structures visible in the aeral i
ing a variant of Monte-Carlo localization (MCL) that uses ages. This paper additionally provides a sensor model for
3D laser scans or stereo images as observations and aetreo vision systems that allows us to address distinct two
images as reference maps. The use of 3D information aPimensional features as line markings or pathways.
lows our system to determine the portions of the image and This paper is organized as follows. After discussing re-
of the 3D scene that can be reliably matched. It computelated work, we will give an overview over our system fol-
these matches by detecting structures that potentiallgcor lowed by a detailed description of the individual compo-
spond to intensity variations in the aerial image. In theecasnents in Section 3. We then will present experiments de-
of the stereo camera our approach extracts visual featureggned to evaluate the quality of the resulting maps obthine
that can be matched with the aerial image. with our algorithm in Section 4. We furthermore will com-



pare our approach with a state-of-the-art SLAM system thaalso extract 2D corners from LiDAR generated depth maps
does not use any prior information. and apply a multi-stage process to match these corners with
those from the aerial image. The corresponding matches fi-
nally yield a fine estimation of the camera pose that is used
to texture the LiDAR models with the aerial images. Chen
SLAM techniques for mobile robots can be classi-and Wang_izqoﬂ use an energy minimization technique_ to
merge prior information from aerial images and mapping.

fied according to the underlying estimation techniqueTh ; ina by Constructi b onsisti
The most popular approaches are extended Kalman fil- €y periorm mapping by cOSITUCtng sub-maps consisting

ters (EKFs)[Leonard and Durrant-Whyte, 1991: Smigh pf 3D point clouds, that are constrained by relatiqns. Us-
al., 1994, sparse extended information filt¢Eusticeet al. Ing a Canny edge detector, they compute a vector field from

2005: Thruret al, 2004, particle filtersMontemerloet al, the image that models f_orce towards the detected edges. The
N sum of the forces applied to each point corresponds to the

2003, and least square error minimization approadhes neray m re in the minimization or when placin

and Milios, 1997; Freset al, 2005; Gutmann and Kono- energy measure € ation process, when placing

lige, 1999. The effectiveness of the EKF approaches come& sub-map into the vector field of the image. Parsley and

from the fact that they estimate a fully correlated poste-3 ulier [2009 demonstrate how to incorporate a heteroge-

. neous prior map into an extended Kalman filter for SLAM.
rior about landmark maps and robot pogesonard and ) .
) . . They show that such a prior bounds the error while the robot
Durrant-Whyte, 1991; Smitet al, 1990. Their weakness .
S . travels in open-loop. Leet al. [2007 use the road graph
lies in the strong assumptions that have to be made upg . . .
. . rom a given prior map for SLAM. Under the assumption
both, the robot motion model and the sensor noise. If thes . .
: . o . ; that the vehicle follows only roads they can constrain the
assumptions are violated, the filteris likely to divefgalier robabilistic model to the roads and thus achieve higher ac
etal, 1995; Uhlmann, 1995 P 9

An alternative approach is to find maximum likelihood curacy than traditional FastSLAM. Dogrueral.[2007 ufi-

e ... . lized soft computing techniques for segmenting aerial im-
maps by the application of least square error minimization. . . . o
es into different regions, such as buildings, roads, and

The idea underlying these methods is to compute a networ, )

; erying P orests. They applied MCL on the segmented maps. How-
of relations given the sequence of sensor readings. These rgver compared to the anproach presented in this papar. thei
lations represent the spatial constraints between thespdse ’ P PP b papef,

: . &echnique strongly depends on the color distribution of the
the robot. In this paper, we also follow this approach. Lu an | crial imaces since different obiects on these imaaes miaht
Milios [1997 first applied this technique in robotics to ad- 'al images sl : ) 'mag '9

dress the SLAM problem by optimizing the whole network share similar color characteristics.
at once. Gutmann and Konoli¢#999 propose an effective Frih and Zakhor{2004 described the generation of
way for constructing such a network and for detecting loogedge images from aerial photographs for 2D laser-based lo-
closures while running an incremental estimation algarith - Calization. As they state in their paper, localization esro
All the SLAM methods discussed above do not takeMight occur if rooftops seen on the aerial image signifigantl
into account any prior knowledge about the environmentdiffer from the building footprint observed by the 2D scan-
On the other hand, several authors addressed the probld#!- The method proposed in this paper computes a 2D struc-
of utilizing prior knowledge to localize a robot outdoors. ture from a 3D observation, which is more likely to match
For example, Korah and Rasmus$@004 use image pro- with the features extracted from the aerial image. Thisdead
cessing techniques to extract roads on aerial images. Thi@ @n improved robustness in finding location correspon-
information is then applied to improve the quality of Gpsdences. Additionally, our system is not limited to operate
paths using a particle filter by calculating the particlegii in areas where the prior is available. When no prior is avail-
according to its position relative to the streets. Lelgtg able, our algorithm operates without relevant performance
al. [2009 present a particle filter system performing lo- loss compared to standard SLAM approaches which do not
calization on aerial photographs by matching images takeHtilize any prior. Our system furthermore allows a robot to
from the ground with a monocular vision system. The ap-OPerate in mixed indoor/outdoor scenarios.
proach detects line features to find correspondences be- Sofmanet al.[2004 introduced an online learning sys-
tween the aerial and ground images. Whereas it appliestam predicting terrain travel costs for unmanned ground
Canny edge detector and progressive probabilistic Houghbehicles (UGVs) on a large scale. They extract features
transform to find lines in aerial images, it performs a van-from locally observed 3D point clouds and generalize them
ishing point analysis for estimating building wall orienta on overhead data such as aerial photographs, allowing the
tions in the monocular vision data. The approach achieved GVs to navigate on less obstructed paths. Montemerlo and
an average positioning accuracy of several meters. Bing Thrun[2004 presented an approach similar to the one pre-
al. [2009 use a vanishing point analysis to extract 2D cor-sented in this paper. The major difference to our technique
ners from aerial images and inertial tracking data. Theys that they use GPS to obtain the prior. Due to the increased

2 Related Work



3.1 Monte Carlo Localization

/< j :] :] :] To estimate the pose of the robot in its environment, we

consider probabilistic localization, which follows thecue-
sive Bayesian filtering scheme. The key idea of this ap-
proach is to maintain a probability densjyx: | z11,Uot—1)

of the locatiorx; of the robot at time given all observations
z1¢ and all control inputsig_1. This posterior is updated as

|>_’|§’I>—’>/ follows:
P(Xt | Z11,Uot-1) = 1)

Fig. 2: The graph representation of our method. In contrasta Pz Xt)'/p(xt U1 Xe-2) - POG-2) X

to the standard approach, we additionally integrate globaliere, q is a normalization constant which ensures that

F:onstraipts (shown in yellow / light gray) given by the prior P(X | Z11,Uot_1) SUMS up to one over ak;. The terms

information. to be described in Eqn. (1) are tharediction model
p(X; | Ut—1,%—1) and thesensor model (; | X; ).

noise which affects the GPS measurements this prior can For the implementation of the descrlbed_ f||t_er|ng
L . . scheme, we use a sample-based approach which is com-
lead to larger estimation errors in the resulting maps

monly known asMonte Carlo localizatio(MCL) [Dellaert

et al, 1999. MCL is a variant of particle filteringDoucet

et al, 2001 where each particle corresponds to a possible
robot pose and has an assigned weight The belief up-
datefrom Eqn. (1) is performed according to the following
éwo alternating steps:

3 Graph-SLAM with Prior Information from Aerial
Images

Our system relies on a graph-based formulation of th
SLAM problem. It operates on a sequence of 3D scans and.. In theprediction step, we draw for each particle with
odometry measurements. Every node of the graph represents weightw[i] a new particle according tal! and to the
a position of the robot at which a sensor measurement was prediction modep(x; | Us_1,%;_1).

acquired. Every edge stands for a constraint between thg. In the correction step, a new observatior; is inte-
two poses of the robot. In addition to direct links between  grated. This is done by assigning a new weight to
consecutive poses, it can integrate prior information fwhe  each particle according to the sensor magle} | x;).

available) which in our case is given in form of an aerial .
image. Furthermore, the particle set needs to be re-sampled accord

This prior information is introduced to the graph-basedd 0 the assigned weights to obtain a good approximation
SLAM framework as global constraints on the nodes of the®’ the pose distribution with a finite number of particles.
graph, as shown in Figure 2. These global constraints afrdoWever, the re-sampling step can remove good samples
absolute locations obtained by MdDellaertet al, 1994 from the filter which can lead to particle impoverishment.

on a map computed from the aerial images. As these imagd® decide when to perform the re-sampling step, we calcu-
are captured from a viewpoint significantly different from /até the numbeNe of effective particles according to the

the one of the robot, we extract corresponding 2D featureformula proposed iilDoucetet al, 2001

from the 3D measurements obtained from a laser scanner or 1
a stereo camera which is more likely to be consistent witHeff = NN @
the one visible in the image. In this way, we can prevent the 2i=1 <W['] )
system from introducing inconsistent prior informatio. T .
integrate the observations over time, we apply a probéibilis wherewl! refers to the normalized weight of sampland
localization approach realized by a particle filter. we only re-sample ilNes drops below the threshold cg

In the following we explain how we adapted MCL to op- where N is the number of samples. In the past, this ap-
erate on aerial images and how to select the points in the 3proach has already successfully been applied in the context
measurements to be considered in the observation modeif SLAM [Grisettiet al., 2003. To initialize the particle fil-
After describing how to utilize the data of a 3D range finder,ter we draw the particle positions according to a Gaussian
we present a sensor model which uses a stereo cameradistribution, whose mean corresponds to the current GPS
localize the vehicle. Subsequently we describe our graphestimate. In our current implementation, we use 1,000-parti
based SLAM framework. cles.



Thus far, we described the general framework of MCL.
One contribution of this paper are two different sensor mod-
els for determining the likelihoog(z | x) of a measurement
z given a positiorx within an aerial image. Whereas the first
one, described in the following section, operates on 3D data
obtained with a sweeping laser scanner, the second one, de- .- _
scribed in Section 3.3, is designed for 3D data obtained from -
a stereo camera system.

3.2 Sensor Model for 3D Range Scans in Aerial Images

The task of the sensor model is to determine the likelihood
p(z | x) of a 3D range scamgiven the robot is at pose In

our current system, we apply the so called endpoint model
or likelihood fields[Thrun et al,, 2005. Let z be thek-th
measurement of a 3D scanThe endpoint model computes
the likelihood ofz based on the distance between the scan g
point z, corresponding tay re-projected onto the map ac-
cording to the pos& of the robot and the point in the map
di which is closest ta, as:

p(z|x) = f(llz—dil.....I1Z— dkl)- 3)
Under the assumption that the beams are independent ans

the sensor noise is normally distributed we can rewrite (3)
as

442
(1= dil..... | & —d) O []e = . @
J

Since the aerial image only contains 2D informationFig. 3: A 3D scan represented as a point cl@aid the aerial
about the scene, we need to select a set of beams from thmage of the corresponding aréla), the Canny edges ex-
3D scan, which are likely to result in structures, that cartracted from the aerial imade), the 3D scene from (a) seen
be identified and matched in the image. In other words, wéom the top(d) (gray values represent the maximal height
need to transform both, the scan and the image to a set of 2er cell, the darker a pixel, the lower the height, and the
points which can be compared via the functigpn). green/bright gray area was not visible in the 3D scan), and

To extract candidate points from the aerial image we empositions extracted from (d), where a high variation in heig
ploy the standard Canny edge extraction procefiGemny, occurred(e).

1984. The idea behind this is that a height gap in the world

corresponds to a change in intensity in the aerial image that

can be detected by the edge extraction procedure. In an ugcan from a bird's eye perspective. In this way we discard
ban environment, such edges are typically generated by boiose points which are occluded in the bird’s eye view from
ders of roofs, trees, or fences. Of course, the edge exaracti the 3D scan. By simulating this view, we handle situations
procedure returns a lot of false positives that do not replike overhanging roofs, where the house wall is occluded
resent any actual 3D structure, like street markings, grasad therefore is not visible in the aerial image in a more
borders, shadows, and other flat markings. All these aspecg®phisticated way.

have to be considered by the sensor model. Figure 4 shows The regions of the-buffer that are likely to be visible

an aerial image and the extracted Canny image along witim the Canny image are the ones that correspond to relevant
the likelihood-field. depth changes. We construct a 2D scan by considering the

To transform the 3D scan into a set of 2D points that2D projection of the points in these regions. This procedure
can be compared to the Canny image, we select a subsetisfillustrated by the sequence of images in Figure 3.
points from the 3D scan and consider their 2D projection in ~ An implementation purely based on a 2D scanner (like
the ground plane. This subset should contain all the pointthe approach proposed byifr and Zakhof2004) would
which may be visible in the reference map. To perform thisnot account for occlusions due to overhanging objects. An
operation we compute thebuffer [Foleyet al, 1993 of a  additional situation, in which our approach is more robust,



b)

Fig. 4: Google Earth image of the Freiburg campus (a), theespponding Canny image (b), and the corresponding liketiho
field computed from the Canny image (c). Note that the streabfithe buildings and the vertical elements is clearlyblési
despite of the considerable clutter.

is in the presence of trees. In this case a 2D view would onlyWhile a more profound solution regarding place recognition
sense the trunk, whereas the whole crown is visible in thés clearly possible, this conservative heuristic turnetitou
aerial image. yield sufficiently accurate results.
In our experiments, we considered variations in height
A, of 0.5m and above as possible positions of edges that
could also be visible in the aerial image. We then match thg .3 Sensor Model for Stereo Images in Aerial Images
positions of these variations relative to the robot agatmest
Canny edges of the aerial image in a point-by-point fashiomfter having described a sensor model for a robot equipped
and in a similar way like matching of 2D-laser scans againsfith a 3D laser scanner, we will now focus on using a stereo
an occupancy grid map. camera to extract the relevant sensor information for tocal
This sensor model has some limitations. It is susceptiizing the robot. In addition to the 3D data extracted from the
ble to visually cluttered areas, since it then can find randorstereo images using the procedure described in the previous
correspondences in the Canny edges. There is also the paection, we utilize the color information to enable the itobo
sibility of systematic errors, when a wrong line is used forto take advantage of flat structures, such as street markings
the localization, e.g., in the case of shadows. In our practior borders of different ground surfaces that cannot be de-
cal experiments we could not find evidence that this leadgected by a range-only device at all or without further post-
to substantial errors when one applies position trackirty anprocessing (e.g. curb detection).
as long as the robot does not move through such areas for a To extract the visual information, we proceed as follows.
longer period of time. The main advantages of the endpoirirst, we process the stereo image to obtain 3D information.
model in this context are that it ignores possible corresponSecond, we apply the Canny edge detector to the camera
dences outside of a certain range and implicitly deals withmage. This is motivated by the fact that the same edges that
edge points that do not correspond to any 3D structure.  are visible in the aerial image might also be visible in the
Our method, of course, also depends on the quality ofobot's camera image. Since the aerial image is an orthogo-
the aerial images. Perspective distortions in the images canal view, we discard features that are not obtained from the
easily introduce errors. However, for the data sets used tground plane. In the last step we project the 3D points on
carry out our experiments we could not find evidence thathe ground plane to obtain a 2D set of points which is finally
this is a major complicating factor. applied in Egn. (3) and processed in a similar way as the 3D
Finally, we employ a heuristic to detect when the priorlaser range measurements.
is not available, i.e., when the robot is inside of a building  The aerial image and the camera images of the robot
or under overhanging structures. This heuristic is based odiffer substantially regarding viewpoint and resolutidhis
the 3D perception. If there are range measurements whosan lead to situations, in which the robot detects strusture
endpoints are above the robot, we do not integrate any globah the ground that are not visible in the aerial image. Con-
constraints from the position estimate, since we assunte thaider, for example, Figure 5a which shows a stone pattern in
the areathe robot is sensing is not visible in the aerial Bnag the on-board camera image that typically leads to fine lines



in the Canny image (Fig. 5d). Typically, such fine structuredrajectory, i.e., we seek for the maximum-likelihood (ML)
are not visible in the aerial image due to the much loweiconfiguration like the majority of approaches to graph-dase
resolution and might disturb the matching process. To tejecSLAM. The goal of such mapping algorithms is to find the
these fine structures, one can increase the acceptande-thresonfiguration of the nodes that maximizes the likelihood of
old of the edge extraction. Figure 5e shows the outcome dhe observations. Let = (x1, ... ,X,)" be a vector of pa-
the edge extraction with a more selective threshold that isameters, wherg; describes the pose of nodd_et zj; and
increased to the smallest value that does not result in fals@;; be respectively the mean and the information matrix of
positives from the fine structures any more. However, inan observation of nod¢ seen from node, perturbed by
creasing the threshold removes also true positives from th@aussian noise. L&{x;, X;,zj) be a function that computes
detected edges, i.e., lines that are also visible in thalaeria difference between the expected observation of the node
image. X;j seen from the nodg and the observation; gathered by
Ideally, one would like to remove the false positives re-the robot. For simplicity of notation, in the rest of the pape
sulting from fine structures near the robot, while keepingwve will encode the measurement in the indices of the error
true positives that are farther away. This is not possible byunction:
adjusting the threshold alone. By exploiting the 3D informa def. def.
tion provided by our sensors, we relate the distance betwediXi-Xj»Zij) = &j(Xi,Xj)) = &j(X). (6)

the image pixels and the camera with the structure size. Tr"I_eet ¢ be the set of pairs of indices for which a constraint

idea is that fine edges that are far away result from Iarg?observation)z exists. The goal of a maximum likelihood

structures visible in the aerial image, but fine edges near thapproach is to find the configuration of the nodesthat

robot represent small structures. Given the distance, we C8pinimizes the negative log likelihodg(x) of all the obser-
adapt the level of blur in different regions of the image. Re- ations

gions closer to the robot will become more blurred than re-

gions farther away. In particular, we process each camera(X) = e (x)" Qija;j(x) )
image by adding a distance-dependent blur to each pixel. (i.nee Fvij

The size of_ the ke_rndt applied to_the pixel cprr.espondmg X* = argminF(x). ®)
to a 3D point having local coordinatés,y,z) is inversely X

proportional to its distance in the x-y plane: To account for the residual error in each constraint, we

__4a 5) can additionally consider the prior information by incorpo
HESYIN rating the position estimates of our localization approdoh

wherea is a scaling factor that depends on the tilt anglethis end, we extend Eqn. (7) as follows:
qf .the camera. Thig dyngmic blur can be .implemente'd efe(x) = Y e (X)T Qi (x) + ze(xivszi)TQie(Xh)A(i)» 9)
ficiently using box filters in combination with integral im- ) [
agedBay et al, 2004. In this way, we take the low resolu-
tion of the aerial image into account. As a consequence, thgherek; denotes the position as it is estimated by the local-
robot will reduce fine structures that are with high probabil ization using the bird’s eye image ad is the information
ity not visible in the aerial image. As an example for the ap-matrix of this constraint. In our approach, we comp(@e
plication of this distance-dependent blur, consider Fagur based on the distribution of the samples in MCL. For sim-
Note that a 3D scanner together with a calibrated mono canplicity of notation in the remainder of this section we will

Fi(x)

era would lead to similar results. define
In our system we employ &oint Grey Bumblebee2 -« def. def.
stereo camera. We use the software library provided by Poir‘?t(xi’xi) = ak) =a(x) (10)

Grey to extract the 3D points from the stereo pair as a blacgincefq can be seen as a measurement to the extent of the

box. This library provides us with the 3D position of each 5 imization process, and thus embedded in the indices of
pixel in the image. Since the scaling factordepends on o arror function.

the known geometry of the robot, there are no additional pa- s 5 good initial gues of the robot's poses is known

rameters. the numerical solution of (8) can be obtained by using

the popular Gauss-Newton or Levenberg-Marquardt algo-
rithms[Presstal, 1992,515.9. In our case the initial guess

is obtained by the odometry of the robot. The idea is to ap-
proximate the error function by its first order Taylor expan-

sion around the current initial gue%s

3.4 Graph-based Maximum Likelihood SLAM

This section describes the basic algorithm for obtainirg th
maximum likelihood trajectory of the robot. We apply a
graph-based SLAM technique to estimate the most-likelyg; (Xi +Ax;,Xj +AX;) = &j(X+Ax) ~ & +JjjAx.  (11)
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Fig. 5: This figure shows an example for the distance-dep#rderring of the images as a preprocessing for the Canng edg
detection.(a): The original camera imagéb): The blurred image, where the strength of the blur is inugrseoportional

to the 3D distance of the pixel. Red (dark gray) marks aredkeofmage, where no 3D information is available): The

corresponding part in the Canny aerial image with the rolositmn marked in red (dark grayjd): Standard Canny on
the original camera image using low threshol@. Standard Canny on the original camera image using thresliloat are
high enough so that the pattern of the ground directly intfadrthe robot is not recognized as edgés. Standard Canny
on the dynamically blurred image using the same threshaldis @). Here, most of the important edges, i.e., those on the
ground that are also visible in the aerial image were extrhcorrectly. Yet, the ground pattern in front of the roboswat

extracted.

HereJ;; is the Jacobian of; (x) computed foX andg; =
& (X). Substituting (11) in the error ternfi$; of (7), we ob-

tain

Fij (X+Ax)
= §j (>”<+AX)TQi,-e” (X+Ax)
~ (g +JijAX)T Qij (&) + JijAx)

= Q-I}Qijaj —I—ZQH_QijJij AX—i—AXTJi-E.QijJijAX
—_—— N — ——

Gij by,

= Gjj +2bi-|}AX+AXTHijAX

Hij

def.

(12)
(13)
(14)

(15)

In a similar way, we can approximate the functidfisx) as
follows

Fi(X+Ax) = (X +Ax)" Qe (X+AX) (16)
~ (g +JiAX)" Qi (g +JiAX) (17)
=6/ Qe +26' Q) Ax+Ax"T I Q3 Ax  (18)

—— = N——
Cj b;r H;j
= G+ 2b] Ax+ Ax"H;Ax, (19)

whereJ; is the Jacobian o (x) computed forx ande def

&(X). With this local approximation, we can rewrite the
functionF(x) given in (9) as
F(X+AX) = Fij(X+Ax) + H Fi(X+Ax) (20)
MES i€
~ 5 cj+2b[Ax+AX HijAx
(i.nee

+y ¢ +2b] Ax+ AxTH;Ax (21)
B4
= c+2bTAx+AxTHAX. (22)



The quadratic form in (22) is obtained from (21) by setting

C=>Cj+)ci (23)
bZZbij+zbi (24)
HZZHij+ZHi. (25)

It can be minimized iM\x by solving the linear system

HAX* = —b. (26)

The matrixH is the information matrix of the system and is

sparse by construction, due to the sparsity of the Jacabians

Its number of non-zero blocks is twice the number of uniqud 19- 6: The robot used for carrying out the experiments is
pairwise constrains plus the number of nodes. This allow§duiPped with a laser range finder mounted on a pan/tilt unit.

for solving (26) by sparse Cholesky factorization. An effi- WWe obtain 3D data by continuously tilting the laser while the
cient implementation of sparse Cholesky factorization cafioP0t mOves.
be found in the library CSparg®avis, 2006.

The linearized solution is then obtained by adding to the fnf:mirﬂ]c%fstance SE—— updaté’ooo

initial guess the computed increments steps of the particle filter om
grid resolution 0.15m

X = X+ Ax*. (27) standard deviatiow of (4) 2.0m

height variation thresholdy, in §3.2 0.5m

The popular Gauss-Newton algorithm iterates the lineariza

tion in (22), the solution in (26) and the update step in (27)Table 1: Summary of the parameters applied in our experi-

In every iteration, the previous solution is used as the linments.

earization point and the initial guess. The procedure de-

scribed above is a general approach to multivariate functio

minimization, here derived for the special case of the SLAMO.35 m/s. This relatively low speed allows our robot to ob-

problem. tain 3D data that is sufficiently dense to perform scan match-

The result of the optimization is a set of poses that maxing without the need to acquire the scans in a stop-and-go

imizes the likelihood of all the individual observationsir ~ fashion. During each 3D scan the robot moved up to 2m.

thermore, the optimization also accommodates the prior in'Ve used the odometry to account for the distortion caused

formation about the environment to be mapped whenevedy the movement of the platform. Additionally, we utilize

such information is available. In particular, the objeetiv @ Point Grey Bumblebee&tereo camera to acquire the vi-

function encodes the available pose estimates as given I$jon data. Figure 6 depicts the setup of our robot. Although

our MCL algorithm described in the previous section. In-the robot is equipped with an array of sensors, in the exper-

tuitively the optimization deforms the solution obtained b iments we only used the devices mentioned above. Table 1

the relative constraints path to maximize the overall likel summarizes the parameters applied in all our experiments.

hood of all the observations, including the priors. The -opti

mization results in a consistent estimate, as long as the MCL

gives the correct position of the vehicle. Note that inahgdi 4.1 Comparison to GPS

the prior information about the environment yields a glob-

ally consistent estimate of the trajectory even in situwio This first experiment aims to show the effectiveness of the

where no loop closures occur. localization on aerial images compared with the one achiev-
able with GPS. We manually steered our robot along a 890 m
long trajectory through our campus, entering and leaving

4 Experiments buildings. The robot captured 445 3D scans that were uti-
lized for localization. We also recorded the GPS data for

The approach described above has been implemented agadmparison purposes. The data acquisition took approxi-

evaluated on real data acquired witMabileRobots Power- mately one hour.

bot with a SICK LMSlaser range finder mounted on an Figure 8 compares the GPS estimate with the one ob-

Amtecwrist unit. The 3D data used for the localization al- tained by MCL on the aerial view. The higher error of the

gorithm has been acquired by continuously tilting the laseGPS-based approach is clearly visible. Note that GPS, in

up and down while the robot moves. The maximum transeontrast to our approach, does not explicitly provide the or

lational velocity of the robot during data acquisition wasentation of the robot.



Fig. 7: Comparison of our system to a standard SLAM approachdomplex indoor/outdoor scenario. The center image
shows the trajectory estimated by the SLAM approach (btyghow) and the trajectory generated by our approach (dzalk
overlaid on the Google Earth image used as prior informationthe left and right side, detailed views of the areas nthrke
in the center image are shown, each including the trajec@od/map. The upper images show the results of the standard
SLAM approach; detail A on the left and B on the right. The loweages show the results of our system (A on the left side
and B on the right). Itis clearly visible, that, in contrastihe SLAM algorithm without prior information, the map geaied

by our approach is accurately aligned with the aerial image.

curbs cannot be detected by a 3D range sensor using height
variations and flat features as road markings are not seen at
all. This experiment is designed to evaluate the performanc
of using just the data provided by a stereo camera for local-
izing the robot.

To compare the two proposed sensor models we steered
the robot along a 680 m long trajectory on our campus.
While driving, the robot again collected 3D scans like in the
experiment describe above. Additionally, the robot reedrd
stereo vision data. The stereo camera is mounted approxi-
mately 1.2 m above the ground and tilted downwards by 30
degrees. This setup allows the robot to observe the ground
Fig. 8: Comparison between GPS measurements (blugrface. Using this data we analyzed the position estimate
crosses) and global poses from the localization in thgf MCL using the two different sensor models described in
aerial image (red circles). Dashed lines indicate trams#ti ~ Sections 3.2 and 3.3. Note that we set the update rate of the
through buildings, where GPS and aerial images are unavailyo approaches to the same frequency. Therefore, both ap-
able. proaches integrate the same number of sensor readings, i.e.

we discard stereo images which are available at higher rates

than the 3D laser scans generated by our platform. Figure 9
4.2 Comparison of 3D Laser and Stereo Camera shows the trajectory estimate of the two approaches. As can

be seen from the image, the estimate using vision is more
The proposed localization based on 3D laser data relies aaccurate in this case. Here, the robot localizes itself en th
the extraction of height variations that are matched with th foot path going through the vegetated area whereas the es-
aerial image. In contrast, we can match the visual data prdimate using only 3D laser data is off the foot path due to
vided by the stereo camera to visual features obtained frotfe lack of a sufficiently dense 3D structure in this area. In
the ground plane with the aerial image. Features as, e.ghe other parts of the trajectory, the estimate of the two ap-
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Fig. 9: Comparison between MCL using 3D laser scans and
stereo vision data. The trajectory as it is estimated based o
the 3D laser and vision data is shown in yellow / light grayFig. 10: The six points (corners on the buildings) we used

and red / dark gray, respectively. The trajectory estimate U for evaluation are marked as crosses on the map.
ing vision localizes the robot on the foot path whereas the

laser based localization is slightly off. The right column e
shows a magnified view of the black rectangle and shows I araph-based SUAM
the particle cloud for MCL using 3D laser scans (top) and
stereo data (bottom).

,,,,,,,,,,,

error [m]

proaches overlay with each other, i.e., we could not observe
a substantial difference in the position estimate.

4.3 Global Map Consistency %500 sl R Ry R P By R B Big Ko S
point pair
The goal of this set of experiments is to evaluate the ability

of our system to create a consistent map of a large mixed "]:ig. 11: Error barsd = 0.05) for the estimated distances

and outdoor environment and to compare it against a stalgyeen the six points used for evaluating the map consis-
of-the-art SLAM approach similar to the one proposed bytency.

Olson[2004. Whereas the constraints between the nodes
are generated as suggested by Olson, Egn. (7) is optimized
using TORO Grisettiet al, 2009. For evaluating the global no prior information) we calculated the maximum likelihood
map consistency we recorded data in two different environmap by processing the acquired data of each run.
ments, our campus and a residential area. These two areas For each of the five data sets we evaluated the global
differ substantially. Whereas the campus area contains onlgonsistency of the maps by manually measuring the dis-
a few large buildings, the residential area consists ofre¢ve tances between six easily distinguishable points on the cam
rather small houses along with front gardens surrounded byus. We compared these distances to the corresponding dis-
fences and hedges. Additionally, cars are parked on the natances in the maps (see Figure 10). We computed the average
row streets. Figure 4(a) and Figure 12 show aerial images @fror in the distance between these points. The result ®f thi
the two test sites. First we describe the experiment carriedomparison is summarized in Figure 11. As ground-truth
out in the campus environment, followed by a description odata we considered the so-calléditomatisierte Liegen-
the experiment in the residential area. schaftskartevhich we obtained from the German land reg-
We evaluate the global consistency of the generatedstry office. It contains the outer walls of all buildings wke
maps obtained with both approaches. To this end, wéhe coordinates are stored in a global reference frame.
recorded five data sets by steering the robot through our An additional experiment was carried out in a residen-
campus area. In each run the robot followed approximateljial area. An aerial image of this area is visible in Figure 12
the same trajectory. The trajectory of one of these data seWe steered our robot five times on the streets along an ap-
as it is estimated by our approach and a standard graplproximately 710 m long trajectory. The data was recorded at
based SLAM method is shown in Figure 7. different times and on several days, i.e., parts of the envi-
For each of the two approaches (our method using theonment were subject to change. For example, the position
aerial image and the graph-based SLAM technique that use$ shadows changed and cars were parked in different lo-
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point pair

Fig. 13: Error barsd¢ = 0.05) for the estimated distances
Fig. 12: Aerial image of a residential area. The two area®€tween the seven points used for evaluating the map con-
marked with rectangles impose challenges to the localizaSiStency.
tion algorithm. In the region marked on the left the local-
ization using stereo vision fails. Within the area marked on

the right the localization using 3D laser data is inaccuratealgomhm’ we recorded the GPS information in each run.

Using both sensors as input results in a accurate localizati Additionally, we selected seven positions for which an ac-

) . curate GPS estimate was available and we steered the robot
for the whole environment. The seven points we used for

: . over the same positions in each run. We measured the dis-
evaluation are marked as crosses on the aerial image. . .
tance between the locations as determined by GPS and com-

pared the distances with the maximum likelihood estimates

. ) ] ) of our approach and standard graph-based SLAM for each
cations. This environment is less structured than our camy,, Figure 13 summarizes the results. While our approach
pus environment. In particular, the parts of the environmen;s gpje to achieve an average error of 0.85 m the graph-based
which are marked in Figure 12 impose challenges for thes apm algorithm without prior information achieved an av-
MCL. The area marked on the right is dominated by VeJerage error of 1.3m.
etation along a railway embankment resulting in cluttered  Aq these two experiments reveal, SLAM without prior
3D range measurements. In this area, our approach usinge,rmation results in a larger error than obtained with
only 3D laser data is unable to accurately localize the robok, approach in both environments. Additionally, the stan-
and the MCL is likely to diverge. In the area marked on theyarg deviation of the estimated distances is substantially
left, the street is partially occluded due to overhangiegst  gmgjier than the standard deviation obtained with a graph-
Here, the localization using stereo vision data is unable t§,5aq S AM approach that does not utilize prior informa-
robustly localize the vehicle. However, using both sensors;on our approach is able to estimate a globally consistent
the 3D laser data and the stereo images, our approach is aig, ) oy each data set. Note that similar accuracies with re-
to Iogahze the rqbot also_ln these two areas. The vision dat@pect to globally consistency might be obtained with a stan-
provides useful information about the road borders that arg,.q s AM procedure if the data contained more loop clo-
not observed by the 3D laser close to the railway whereag,res. This indicates an additional advantage of our method

the 3D laser measures the trees and building structures i, ey that it in principle does not require loop closures to
the other problematic region. Fusing the information ofbot 5 ¢pjeve global consistency, at least when the prior is -avail
sensors allows the robot to reliably track its position ia th gpa-

whole environment. For each run we computed the maxi-
mum likelihood estimates of the map for our approach and
standard graph-based SLAM without prior information. 4 4 | gcal Alignment Errors

Unfortunately, an evaluation based on the ground truth

map is not possible for this environment, since most of thedeally, the result of a SLAM algorithm should perfectly €or
houses are not observed due to the fences and hedges alaagpond to the ground truth. For example, the straight viiall o
the street. We therefore have to rely on a highly accurata building should lead to a straight structure in the resglti
GPS receiver which achieves a sub-meter accuracy. Accurap. However, the residual errors in the scan matching pro-
mulating GPS data for a longer time period allows to obtaircess typically lead to a slightly bended wall. We invesggat
even more accurate position estimates. To evaluate the ouhis in our five data sets for both SLAM algorithms by ana-
put of our approach and the standard graph-based SLANyzing an approximately 70 m long building on our campus.
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