
Simultaneous Calibration, Localization, and Mapping

Rainer Kümmerle Giorgio Grisetti Wolfram Burgard

Abstract—The calibration parameters of a mobile robot play
a substantial role in navigation tasks. Often these parameters
are subject to variations that depend either on environmental
changes or on the wear of the devices. In this paper, we
propose an approach to simultaneously estimate a map of
the environment, the position of the on-board sensors of the
robot, and its kinematic parameters. Our method requires no
prior knowledge about the environment and relies only on a
rough initial guess of the platform parameters. The proposed
approach performs on-line estimation of the parameters and it
is able to adapt to non-stationary changes of the configuration.
We tested our approach in simulated environments and on a
wide range of real world data using different types of robotic
platforms.

I. INTRODUCTION

Many approaches that address navigation tasks, including

localization, path planning, motion control, and simultaneous

localization and mapping (SLAM) rely on the knowledge

of the specific robot parameters. These parameters typically

include the position of the sensor on the platform or the

parameters of the kinematic model that translates encoder

ticks into a relative movement of the mobile base.

The influence of the parameters on the accuracy of state

estimation processes can be substantial. For instance, an

accurate calibration of the odometry can seriously improve

the expected accuracy of the motion prediction by reducing

the search space of the algorithms that provide the motion es-

timates. Figure 1 shows a motivating example. Here, we ran

a scan-matching algorithm based on the odometry prediction

of a robot that moves along a corridor. Since the corridor is

not rich in features, the scan matcher yields solutions that

are highly ambiguous along the corridor’s axis. As a result,

scan-matching approaches tend to make corridors “shorter”.

To limit this effect one can restrict the search space of the

scan-matcher to a small region around the position predicted

by odometry. This reduces the computational requirements

but requires a highly accurate calibration of the odometry.

To obtain these parameters it is common to either rely on

the specifications of the platform, to manually measure them,

or to run ad-hoc calibration procedures before a mission. The

latter solution is typically the most accurate, but suffers from

two main drawbacks: it is not able to estimate non-stationary

parameters and it needs to be repeated whenever there is a

potential change in the robot configuration. Such odometry

parameter changes can, for example, be the consequence of a

changed load on the robot or the particular surface the robot

This work has partly been supported by the European Commission under
FP7-231888-EUROPA and FP7-248873-RADHAR.

All authors are with the University of Freiburg. G. Grisetti is also with
Sapienza, University of Rome.

(a) (b) (c) (d)

Fig. 1. (a) Map obtained by the raw uncalibrated odometry of a robot with
unevenly inflated tires traveling along a corridor. The result of applying
a scan-matching algorithm with a large search space to account for the
uncalibrated odometry leads to the shortened map shown in (b). A restriction
of the search space is not able to fully correct the errors as visualized in
(c). However, applying the correct calibration together with a small search
space leads to an accurate estimate depicted in (d).

moves upon. One solution to estimate these parameters is to

treat them as hidden state variables that have to be estimated

simultaneously to the map and the position of the robot. A

possible method to estimate them is to use special equipment

such as an external position tracking device. More promising,

however are calibration procedures that only rely on the data

gathered by the robot and do not require any preparation or

additional information.

In this paper, we present an approach to estimate the cal-

ibration parameters of a robot equipped with a laser scanner

and wheel encoders while it performs SLAM. We model

the problem as a hyper-graph, where each node represents

either a robot position, the laser position on the robot, or the

kinematic parameters of the odometry. Our approach allows

to determine these state variables on the fly (e.g., sensor

positions and odometry calibration). To deal with temporal

changes or more in general with interdependencies between

the parameters and the other state variables we estimate the

parameters on the most recent data. This approach allows

a mobile robot, for example, to estimate a different set of

odometry parameters for different regions of the environment

and to better model the motion of the robot in these areas.

Our approach might additionally be beneficial in a variety

of contexts including, for instance, terrain classification. We

present evaluations of our approach in simulated and a wide

range of real world experiments using several robot platforms

moving on different types of ground.

II. RELATED WORK

The traditional approaches to calibrate a mobile robot and

its sensors involve to accurately measure the trajectory of

the robot while recording odometry and sensor measure-

ments, for example, by external cameras or lasers [1]. To

calibrate the sensor position, they match the measurements

against a known map to recover the trajectory of the sensor

and use a least squares estimator to determine the relative

transformation between the robot and its sensor. In a similar

way the odometry parameters can be estimated via another

independent least-squares estimator given the knowledge of

the reference trajectory [2].

In the context of computer vision, the idea to calibrate

the intrinsic camera parameters while performing structure

from motion is commonly known [3]. This problem has

a structure which is very similar to the one addressed

by our method. The main difference lies in the kind of

parameters that are estimated. One of the first approaches

to determine the stationary parameters of a mobile robot

and to determine the error of the motion was proposed by

Martinelli and Siegwart [4]. The idea behind this work is

to extend the state of a Kalman filter used for localization

with the kinematic parameters of the odometry. Whereas this

approach can operate on-line, it requires an a-priori known

map. Subsequently, Jones et al. [5] and Kelly et al. [6]

extended the EKF and UKF algorithm to include calibration

parameters. Despite their increased complexity, in these non-

linear problems smoothing approaches outperform filtering

methods in terms of accuracy.

Eliazar and Parr [7] proposed to use an EM approach to

learn the motion model for a mobile robot. Their method

is able to accurately estimate the parameters and it does

not require to know the map in advance. However, their

approach requires to be run off-line due to its high com-

putational requirements. Based on a localization algorithm

Roy and Thrun [8] estimate online the systematic error in

the odometry. They treat the error in translation and rotation

independently. Both approaches model the calibration as a

linear function of the odometry measurement, whereas our

approach estimates the physical parameters of the robot.

Gao and Spletzer [9] presented an approach to determine

the extrinsic calibration parameters between two laser range

finders. Underwood et al. [10] proposed a method to deter-

mine the 3D position of a laser within the body frame of

the robot. Compared to our method those approaches either

rely on establishing feature correspondences between the

individual observations by preparing the environment with

laser-reflective tape or assume a simple and partially known

geometric environment for calibrating the sensors.

Censi et al. [11] proposed a technique similar to our

method. They construct a least squares calibration problem

that estimates both the kinematic parameters and the sensor

position. Their approach does not need to know the map in

advance, but it is restricted to the estimation of stationary

parameters. Furthermore, since it relies on scan-matching to

estimate the ego-motion of the sensor, this method does not

provide an accurate map in large and loopy environments.

Our work can be seen as an extension of traditional

graph-based SLAM algorithms. These methods model the

SLAM problem as a graph, whose nodes represent robot

poses and whose edges connect two nodes if there is a

measurement involving both of them. Each edge is labeled

with the relative transformation between the robot poses. An

edge can arise either from matching a pair of observations

or from an odometry measurement between consecutive

poses. A solution to the problem is a configuration of the

nodes that better satisfies the measurements encoded in the

constraints. One seminal work in this context is the work of

Lu and Milios [12] where the relative motion between two

scans is measured by scan-matching and the resulting graph

is optimized by iterative linearization. In the past, several

methods have been proposed to either optimize the graph on-

line and in a faster way [13], [14], [15], [16] or to extract the

graph from the raw measurements in more robust ways [17],

[18]. All these approaches assume a known calibration of the

system.

Note that when we augment the problem with the cal-

ibration variables it cannot be described anymore by a

graph but instead requires a hyper-graph. This is because a

measurement does not only depend on a pair of variables (the

connected nodes), but rather on a triplet (the nodes and the

calibration parameters). In this paper, we therefore extend the

standard graph optimization framework to handle this class

of problems. Our approach is able to simultaneously estimate

the map of the environment and calibrate the parameters of a

robot in a continuous manner. We do not require any special

preparation for the environment, such as an external tracking

system or landmarks to be placed in the designated area.

III. SIMULTANEOUS CALIBRATION, LOCALIZATION, AND

MAPPING

Our system relies on the graph-based formulation of

the SLAM problem to estimate the maximum-likelihood

configuration. In contrast to the traditional SLAM methods

we explicitly model that the measurements obtained by the

robot are given in different coordinate frames. For example,

the odometry of the robot is given by the velocity measure-

ments of its wheels. Applying the forward kinematics of the

platform allows to transform the velocities measured during

a time interval into a relative displacement of the platform

expressed in the odometry frame. Additionally, the robot is

usually equipped with a sensor that is able to observe the en-

vironment, e.g., a laser range finder. This sensor is mounted

on the robot and obtains measurements in its own coordinate

frame. Thus, a scan-matching algorithm which aligns two

range scans in a common coordinate frame has to project the

computed motion through the kinematic chain of the robot to

estimate the motion of the robot’s base. As it is not always

easy to measure the offset transformation between the base

of the robot and the sensor or to determine the parameters

for the forward kinematics, we suggest to integrate those into

the maximum likelihood estimation process.

A. Description of the Hyper-Graph

Whenever the robot obtains a measurement we add a

node to the graph. This node represents the position of

the robot at which the measurement was obtained. Let

x = (x1, . . . ,xn)
⊤ be a vector of parameters, where xi =

(xi, yi, θi)
⊤ describes the position of node i. Furthermore,

let l be the 2D pose of the sensor relative to the coordinate

frame of the robot and let zij and Ωz

ij be respectively the

mean and information matrix of an observation of node j

seen from node i. Finally, let k be the parameters of the

forward kinematics function and ui and Ωu

i be respectively

the motion command and the information matrix which

translates the robot from node i to i+ 1.

The error function el(xi,xj , l, zij) measures how well the

parameter blocks xi, xj , and l satisfy the constraint zij . If the

three parameters perfectly satisfy the error function, then its

value is 0. Here, we assume that the laser is mounted without

inclination which is the ideal condition. For simplicity of

notation, we will encode the involved quantities in the indices

of the error function:

el(xi,xj , l, zij)
def.
= el(xi,xj)

def.
= elij(x). (1)

The error function elij(x) has the following form:

elij(x) = ((xj ⊕ l)⊖ (xi ⊕ l))⊖ zij , (2)

where ⊕ is the usual motion composition operator [19] and

⊖ its inverse.

Additionally, the error function eui (xi,xi+1,k,ui) mea-

sures how well the parameter blocks xi, xj , and k satisfy the

constraint ui. Again, a value of 0 means that the constraint

is perfectly satisfied by the parameters. The error function

eui (x) is defined as

eui (x) = (xi+1 ⊖ xi)⊖K(ui,k), (3)

where K(·) is the forward kinematics function converting

from wheel velocities to a relative displacement of the

vehicle. In Eq. (3) we applied the same simplifying notation

as in Eq. (1).

For a robot with a differential drive, which is one of the

most common types of robots, the odometry u = (vl, vr)
⊤

consists of the velocities of the left and the right wheel. The

wheel velocities are computed by counting the encoder ticks

of the motors during the time step which are multiplied by

the respective radii rl and rr of the wheels. Furthermore,

the distance b between the two wheels has to be known to

compute the circular arc on which the robot moves. The

relative motion during the time interval ∆t is given by

K(u,k) =

(

R(∆tω) 0

0 1

)(

−ICC

0

)

+

(

ICC

∆tω

)

, (4)

where R(·) is the 2D rotation matrix of its argument, ICC =
(0, b

2

rlvl+rrvr

rlvl−rrvr

)⊤, and ω = rlvl−rrvr

b
. Thus, the calibration

parameter k = (rr, rl, b)
⊤ for the odometry is a three-

dimensional vector.

The goal of our maximum likelihood approach is to find

the configuration of [x∗, l∗,k∗] which minimizes the negative

log-likelihood F(x, l,k) given all the observations

F(x, l,k)

=
∑

〈i,j〉

elij(x)
⊤Ωz

ije
l

ij(x) +
∑

i

eui (x)
⊤Ω̃u

i e
u

i (x), (5)

where Ω̃u

i is the projection of Ωu

i through the forward kine-

matics function K(·) via the unscented transformation [20].

Since the projection depends on the estimate of k, we update

the projection if k changes substantially.

Given this formulation we may easily integrate prior

knowledge, for example, the manually — thus non-precisely

— measured transformation of the laser. This is possible

as long as the prior information can be represented by a

Gaussian distribution. Furthermore, state changes observed

by measurements, e.g., the robot actively rotates the laser

scanner, can be incorporated.

To estimate the calibration parameters, the trajectory of

the robot should introduce measurements that constrain all

possible dimensions of k and l. Clearly, a trajectory only

consisting of straight line motions does not allow to observe

the position of the laser. The same holds for a circular

trajectory, since the laser could be anywhere on the circle.

Both cases are pathologic and can easily be avoided by

varying the wheel velocities of the robot.

B. Estimation via Least Squares on a Hyper Graph

Without loss of generality we will refer to the whole state

vector [x l k] as y, without distinguishing the parameter

blocks. Additionally, we identify each hyper-edge by a

unique index k instead of the pair of indices i, j and the

superscript letter as in Eq. (5).

If a good initial guess y̆ of the parameters is known,

a numerical solution of Eq. (5) can be obtained by using

the popular Gauss-Newton or Levenberg-Marquardt (LM)

algorithms [21, §15.5]. The idea is to approximate the error

function by its first order Taylor expansion around the current

initial guess y̆

ek(y̆k ⊞∆yk) = ek(y̆ ⊞∆y) (6)

≃ ek + Jk∆y. (7)

Here, Jk is the Jacobian of ek(y⊞∆y) with respect to ∆y

computed in ∆y = 0 and ek
def.
= ek(y̆). Furthermore, ⊞ is

an operator that applies the increments ∆y to the current

state y̆. This accounts for over-parameterized states, and can

better deal with non Euclidean state spaces. Clearly, if both

y̆ and ∆y are Euclidean the ⊞ degenerates to a regular +.

Substituting Eq. (7) in the error terms Fk of Eq. (5), we

obtain the following quadratic form

F(y) = c + 2bT∆y +∆yTH∆y (8)

that can be minimized in ∆y by solving the system

(H + λI)∆y∗ = −b. (9)

Here, H and b are respectively the approximated Hessian of

the error function and the error gradient:

H =
∑

k

JT
kΩkJk (10)

b =
∑

k

JT
kΩkek. (11)

λ is a damping factor: the larger λ is the smaller are the ∆y.

This is useful to control the step size in case of non-linear

surfaces. The idea behind the LM algorithm is to dynamically

control the damping factor. At each iteration the error of the

new configuration is monitored. If the new error is lower

than the previous one, λ is decreased for the next iteration.

Otherwise, the solution is reverted and λ is increased. For

λ = 0 this corresponds to the Gauss-Newton method.

Whenever the increments ∆y are computed by solving

Eq. (9), they can be applied to the previous solutions by

means of the ⊞ operator

y̆ ← y̆ ⊞∆y∗. (12)

From Eq. (5) we notice that each of the terms in the sum

depends on at most three parameter blocks. More precisely,

if the constraint k arises from an odometry measurement,

it will depend on the connected robot poses xi and xj and

by the odometry parameters k. Alternatively, if a constraint

arises from a laser measurement, it will depend on the

connected robot poses xi and xj and on the laser position l.

Accordingly, each of the Jacobians in Eq. (10) and in Eq. (11)

will have only three non-zero blocks, in correspondence

of the variables involved by the constraint. Thus, each of

the terms in the sum of Eq. (10) will be a matrix with at

most nine non-zero components. Furthermore, H will have

a number of non-zero entries proportional to the number

of constraints. This results in a sparse system that can be

efficiently solved. To solve the optimization problem, we

employ the g2o toolkit [22] which allows us to solve one

iteration of a calibration problem having 3,000 nodes in less

than 0.01 s using one core of an Intel i7@2.8 GHz.

C. Monitoring the Convergence

Some calibration parameters may be constant while others

change. For example, the laser position l is constant if the

robot has no actuator to move this sensor. Therefore, it is of

interest to decide whether enough data is collected to stop

calibrating to reduce the computational demands. To this end,

we can consider the approximated Hessian H and compute

the marginal covariance of the calibration parameters. The

marginal covariance Σl of the calibration parameter is given

by extracting the corresponding block of H−1. The matrix

H is sparse, symmetric, and positive definite, thus Cholesky

decomposition can be applied to factorize H. By applying

an algorithm based on dynamic programming (see [23]) we

can efficiently compute the desired elements of H−1 given

the Cholesky factor. As we will show in the experiments this

information allows us to access the quality of the estimated

parameters.

IV. EXPERIMENTS

The approach described above has been implemented and

evaluated on both simulated and real-world data acquired

with a heterogeneous set of robots equipped with laser range

finders. Figure 2 visualizes the robots we used to collect the

real-world data used in this paper.

The SLAM front-end for processing the data is an own

implementation of the framework described by Olson [24]

which employs a correlative scan-matcher to estimate the

(a) (b) (c)

Fig. 2. The robots used to acquire the real-world data sets: (a) MobileR-
obots PowerBot (b) a custom made platform (c) Pioneer.

Fig. 3. Robot driving up and down a corridor. Top: Applying the calibration
corresponding to the current configuration of the robot leads to a good
odometry estimate. Bottom: If the robot is carrying a load, the same
calibration parameters results in a severe drift in the odometry.

transformation of the laser along with the 3 × 3 covariance

matrix representing the uncertainty of the estimated transfor-

mation. The correlative scan-matcher performs an exhaustive

search to determine the best fitting alignment for two laser

scans within a given search radius. We add a new node to

the graph whenever the robot moved 0.1 m or rotated 10◦

whichever occurs first.

A. Online odometry calibration

In real world scenarios the odometry is affected by dif-

ferent factors. For example, if the robot is carrying a load,

the additional weight compresses inflated tires and results

in reduced wheel radii. To this end, we used the PowerBot

platform (see Figure 2a) which has a maximum payload of

100 kg to carry a load of approximately 40 kg. The wheels

of the PowerBot are inflated tires whose radii are affected

by both the air-pressure of the tires and the total weight

of the platform. The load in this set of experiments was

intentionally placed on the left hand side of the robot. In

a first experiment we recorded datasets in which the robot

was either carrying the load or it was operating in its

normal configuration. We used one data set for estimating the

parameters and a different one for evaluating the odometry

calibration parameters. Our approach estimated wheel radii

of rr = 0.1251 m, rl = 0.1226 m for the normal configura-

tion of the robot and rr = 0.1231 m, rl = 0.1223 m while

carrying the load. The difference seems to be small, however

it has a substantial effect. Figure 3 shows the outcome of

applying the estimate of the normal configuration to the robot

carrying the load. Applying the wrong calibration parameter

has a crucial effect on the trajectory as it is estimated by

the odometry. Since the weight of the load is mutable and

can be placed in an arbitrary position on the robot, the best

 0.12
 0.122
 0.124
 0.126
 0.128

 0 1000 2000 3000

ra
d

iu
s

[m
]

Time step

wheel radius (left)

 0.12
 0.122
 0.124
 0.126
 0.128

 0 1000 2000 3000

ra
d

iu
s

[m
]

Time step

wheel radius (right)

Fig. 4. Results of the online estimation of the wheel radii. The robot had
to carry a load twice which was placed on the left hand side of the platform
leading to a compression of the left wheel.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

y
 -

 C
o
o
rd

in
at

e
[m

]

x - Coordinate [m]

Ground Truth Trajectory
Simulated Odometry
Optimization Result

 0.1

 0.11

 0.12

 0.13

 0.14

 0 50 100 150 200 250 300 350

w
h

ee
l

ra
d

iu
s

[m
]

Time step

estimated wheel radius

Fig. 5. Left: The simulated robot trajectory. Right: Estimating the
wheel radii online based on the most recent observations. Here, the robot
was carrying a load during the time interval [120, 240] which leads to
compressed wheels having a smaller radii.

performance can be obtained by calibrating the odometry

parameters while the robot is operating.

By considering the 50 most recent measurements within

a sliding window around the current node we are able to

estimate the wheel radii online also when they are subject

to change due to external factors. For older odometry mea-

surements outside the sliding window we change the error

function eui (x) to employ a fixed value for k, i.e., we only

estimate the physical parameters on the recent data and use

the previously estimated parameters to model the odometry

error term for older measurements. Figure 4 visualizes the

estimated wheel radii during an experiment in which the

robot had to carry a load placed on the left hand side of the

platform. The robot was carrying the load during the intervals

[600, 1250] and [1865, 2530]. Using our approach we are able

to correctly estimate the wheel radii independent of the load

carried by the robot along with the maximum likelihood map

of the environment.

As it is hard to obtain ground truth data for real-world

data-sets, we simulated a robot traveling on the trajectory

depicted in the left part of Figure 5. The simulator allows

us to directly judge the quality of the calibration results.

The odometry measurement and the range measurements

obtained by the robot are perturbed by Gaussian noise.

Within a simulation experiment we modeled a robot carrying

a weight which we simulated having the effect of a reduction

of the wheel radius from 0.12 m to 0.11 m. The robot carries

the load during the time interval [120, 240]. Figure 5 depicts

the results of the online calibration based on the most

recent measurements. As we can see, the estimate is able

to represent the compressed wheels and corresponds well to

the ground truth given by the simulator. Furthermore, the

trajectory as it is estimated by our approach also matches

well to the ground truth as shown in Figure 5.

�

�

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000 2500 3000

S
td

 d
ev

.
o

f
th

e
o

d
o

m
et

ry
 e

rr
o

r

Time step

Carpet
Concrete

Fig. 6. Left: In indoor environments a robot may encounter different floor
types. Right: The standard deviation of the error of the odometry edges for
the sliding window at each time step.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350

P
o
si

ti
o
n
 [

m
]

Time step

x coordinate
y coordinate

Fig. 7. The evolution of the x and y coordinate of the laser transformation
as it is estimated by our approach. The true value of the x and y coordinate
is 0.3 m and 0.6 m respectively.

B. Influence of the ground surface

Within real world indoor environments a robot may

encounter different floor types, e.g., tiling, PVC flooring,

wooden floor, or different types of carpets. To test the

influence of the floor type, we recorded data sets in which

the robot drives on a soft carpet and on concrete tiling

floor, see left image in Figure 6. In this experiment we

estimated the odometry parameters online. On both floors the

estimated wheel radii were the same. However, by analyzing

the standard deviation (see right part of Figure 6) in the error

of the odometry edges eui for the sliding window around the

current node, we observe a higher noise in the odometry due

to slippage on the carpet. This information can be stored in

the map so that the robot can use it to adjust the motion

model noise in a localization task.

C. Simulation Experiments

In a first experiment we simulated the laser having a

relative transformation of (0.3, 0.6, 30◦)⊤ with respect to

the odometry frame of the robot. Here, we optimized after

inserting every node and monitored the evolution of the laser

transformation as it is estimated by our approach at each

time step. Figure 7 visualizes how the estimate for the x

and y coordinate of the relative laser transformation along

with their estimated uncertainty evolves. As we can see the

estimate converges quickly to the correct transformation.

By monitoring the marginal covariance of the estimated

laser transformation we are able to judge the quality of the

estimate.

Furthermore, we estimated the odometry parameters of the

simulated robot whose left wheel has a radius of rl = 0.12 m

whereas the right wheel has a radius of rr = 0.125 m. The

distance between the wheels is b = 0.6 m. The output of

TABLE I

THE PARAMETERS OF THE ROBOTS USED FOR OUR EXPERIMENTS.

PowerBot Custom Pioneer

wheel radius [m] 0.125 0.16 0.065

wheel distance [m] 0.56 0.7 0.35

ticks per revolution 22835 20000 1970

laser offset [m, m, ◦] (0.22, 0, 0) (0.3, 0, 0) (0.1, 0, 0)

laser scanner model Sick LMS291 Sick LMS151 Hokuyo URG

TABLE II

CALIBRATION RESULTS FOR DIFFERENT ROBOT DATA SETS.

laser offset wheel radii distance
(m, m, ◦) (m, m) m

PowerBot - 1 (0.2258, 0.0026, 0.099) (0.1263, 0.1275) 0.5825

PowerBot - 2 (0.2231, -0.0031, 0.077) (0.1243, 0.1248) 0.6091

Custom - 1 (0.3067, -0.0051, -0.357) (0.1603, 0.1605) 0.6969

Custom - 2 (0.3023, -0.0087, -0.013) (0.1584, 0.1575) 0.7109

Pioneer - 1 (0.1045, 0.009, -0.178) (0.0656, 0.065) 0.3519

Pioneer - 2 (0.1066, -0.0031, -0.28) (0.0658, 0.0655) 0.3461

the calibration is r̂l = 0.1207 m, r̂r = 0.1264 m, and b̂ =
0.607 m.

We carried out further simulation experiments in which

we randomly sampled the transformation of the laser with

respect to the odometry frame and also modified the true

wheel radii and the distance between the wheels. The cal-

ibration parameters as they are estimated by our approach

did in all cases correspond well to the true values and the

error was in the same range like in the particular example

reported above.

D. Real-World Experiments

To evaluate our approach on real-world data we processed

data of a heterogeneous set of robots depicted in Figure 2.

Table I summarizes the parameters of the platforms. To

collect the data, we steered each robot twice through the

environment. The front-end again processed the data to

estimate the motion of the laser for each time step. In case

the robot re-visits an already known region, the loop closure

constraints are added to the graph. Note that the estimation

of the calibration parameters does not require to detect loop

closures. However, such a constraint allows to reduce the

residual error in the trajectory as it is estimated by our

approach. Table II summarizes the calibration results. As we

can see, the result for the laser transformation are within

a few millimeters of the manually measured position. The

same holds for the radii of the wheels and their distance to

each other.

V. CONCLUSIONS

In this paper, we presented an approach to estimate the cal-

ibration parameters while performing SLAM. Our approach

extends the graph-based formulation of the SLAM problem

to handle the calibration parameters. The overall approach is

accurate and designed for online operation, which allows us

to handle changes in the parameters, for example, induced

by placing a load on the robot or by wear of the robot.

Furthermore, compared to ad-hoc calibration methods our

approach solely relies on the on-board sensors of the robot

and does not require external information.

Additionally, our approach has the potential to provide

useful information about the ground surface which affects the

uncertainty of the odometry measurements. This information

may in the future be exploited for terrain classification and

might also be considered by localization algorithms.

REFERENCES

[1] S. Ceriani et al., “RAWSEEDS ground truth collection systems for
indoor self-localization and mapping,” Journal of Autonomous Robots,
vol. 27, no. 4, 2009.

[2] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics.
Springer, 2008.

[3] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision. Cambridge University Press, ISBN: 0521540518, 2004.
[4] A. Martinelli and R. Siegwart, “Estimating the odometry error of a

mobile robot during navigation,” in Proc. of the European Conference

on Mobile Robots (ECMR), 2003.
[5] E. Jones, A. Vedaldi, and S. Soatto, “Inertial structure from motion

with autocalibration,” in Proceedings of the Internetional Conference

on Computer Vision - Workshop on Dynamical Vision, 2007.
[6] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Local-

ization, mapping and sensor-to-sensor self-calibration,” Int. Journal of

Robotics Research, vol. 30, no. 1, pp. 56–79, 2011.
[7] A. I. Eliazar and R. Parr, “Learning probabilistic motion models for

mobile robots,” in Proc. of the Int. Conf. on Machine Learning (ICML),
2004.

[8] N. Roy and S. Thrun, “Online self-calibration for mobile robots,” in
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 1999.

[9] C. Gao and J. R. Spletzer, “On-line calibration of multiple lidars on a
mobile vehicle platform,” in Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2010.
[10] J. Underwood, A. Hill, and S. Scheding, “Calibration of range sensor

pose on mobile platforms,” in Proc. of the Int. Conf. on Intelligent

Robots and Systems (IROS), 2007.
[11] A. Censi, L. Marchionni, and G. Oriolo, “Simultaneous maximum-

likelihood calibration of robot and sensor parameters,” in Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2008.
[12] F. Lu and E. Milios, “Globally consistent range scan alignment for

environment mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333–
349, 1997.

[13] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algo-
rithm for simultaneous localisation and mapping,” IEEE Transactions

on Robotics, vol. 21, no. 2, pp. 1–12, 2005.
[14] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose

graphs with poor initial estimates,” in Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2006, pp. 2262–2269.
[15] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and

F. Dellaert, “iSAM2: Incremental smoothing and mapping with fluid
relinearization and incremental variable reordering,” in Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.
[16] G. Grisetti, C. Stachniss, and W. Burgard, “Non-linear constraint

network optimization for efficient map learning,” IEEE Transactions

on Intelligent Transportation Systems, 2009.
[17] K. Konolige, “A gradient method for realtime robot control,” in

Proc. of the Int. Conf. on Intelligent Robots and Systems (IROS), 2000.
[18] E. Olson, M. Walter, J. Leonard, and S. Teller, “Single cluster graph

partitioning for robotics applications,” in Proceedings of Robotics

Science and Systems, 2005, pp. 265–272.
[19] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial

realtionships in robotics,” in Autonomous Robot Vehicles, I. Cox and
G. Wilfong, Eds. Springer Verlag, 1990, pp. 167–193.

[20] S. Julier, “The scaled unscented transformation,” in Proc. of the IEEE

Amer. Control Conf, 2002.
[21] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical

Recipes, 2nd Edition. Cambridge Univ. Press, 1992.
[22] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,

“g2o: A general framework for graph optimization,” in Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.
[23] M. Kaess and F. Dellaert, “Covariance recovery from a square root

information matrix for data association,” Journal of Robotics and

Autonomous Systems, RAS, vol. 57, pp. 1198–1210, Dec 2009.
[24] E. Olson, “Robust and efficient robotic mapping,” Ph.D. dissertation,

MIT, Cambridge, MA, USA, June 2008.

