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Abstract—Many popular problems in robotics and computer
vision including various types of simultaneous localization and
mapping (SLAM) or bundle adjustment (BA) can be phrased
as least squares optimization of an error function that can
be represented by a graph. This paper describes the general
structure of such problems and presents g2o, an open-source
C++ framework for optimizing graph-based nonlinear error
functions. Our system has been designed to be easily extensible
to a wide range of problems and a new problem typically can
be specified in a few lines of code. The current implementation
provides solutions to several variants of SLAM and BA. We
provide evaluations on a wide range of real-world and simulated
datasets. The results demonstrate that while being general g2o
offers a performance comparable to implementations of state-
of-the-art approaches for the specific problems.

I. INTRODUCTION

A wide range of problems in robotics as well as

in computer-vision involve the minimization of a non-

linear error function that can be represented as a graph.

Typical instances are simultaneous localization and map-

ping (SLAM) [19], [5], [22], [10], [16], [26] or bundle

adjustment (BA) [27], [15], [18]. The overall goal in these

problems is to find the configuration of parameters or state

variables that maximally explain a set of measurements

affected by Gaussian noise. For instance, in graph-based

SLAM the state variables can be either the positions of the

robot in the environment or the location of the landmarks

in the map that can be observed with the robot’s sensors.

Thereby, a measurement depends only on the relative loca-

tion of two state variables, e.g., an odometry measurement

between two consecutive poses depends only on the con-

nected poses. Similarly, in BA or landmark-based SLAM a

measurement of a 3D point or landmark depends only on the

location of the observed point in the world and the position

of the sensor.

All these problems can be represented as a graph. Whereas

each node of the graph represents a state variable to opti-

mize, each edge between two variables represents a pairwise

observation of the two nodes it connects. In the literature,

many approaches have been proposed to address this class

of problems. A naive implementation using standard meth-

ods like Gauss-Newton, Levenberg-Marquardt (LM), Gauss-

Seidel relaxation, or variants of gradient descent typically
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Fig. 1. Real-world datasets processed with our system: The first row of
(a) shows the Victoria Park dataset which consists of 2D odometry and 2D
landmark measurements. The second row of (a) depicts a 3D pose graph of
a multi-level parking garage. While the left images shows the initial states,
the right column depicts the respective result of the optimization process.
Full and zoomed view of the Venice bundle adjustment dataset after being
optimized by our system (b). The dataset consists of 871 camera poses and
2,838,740 projections.

provides acceptable results for most applications. However,

to achieve the maximum performance substantial efforts and

domain knowledge are required.

In this paper, we describe a general framework for per-

forming the optimization of nonlinear least squares problems

that can be represented as a graph. We call this framework

g2o (for “general graph optimization”). Figure 1 gives an

overview of the variety of problems that can be solved

by using g2o as an optimization back-end. The proposed

system achieves a performance that is comparable with

implementations of state-of-the-art algorithms, while being

able to accept general forms of nonlinear measurements. We

achieve efficiency by utilizing algorithms that

• exploit the sparse connectivity of the graph,

• take advantage of the special structures of the graph that

often occur in the problems mentioned above,

• use advanced methods to solve sparse linear systems,

• and utilize the features of modern processors like SIMD

instructions and optimize the cache usage.

Despite its efficiency, g2o is highly general and extensible:



a 2D SLAM algorithm can be implemented in less than 30

lines of C++ code. The user only has to specify the error

function and its parameters.

In this paper, we apply g2o to different classes of least

squares optimization problems and compare its performance

with different implementations of problem-specific algo-

rithms. We present evaluations carried out on a large set of

real-world and simulated data-sets; in all experiments g2o

offered a performance comparable with the state-of-the-art

approaches and in several cases even outperformed them.

The remainder of this paper is organized as follows. We

first discuss the related work with a particular emphasis on

solutions to the problems of SLAM and bundle adjustment.

Subsequently, in Section III we characterize the graph-

embeddable optimization problems that are addressed by

our system and discuss nonlinear least-squares via Gauss-

Newton or LM. In Section IV we then discuss the features

provided by our implementation. Finally, in Section V, we

present an extensive experimental evaluation of g2o and

compare it to other state-of-the-art, problem-specific meth-

ods.

II. RELATED WORK

In the past, the graph optimization problems have been

studied intensively in the area of robotics and computer

vision. One seminal work is that of Lu and Milios [19]

where the relative motion between two scans was measured

by scan-matching and the resulting graph was optimized by

iterative linearization. While at that time, optimization of

the graph was regarded as too time-consuming for realtime

performance, recent advancements in the development of

direct linear solvers (e.g., [4]), graph-based SLAM has re-

gained popularity and a huge variety of different approaches

to solve SLAM by graph optimization have been proposed.

For example, Howard et al. [12] apply relaxation to build a

map. Duckett et al. [6] propose the usage of Gauss-Seidel

relaxation to minimize the error in the network of constraints.

Frese et al. [8] introduced multi-level relaxation (MLR), a

variant of Gauss-Seidel relaxation that applies the relaxation

at different levels of resolution. Recently, Olson et al. [22]

suggested a gradient descent approach to optimize pose

graphs. Later, Grisetti et al. [10] extended this approach

by applying a tree-based parameterization that increases

the convergence speed. Both approaches are robust to the

initial guess and rather easy to implement. However, they

assume that the covariance is roughly spherical and thus have

difficulties in optimizing pose-graphs where some constraints

have covariances with null spaces or substantial differences

in the eigenvalues.

Graph optimization can be viewed as a nonlinear least-

squares problem, which typically is solved by forming a

linear system around the current state, solving, and iterating.

One promising technique for solving the linear system is

preconditioned conjugate gradient (PCG), which was used

by Konolige [17] as well as Montemerlo and Thrun [20] as

an efficient solver for large sparse pose constraint systems.

Because of its high efficiency on certain problems, g2o
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Fig. 2. This example illustrates how to represent an objective function by
a graph.

includes an implementation of a sparse PCG solver which

applies a block-Jacobi pre-conditioner [13].

More recently, Dellaert and colleagues suggested a system

called
√

SAM [5] which they implement using sparse direct

linear solvers [4]. Kaess et al. [14] introduced a variant of

this called iSAM that is able to update the linear matrix

associated with the nonlinear least-squares problem. Kono-

lige et al. [16] showed how to construct the linear matrix

efficiently by exploiting the typical sparse structure of the

linear system. However, the latter approach is restricted to

2D pose graphs. In g2o we share similar ideas with these

systems. Our system can be applied to both SLAM and BA

optimization problems in all their variants, e.g., 2D SLAM

with landmarks, BA using a monocular camera, or BA using

stereo vision. However, g2o showed a substantially improved

performance compared these systems on all the data we used

for evaluation purposes.

In computer vision, Sparse Bundle Adjustment [27] is a

nonlinear least-squares method that takes advantage of the

sparsity of the Jacobian pattern between points and camera

poses. Very recently, there have been several systems [15],

[13] that advance similar concepts of sparse linear solvers

and efficient calculation of the Schur reduction (see Section

III-D) for large systems (∼100M sparse matrix elements).

There are also new systems based on nonlinear conjugate

gradient that never form the linear system explicitly [1], [2];

these converge more slowly, but can work with extremely

large datasets (∼1000M matrix elements). In this paper we

compare g2o to the SSBA system of [15], which is the best-

performing publicly available system to date.

III. NONLINEAR GRAPH OPTIMIZATION USING

LEAST-SQUARES

Many problems in robotics or in computer vision can be

solved by finding the minimum of a function of this form:

F(x) =
∑

〈i,j〉∈C

e(xi,xj , zij)
⊤Ωije(xi,xj , zij)

︸ ︷︷ ︸

Fij

(1)

x∗ = argmin
x

F(x). (2)

Here, x = (x⊤
1
, . . . ,x⊤

n )
⊤ is a vector of parameters,

where each xi represents a generic parameter block, zij
and Ωij represent respectively the mean and the information

matrix of a constraint relating the parameters xj and xi, and

e(xi,xj , zij) is a vector error function that measures how

well the parameter blocks xi and xj satisfy the constraint

zij . It is 0 when xi and xj perfectly match the constraint.



For simplicity of notation, in the rest of this paper we will

encode the measurement in the indices of the error function:

e(xi,xj , zij)
def.
= eij(xi,xj)

def.
= eij(x). (3)

Note that each error function, each parameter block, and

each error function can span a different space. A problem

in this form can be effectively represented by a directed

graph. A node i of the graph represents the parameter block

xi and an edge between the nodes i and j represents an

ordered constraint between the two parameter blocks xi and

xj . Figure 2 shows an example of mapping between a graph

and an objective function.

A. Least Squares Optimization

If a good initial guess x̆ of the parameters is known, a

numerical solution of Eq. (2) can be obtained by using the

popular Gauss-Newton or LM algorithms [23, §15.5]. The

idea is to approximate the error function by its first order

Taylor expansion around the current initial guess x̆

eij(x̆i +∆xi, x̆j +∆xj) = eij(x̆+∆x) (4)

≃ eij + Jij∆x. (5)

Here, Jij is the Jacobian of eij(x) computed in x̆ and eij
def.
=

eij(x̆). Substituting Eq. (5) in the error terms Fij of Eq. (1),

we obtain

Fij(x̆+∆x) (6)

= eij(x̆+∆x)⊤Ωijeij(x̆+∆x) (7)

≃ (eij + Jij∆x)⊤ Ωij (eij + Jij∆x) (8)

= e
⊤
ijΩijeij

︸ ︷︷ ︸

cij

+2 e⊤
ijΩijJij

︸ ︷︷ ︸

bij

∆x+∆x
⊤
J
⊤
ijΩijJij

︸ ︷︷ ︸

Hij

∆x (9)

= cij + 2bij∆x+∆x
⊤
Hij∆x (10)

With this local approximation, we can rewrite the function

F(x) given in Eq. (1) as

F(x̆+∆x) =
∑

〈i,j〉∈C

Fij(x̆+∆x) (11)

≃

∑

〈i,j〉∈C

cij + 2bij∆x+∆x
⊤
Hij∆x (12)

= c + 2b⊤
∆x+∆x

⊤
H∆x. (13)

The quadratic form in Eq. (13) is obtained from Eq. (12)

by setting c =
∑

cij , b =
∑

bij and H =
∑

Hij . It can

be minimized in ∆x by solving the linear system

H∆x∗ = −b. (14)

Here, H is the information matrix of the system. The solution

is obtained by adding the increments ∆x∗ to the initial guess

x∗ = x̆+∆x∗. (15)

The popular Gauss-Newton algorithm iterates the lineariza-

tion in Eq. (13), the solution in Eq. (14), and the update step

in Eq. (15). In every iteration, the previous solution is used

as the linearization point and the initial guess until a given

termination criterion is met.

The LM algorithm introduces a damping factor and backup

actions to Gauss-Newton to control the convergence. Instead

of solving Eq. 14, LM solves a damped version

(H+ λI)∆x∗ = −b. (16)

Here λ is a damping factor: the higher λ is the smaller the

∆x are. This is useful to control the step size in case of

non-linear surfaces. The idea behind the LM algorithm is

to dynamically control the damping factor. At each iteration

the error of the new configuration is monitored. If the new

error is lower than the previous one, λ is decreased for the

next iteration. Otherwise, the solution is reverted and lambda

is increased. For a more detailed explanation of the LM

algorithm implemented in our framework we refer to [18].

B. Alternative Parameterizations

The procedures described above are general approaches

to multivariate function minimization. They assume that the

space of parameters x is Euclidean, which is not valid for

several problems like SLAM or bundle adjustment. To deal

with state variables that span over non-Euclidean space, a

common approach is to express the increments ∆xi in a

space different from the one of the parameters xi.

For example, in the context of SLAM problem, each

parameter block xi consists of a translation vector ti and

a rotational component αi. The translation ti clearly forms

a Euclidean space. In contrast to that, the rotational com-

ponents αi span over the non-Euclidean 2D or 3D rotation

group SO(2) or SO(3). To avoid singularities, these spaces

are usually described in an over-parameterized way, e.g., by

rotation matrices or quaternions. Directly applying Eq. (15)

to these over-parameterized representations breaks the con-

straints induced by the over-parameterization. To overcome

this problem, one can use a minimal representation for the

rotation (like Euler angles in 3D). This, however, is then

subject to singularities.

An alternative idea is to compute a new error function

where the ∆xi are perturbations around the current variable

x̆i. ∆xi uses a minimal representation for the rotations,

while xi utilizes an over-parameterized one. Since the ∆xi

are usually small, they are far from the singularities. The

new value of a variable x∗
i after the optimization can be

obtained by applying the increment through a nonlinear

operator ⊞ : Dom(xi)× Dom(∆xi) → Dom(xi) as follows:

x∗
i = x̆i ⊞∆x∗

i . (17)

For instance, in case of 3D SLAM one can represent the

increments ∆xi by the translation vector and the axis of

a normalized quaternion. The poses xi are represented as

a translation vector and a full quaternion. The ⊞ operator

applies the increment ∆xi to xi by using the standard

motion composition operator ⊕ (see [25]) after converting

the increment to the same representation as the state variable:

x̆i ⊞∆x∗
i

def.
= x̆i ⊕∆x∗

i . (18)



With this operator, a new error function can be defined as

eij(∆xi,∆xj)
def.
= eij(x̆i ⊞∆xi, x̆j ⊞∆xj) (19)

= eij(x̆⊞∆x) ≃ eij + Jij∆x, (20)

where x̆ spans over the original over-parameterized space.

The Jacobian Jij becomes

Jij =
∂eij(x̆⊞∆x)

∂∆x

∣
∣
∣
∣
∆x=0

. (21)

Since the increments ∆x̃∗ are computed in the local Eu-

clidean surroundings of the initial guess x̆, they need to

be re-mapped into the original redundant space by the ⊞

operator.

Our framework allows for the easy definition of different

spaces for the increments and the state variables and thus

transparently supports arbitrary parameterizations within the

same problem. Regardless the choice of the parameterization,

the structure of the Hessian H is in general preserved.

C. Structure of the Linearized System

According to Eq. (13), the matrix H and the vector b

are obtained by summing up a set of matrices and vectors,

one for every constraint. If we set bij = J⊤
ijΩijeij and

Hij = J⊤
ijΩijJij we can rewrite b and H as

b =
∑

〈i,j〉∈C

bij H =
∑

〈i,j〉∈C

Hij . (22)

Every constraint will contribute to the system with an addend

term. The structure of this addend depends on the Jacobian

of the error function. Since the error function of a constraint

depends only on the values of two nodes, the Jacobian in

Eq. (5) has the following form:

Jij =




0 · · ·0 Aij

︸︷︷︸

i

0 · · ·0 Bij
︸︷︷︸

j

0 · · ·0




 . (23)

Here Aij and Bij are the derivatives of the error function
with respect to ∆xi and ∆xj . From Eq. (9) we obtain the
following structure for the block matrix Hij :

Hij =













. . .

A⊤
ijΩijAij · · · A⊤

ijΩijBij

...
...

B⊤
ijΩijAij · · · B⊤

ijΩijBij

. . .













bij =













...

A⊤
ijΩijeij

...

B⊤
ijΩijeij

...













For simplicity of notation we omitted the zero blocks. The

reader might notice that the block structure of the matrix H

is the adjacency matrix of the graph. Thus, it has a number

of non-zero blocks proportional to number of edges in the

graph. This typically results in sparse H matrices. In g2o we

take advantage of this characteristic of H by utilizing state-

of-the-art approaches to solve the linear system of Eq. (14).
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Fig. 3. Overview of our framework. For addressing a new optimization
problem, only the boxes in gray need to specified. Furthermore, the
framework allows to add different linear solvers.

D. Systems Having Special Structure

Certain problems (for instance, BA) result in an H matrix

that has an even more characteristic structure. Our system

can take advantage of these special structures to improve

the performance. In BA there are in general two types of

variables, namely the poses p of the camera and the poses

l of the landmarks observed by the camera. By reordering

the variables in Eq. (14) so that the camera poses have the

lower indices we obtain the system
(
Hpp Hpl

H⊤
pl Hll

) (
∆x∗

p

∆x∗
l

)

=

(
−bp

−bl

)

. (24)

It can be shown that an equivalent reduced system is formed

by taking the Schur complement of the H matrix [7]

(
Hpp −HplH

−1

ll H⊤
pl

)
∆x∗

p = −bp +HplH
−1

ll bl. (25)

Note that calculating H−1

ll is easy, since Hll is a block-

diagonal matrix. Solving Eq. (25) yields the increments ∆x∗
p

for the cameras and using this we can solve

Hll∆x∗
l = −bl −H⊤

pl∆x∗
p, (26)

which results in ∆x∗
l for adjusting the observed world

features. Typically the world features outnumber the camera

poses, therefore Eq. (25) can be solved faster than Eq. (14)

despite the additional time spent to calculate the left-hand

side matrix in Eq. (25).

IV. IMPLEMENTATION

Our C++ implementation aims to be as fast as possible

while remaining general. We achieve this goal by imple-

menting abstract base classes for vertices and edges in our

graph. Both base classes provide a set of virtual functions for

easy user subclassing, while most of the internal operations

are implemented using template arguments for efficiency. We

use the Eigen linear algebra package [11] which applies SSE

instructions among other optimization techniques, such lazy

evaluation and loop unrolling to achieve high performance.

Figure 3 depicts the design of our system. Only the boxes

in gray need to be defined to address a new optimization

problem. Using the provided base class, deriving a new

type of node only requires defining the ⊞ operator for

applying the increments. An edge connecting two nodes xi



Fig. 4. 3D pose-graph datasets used for evaluating g2o: the left image
shows a simulated sphere, the right image depicts a partial view of a real-
world dataset of a multi-level parking garage.

and xj requires the definition of the error function eij(·). The

Jacobian Jij is then evaluated numerically, or, for higher effi-

ciency, the user can specify Jij explicitly by overwriting the

virtual base-class function. Thus, implementing new types

for addressing a new optimization problem or comparing

different parameterizations is a matter of writing a few lines

of code.

The computation of H in the general case uses matrices

of a variable size. If the dimension of the variables, i.e.,

the dimension of xi, is known in advance, our framework

allows fixed-size matrix computations. Exploiting the a-priori

known dimensions enables compile-time optimizations such

as loop unrolling to carry out matrix multiplications.

Special care has been taken in implementing matrix mul-

tiplications required for the Schur reduction in Eq. (25). The

sparse structure of the underlying graph is exploited to only

multiply non-zero entries required to form the extra entries

of Hpp. Additionally, we operate on the block structures of

the underlying matrix (see [15]), which results in a cache

efficient matrix multiplication compared to a scalar matrix

multiplication.

Our framework is agnostic with respect to the embedded

linear solver, so we can apply appropriate ones for different

problems. We have used two solvers for experiments. Since

H is positive semi-definite and symmetric, sparse Cholesky

decomposition results in a an efficient solver [4], [3]. Note

that the non-zero pattern during the least-squares iterations is

constant. We therefore are able to reuse a symbolic decom-

position computed within the first iteration, which results in

a reduced fill-in and reduces the overall computation time

in subsequent iterations. Note that this Cholesky decompo-

sition does not take advantage of the block structure of the

parameters. The second method is Preconditioned Conjugate

Gradient (PCG) with a block Jacobi pre-conditioner [13],

which takes advantage of block matrix operations through-

out. As PCG itself is an iterative method, solving a linear

system requires n iterations for a n×n matrix. Since carrying

out n iterations of PCG is typically slower than Cholesky

decomposition, we limit the number of iterations based on

the relative decrease in the squared residual of PCG. By this

we are able to quantify the loss in the accuracy of the solution

introduced by terminating PCG early. In the experiments we

will compare the different solvers.

V. EXPERIMENTS

In this section, we present experiments in which we com-

pare g2o with other state-of-the-art optimization approaches

Fig. 5. The BA real world datasets and the scale-drift dataset used for
evaluating g2o: the left image shows the Venice dataset, whereas the middle
image depicts the New College dataset [24]. The pair of images on the right
shows the Keble college dataset which was processed by monocular SLAM.
Here, scale drift occurs (top) which can be corrected when closing the loop
using 7 DoF similarity transformations (bottom).

TABLE I

OVERVIEW OF THE TEST DATASETS.

Dataset # poses # landmarks # constraints

Intel 943 - 1837

MIT 5489 - 7629

Manhattan3500 3500 - 5598

Victoria 6969 151 10608

Grid5000 5000 6412 82486

Sphere 2500 - 4949

Garage 1661 - 6275

Venice 871 530304 2838740

New College 3500 488141 2124449

Scale Drift 740 - 740

using both real-world and synthetic datasets. Figure 4 depicts

the 3D pose-graph data sets, in Figure 5 the BA datasets

and the pose-graph of the Keble college, which is used

to perform scale drift-aware SLAM using 7 DoF similarity

constraints [26], are visualized, and Figure 6 shows the 2D

datasets. The number of variables and constraints is given in

Table I for each of the datasets. All experiments are executed

on one core of an Intel Core i7-930 running at 2.8 Ghz.

We compare g2o with other state-of-the-art implemen-

tations:
√

SAM [5] using the open-source implementation

by M. Kaess, SPA [16], sSBA [15], and RobotVision [26].

Note that these approaches are only targeting a subset of

optimization problems while g2o is able to solve all of them,

and also extends easily to new problems.

A. Runtime Comparison

In the following, we report the time needed by each

approach to carry out one iteration. We provided each

approach with the full optimization problem and carried

out 10 iterations, and measured the average time spent per

iteration. In this set of experiments g2o applies Cholesky

decomposition to solve the linear system using CHOLMOD,

which is also used by the approaches we compare to.

Therefore, the time required to solve the linear system is

similar for all approaches and the difference reflects the
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Fig. 7. Time per iteration for each approach on each dataset.
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Fig. 6. 2D Datasets used for evaluating g2o. From left to right: 2D pose-graph of the Intel Research Lab; 2D pose-graph of the Killian Court;
Manhattan3500, a simulated pose-graph; 2D dataset with landmarks of the Victoria Park; and Grid5000, a simulated landmark dataset.
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Fig. 8. Online processing of the Manhattan3500 dataset. The left image
shows the runtime for optimizing after inserting a single node whereas the
right image show the runtime for optimizing after inserting 10 nodes.

efficiency in constructing the linear system. The results are

summarized in Figure 7.

Our system g2o is faster than the implementation of√
SAM on all the 2D and 3D datasets we tested. While

in principle they implement the same algorithm, g2o takes

advantage of an efficient front end to generate the linearized

problem. On the 2D pose graph datasets the runtime of

our framework is comparable to the highly optimized SPA

implementation. On the BA datasets g2o achieves a similar

performance to sSBA, which is slightly faster than our

general framework. Compared to RobotVision, g2o is on

average two times faster.

Note that while g2o focuses on batch optimization, it can

be used to process the data incrementally by optimizing after

adding nodes to the graph. The efficiency of g2o yields

performance similar to approaches that are designed for

incremental use, such as iSAM [14] or HOG-Man [9]. As

visualized in Figure 8, by optimizing every 10 nodes or by

relaxing the termination criterion of PCG for optimizing after

inserting a single node g2o can achieve acceptable run-times.

Furthermore, it can be used as an efficient building block of

more complex online systems [21], [9].

As mentioned, g2o can compute the Jacobian Jij numer-

ically, which allows rapid prototyping of a new optimization

problem or a new error function. However, by specifying

the Jacobians analytically one can achieve a substantial

speed-up. For instance, the time required by one iteration

of g2o on the Garage dataset drops from 80 ms to 40 ms

when specifying the analytic Jacobian. Despite the reduced

efficiency we did not observe a decrease in the accuracy

when using the numeric Jacobian.

B. Testing different Parameterizations

Since our framework only requires to implement the error

function and the update step, we are able to easily compare

different parameterizations. To this end, we implemented

two different parameterizations for representing poses in

BA. In the first parametrization, the increment ∆xi is

represented by a translation vector and the axis of a unit

quaternion. Whereas in the second one, the increments ∆xi
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Fig. 9. Evolution of F(x) using unit quaternions versus the Lie algebra
se(3) on the New College dataset (left) and Venice (right) dataset.

TABLE II

COMPARISON OF DIFFERENT LINEAR SOLVERS (TIME IN SECONDS).

Dataset CHOLMOD CSparse PCG

Intel 0.0028 0.0025 0.0064 ± 0.0026

MIT 0.0086 0.0077 0.381 ± 0.364

Manhattan3500 0.018 0.018 0.011 ± 0.0009

Victoria 0.026 0.023 1.559 ± 0.683

Grid5000 0.178 0.484 1.996 ± 1.185

Sphere 0.055 0.398 0.022 ± 0.019

Garage 0.019 0.032 0.017 ± 0.016

New College 6.19 200.6 0.778 ± 0.201

Venice 1.86 39.1 0.287 ± 0.135

Scale Drift 0.0034 0.0032 0.005 ± 0.01

are represented by members of the Lie algebra se(3) [26]. We

applied the different parameterizations to the New College

and Venice datasets. The evolution of the error is depicted

in Figure 9. Both parameterizations converge to the same

solution, but convergence occurs faster using se(3).

C. Comparison of Linear Solvers

Our system allows different linear solvers to solve ei-

ther Eq. (14) or Eq. (25). We currently have implemented

two solvers based on Cholesky decomposition, namely

CHOLMOD and CSparse [4]. Additionally, we implemented

PCG as an iterative method using a block-Jacobi precondi-

tioner. Table II summarizes the time required for solving the

linear system on several datasets. PCG performs very well

on the New College and Venice datasets, where it is around

7 times faster than CHOLMOD. The PCG convergence

depends on how close the initial guess is to the optimum.

We terminate PCG if the relative residual is below a given

threshold (10−8 in the experiments). Therefore, PCG requires

more time to converge, for example, on the MIT or Victoria

datasets. CHOLMOD is faster by up to a factor of 30 than

CSparse on the larger datasets. But surprisingly CSparse

is the fastest solver on the smaller instances like the MIT

dataset where it outperforms both CHOLMOD and PCG.

D. Utilizing the Knowledge about the Structure

As discussed in Section III-D, certain problems have

a characteristic structure. Using this structure may result

in substantial improvements in the solution of the linear



TABLE III

COMPARISON OF DIFFERENT LINEAR SOLVERS. WE MEASURED THE

AVERAGE TIME PER ITERATION OF g2o (IN SECONDS).

Dataset direct solution Schur decomposition
solve build / solve / total

Victoria 0.026 0.029 / 0.121 / 0.150

Grid5000 0.18 0.12 / 0.16 / 0.28

New College 15.18 3.37 / 7.07 / 10.44

Venice 33.87 11.25 / 1.78 / 13.03

system. Landmark-based SLAM and BA have the same

linear structure: the landmarks/points can be only connected

with the robot poses/cameras, resulting in a block diagonal

structure for the landmark part of the Hessian Hll.

In this experiment we evaluate the advantages of using

this specific decomposition for landmark based-SLAM and

BA. Table III shows the timing for the different datasets

where we enabled and disabled the decomposition. From the

table it is evident that preforming the decomposition results

in a substantial speedup when the landmarks outnumber

the poses, which is the typically the case in BA. However,

when the number of poses becomes dominant, performing

the Schur marginalization leads to a highly connected system

that is only slightly reduced in size, and requires more effort

to be solved.

VI. CONCLUSIONS

In this paper we presented g2o, an extensible and efficient

open-source framework for batch optimization of functions

that can be embedded in a graph. Relevant problems falling

into this class are graph-based SLAM and bundle adjustment,

two fundamental and highly related problems in robotics

and computer vision. To utilize g2o one simply has to

define the error function and a procedure for applying a

perturbation to the current solution. Furthermore, one can

easily embed in the system new linear solvers and thus

verify the characteristics of the specific solver for a wide

range of problems sharing this graph structure. We showed

the applicability of g2o to various variants of SLAM (2D,

3D, pose-only, and with landmarks) and to bundle adjust-

ment. Practical experiments carried out on extensive datasets

demonstrate that g2o achieves performance comparable to

implementations of problem-specific algorithms and often

even outperforms them. An open-source implementation of

the entire system is freely available as part of ROS and on

OpenSLAM.org.
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[12] A. Howard, M. Matarić, and G. Sukhatme, “Relaxation on a mesh:

a formalism for generalized localization,” in Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2001.
[13] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I. Kweon, “Pushing

the envelope of modern methods for bundle adjustment,” in Proc. of

the IEEE Conf. on Comp. Vision and Pattern Recognition (CVPR),
2010.

[14] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Trans. on Robotics, vol. 24, no. 6,
pp. 1365–1378, Dec 2008.

[15] K. Konolige, “Sparse sparse bundle adjustment,” in Proc. of the British

Machine Vision Conference (BMVC), 2010.
[16] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai,
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