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Abstract

In the past, there has been a tremendous progress in the area of autonomous robot naviga-
tion and a large variety of robots have been developed who demonstrated robust navigation
capabilities indoors, in non-urban outdoor environments, or on roads and relatively few ap-
proaches focus on navigation in urban environments such as city centers. Urban areas, how-
ever, introduce numerous challenges for autonomous robots as they are rather unstructured
and dynamic. In this paper, we present a navigation system for mobile robots designed to
operate in crowded city environments and pedestrian zones. We describe the different com-
ponents of this system including a SLAM module for dealing with huge maps of city centers,
a planning component for inferring feasible paths taking also into account the traversability
and type of terrain, a module for accurate localization in dynamic environments, and means
for calibrating and monitoring the platform. Our navigation system has been implemented
and tested in several large-scale field tests, in which a real robot autonomously navigated
over several kilometers in a complex urban environment. This also included a public demon-
stration, during which the robot autonomously traveled along a more than three kilometer
long route through the city center of Freiburg, Germany.

This is the accepted version of the following article: Autonomous Robot Navigation in Highly Populated Pedestrian Zones.
Journal of Field Robotics, which has been published in final form at http://dx.doi.org/10.1002/rob.21534.
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1 Introduction

Navigation is a central capability of mobile robots and substantial progress has been made in the area
of autonomous navigation in the past. The majority of navigation systems developed thus far, however,
focuses on navigation in indoor environments, through rough outdoor terrain, or based on road usage.
Only few systems have been designed for robot navigation in populated urban environments such as, for
example, the autonomous city explorer (Bauer et al., 2009). Robots that are able to successfully navigate
in urban environments and pedestrian zones have to cope with a series of challenges including complex
three-dimensional settings and highly dynamic scenes paired with unreliable GPS information.

In this paper, we describe a navigation system that enables mobile robots to autonomously navigate through
urban city-center. Our system builds upon and extends existing technology for autonomous navigation. In
particular, it contains a SLAM approach for learning accurate maps of urban city areas, a dedicated map
data structure for dealing with large-scale maps, a variant of Monte-Carlo localization that utilizes this data
structure, and a dedicated method for terrain analysis that deals with vegetation, dynamic objects, and
negative obstacles. We furthermore describe how these individual components are integrated and how the
sensors are calibrated. In addition, we present the result of a large-scale experiment, during which the robot
Obelix navigated autonomously from the campus of the Faculty of Engineering of the University of Freiburg
to the city center of Freiburg during a busy day in August 2012. During that trial, the robot had to master a
distance of more than 3 km. The trajectory taken by the robot and two pictures taken during its experiment
are depicted in Fig. 1.

The aim of this paper is to not only describe the relevant components but also to highlight the capabilities
that can be achieved with such a system. We motivate our design decisions, discuss critical aspects as well
as limitations of the current setup. This paper extends our previous work (Kümmerle et al., 2013) as it
contains more in-depth explanations and clarifying figures, details on sensor calibration and monitoring of
the running modules, and an extended experimental evaluation.

2 Related Work

The problem of autonomous navigation in populated exhibition areas has been studied intensively in the
past. Among the early systems are the robots RHINO (Burgard et al., 1998) and Minerva (Thrun et al.,
1999), which operated as interactive mobile tour-guides in crowded museums. An extension of this tour-
guide concept to interactive multi-robot systems is the RoboX system developed by Siegwart et al. (2003) for
the Expo’02 Swiss National Exhibition and the TOURBOT system by Trahanias et al. (2005). Gross et al.
(2009) installed a robot as a shopping assistant that provided wayfinding assistance in home improvement
stores. Although these systems are able to robustly navigate in heavily crowded environments, they assume
that the robots operate in a relatively confined planar area and furthermore are restricted to two-dimensional
representations of their environment.

Relatively few robotic systems have been developed for autonomous navigation in city centers. The concept
closest to the one described in this paper probably is the one of the Autonomous City Explorer developed by
Bauer et al. (2009). In contrast to our system, which operates completely autonomously, the Autonomous
City Explorer project mainly focuses on human-robot interaction. The robot communicates with pedestrians
to get the direction for where to move next. It builds local maps and does not autonomously plan its path
from its current position to the overall goal location. Mirnig et al. (2012) investigated methods to further
improve the communication between a human and a robot asking for directions. Other researchers developed
robots that monitor pollutions in city environments and are designed to improve trash collection (Reggente
et al., 2010). A further related approach has been developed in the context of the URUS project (Sanfeliu
et al., 2010), which considered urban navigation but focused more on networking and collaborative actions
as well as the integration with surveillance cameras and portable devices. Another result of the URUS
project (Trulls et al., 2011) considers urban navigation in pedestrian-only environments. Compared to our
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Figure 1: Example trajectory traveled by our robot navigating through Freiburg, Germany. It includes
a pedestrian zone with a large number of people. The map data on the left is from OpenStreetMap ( c©
OpenStreetMap contributors).



city-scale navigation system, their approach operates at a smaller scale in terms of the dimension of the
map and the area covered while navigating autonomously. Due to the pedestrian-only scenario, it does not
in particular address navigating on sidewalks and crossing streets. Additionally, the system developed by
Morales et al. (2009) allows a robot to navigate over pedestrian walkways. In contrast to our approach, their
system relies on a list of pre-defined waypoints which the robot follows to reach the desired goal location.

Also, the problem of autonomous navigation with robotic cars has been studied intensively. For example,
there has been the DARPA Grand Challenge (Seetharaman et al. (2006)) during which autonomous vehicles
showed an impressive capability to navigate successfully over large distances through desert areas (Cremean
et al., 2006; Thrun et al., 2006; Urmson, 2005). Throughout the later DARPA urban challenge, several
car systems have been presented that were able to autonomously navigate through dynamic city street
networks with complex car traffic scenarios and under consideration of road traffic navigation rules (Urmson
et al., 2008; Montemerlo et al., 2008; Rauskolb et al., 2008). Such competitions or demonstrations like the
European Land Robot Trial (ELROB) have the potential to accelerate robotics research and to make the
general public aware of the current state of the art (Schneider and Wildermuth, 2011). Recently, commercial
self-driving cars (Google Inc., 2012) have been developed and legalized to perform autonomous navigation
with cars. In contrast to such approaches, which focused on car navigation, the system described in this
paper has been developed to enable mobile robots to perform autonomous navigation in densely populated
urban environments with many types of dynamic objects like pedestrians, cyclists, or pets.

A long-term experiment about the robustness of an indoor navigation system was recently presented by
Marder-Eppstein et al. (2010). Their system used a tilting a laser range finder for navigation and for obstacle
detection. In contrast to this system, our approach also has a component for tracking moving obstacles to
explicitly deal with the dynamic objects in highly populated environments. It furthermore includes a terrain
analysis component that is able to deal with a larger variety of terrain.

While the approaches discussed so far focus on ground-vehicles, navigation with flying robots can be realized
by applying the same paradigms but require specific adaptations to the demands of flying robots (Bachrach
et al., 2011; Grzonka et al., 2012). An essential element of navigation with both, ground-based and flying
robots, is estimating the pose of the vehicle, for example, by localizing the robot against a map by means
of a particle filter (Dellaert et al., 1998). Navigating in an environment that is as large as a city creates
high demands on the mapping and localization algorithms. Newman et al. (2009) presented an approach
that combines vision and laser data along with topological and metric representations to estimate maps
of urban environments. Although their robot is navigating outdoors in such scenarios, it cannot rely on
external systems such as GPS because the corresponding signals might be partially or completely blocked.
Therefore, the robot has to estimate its pose with the data of the onboard sensors and a map (Georgiev and
Allen, 2004). Furthermore, the robot may perform specific actions to resolve ambiguities and consequently
converge faster to a single hypothesis (Fox et al., 1998; Murtra et al., 2008).

Instead of estimating a map, which is subsequently used for localizing the robot, the data recorded during
following a route can be utilized more directly. Furgale and Barfoot (2010) presented a teach and repeat
system based on stereo vision. In a first step, the robot is manually driven along a route and creates sub-maps
by visual odometry. Within the second step, the retraversal of the learned route, a localization algorithm
allows the robot to follow the taught route also in urban settings. Royer et al. (2005) suggested a similar
system based on monocular vision. Compared to our system, both approaches rely on a previously taught
path to reach a specific goal location.

3 The Robot Obelix used for the Evaluation

The robot used to carry out the field experiments is a custom made platform developed within the EC-funded
project EUROPA (2009), which is an acronym for the European Robotic Pedestrian Assistant. The robot has
a differential drive that allows it to move with a maximum velocity of 1 m/s. Using flexibly mounted caster
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Figure 2: The laser sensor setup of our robot. The scan patterns of different lasers are visualized by the
green lines. (a): The robot is equipped with two horizontal SICK lasers, one 270◦ scanner to the back and
one 270◦ scanner to the front, whereas only the middle 180◦ beams are used horizontally. The remaining
beams are reflected onto the ground by mirrors, building a cone in front of the robot, as visible in (b)&(e).
(c)&(f) show a 270◦ SICK scanner in the front of the robot that is tilted downwards to scan the ground
in front of the robot. (d) shows a small 270◦ Hokuyo scanner on a tilting servo on the head of the robot.
The beams shown in (b) and (c) are mainly used to perform the traversability analysis, whereas the beams
shown in (a) and (d) are mostly used for planning, localization and mapping purposes.

wheels in the front and the back, the robot is able to climb steps up to a maximum height of approximately
3 cm. Whereas this is sufficient to negotiate a lowered pedestrian sidewalk, it has not been designed to go
up and down normal curbs so that the robot needs to avoid such larger steps. The footprint of the robot
is 0.9 m × 0.75 m and the robot is around 1.6 m tall. Additionally, a touchscreen monitor is mounted in
the back of the robot. The screen allows an experienced user to inspect the state of the navigation system.
During our demonstrations the screen features information about the planned route of the robot as well as
dialog windows to interact with users, for example, the robot displays a dialog to ask for permission before
crossing a street.

The main sensor input is provided by laser range finders. Two SICK LMS 151 are mounted horizontally in
the front and in the back of the robot (see Fig. 2a). The horizontal field of view of the front laser is restricted
to 180 ◦. The remaining beams are reflected by mirrors to observe the ground surface in front of the robot
(see Fig. 2b). Additionally, another scanner is tilted 70 ◦ downwards to detect obstacles and to identify
the terrain the robot drives upon (see Fig. 2c). A Hokuyo UTM-30LX mounted on top of the head of the
robot is used for mapping and localization (see Fig. 2d), whereas the data of an XSens IMU is integrated
to align the UTM horizontally by controlling a servo accordingly. The robot is furthermore equipped with
a Trimple GPS Pathfinder Pro to provide prior information about its position during mapping tasks. While
the robot also has stereo cameras onboard, their data is not used for the described navigation tasks. Rather
the images are only used for the sake of visualization in this paper. The entire navigation system described
in this papers runs on one standard quad core i7 laptop operating at 2.3 GHz.



4 System Overview

In order to autonomously navigate in an environment, our system requires to have a map of the area. This
might seem like a drawback, but mapping an environment can be done in a considerably small amount of
time. For example, it took us around 3 hours to map a 7.4 km long trajectory by controlling the robot with a
joystick. Furthermore, this only has to be done once, as the main structures of an urban area do not change
quickly. Small modifications to the environment, like billboards or shelves placed in front of shops, can be
handled by our system in a robust manner. In the following, we describe how we obtain the map of the
environment by means of a SLAM algorithm as well as the most important components of the autonomous
navigation system, such as the algorithms for localization, path planning, calibration, and obstacle detection,
which enable our robot to operate in large scale city centers.

4.1 Calibration

As described in Section 3, our robot is equipped with multiple laser scanners. To enable the system to
combine the measurements from the different sensors in a consistent manner, an accurate calibration for the
positions of the sensors on the robot is required. To this end, we in a first step extended our simultaneous
calibration method (Kümmerle et al., 2012) to handle several laser range finders. The objective of the
calibration is to estimate the positions d = (d[1], . . . ,d[K])⊤ of the range finders, where K = 3 for our robot.

Let xi be the pose of the robot at time i. The error function cij(xi,xj ,d
[k], z

[k]
ij ) measures how well the

parameter blocks xi, xj , and d[k] satisfy the measurement z
[k]
ij , which is obtained as the scan-matching result

of the range data acquired by the respective range finder at time i and j. If the three parameters perfectly
satisfy the error function, then its value is 0. Here, we assume that the laser is mounted without inclination,
which is the ideal condition. The error function cij(·) has the following form:

cij(xi,xj ,d
[k], z

[k]
ij ) =

(

(xj ⊕ d[k]) ⊖ (xi ⊕ d[k])
)

⊖ z
[k]
ij , (1)

where ⊕ corresponds to the standard motion composition operator (Smith et al., 1990) and ⊖ denotes its
inverse. We obtain the calibration result along with the positions of the robot by solving the following
minimization:

(x,d)
∗

= argmin
x,d

K
∑

k=1

∑

ij∈C[k]

‖cij(xi,xj ,d
[k], z

[k]
ij )‖

Σ
[k]
ij

, (2)

where ‖c‖Σ
def.
= c⊤Σ−1c computes the Mahalanobis distance of its argument, Σ

[k]
ij represents the uncertainty

of the scan matching result, and C[k] denotes the set of measurements that are available for a specific
range finder. We solve Eq. (2), using the Levenberg-Marquardt algorithm as it is implemented in our g2o
toolkit (Kümmerle et al., 2011).

To carry out the calibration procedure outlined above, we record a data set in an indoor environment to
facilitate the scan-matching process. The trajectory taken by the robot has to consist of translations as well
as rotation, which we can guarantee easily by controlling the robot appropriately. Otherwise, we would not
be able to recover the positions of the onboard sensors (Brookshire and Teller, 2011).

The method described above is not applicable for the downwards facing laser and the mirrored beams (see
Fig. 2b and c), since scan matching cannot estimate the ego-motion of the robot by considering those
measurements. However, they observe the same region of the environment when the robot is moving. We
therefore developed a module which exploits this to calibrate the downward facing laser and the mirrors
to obtain consistent 3D measurements while driving with the robot. The calibration procedure works as
follows: First, the robot is driven through a small area with significant 3D structure that is visible in both,
the downwards facing laser and the mirrored beams. We typically used a straight trajectory of about 3 m.
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Figure 3: (a) shows an example environment that we used for our calibration procedure. We created a
narrow corridor with several objects on both sides, for the robot to drive through. These objects provide
structure that is visible both in the downwards facing laser scanner, as well as the laser beams reflected by
the mirrors. (b) shows the corresponding point clouds, whereas the black points are from the downwards
facing scanner and the blue and red points are from the beams reflected by the left and the right mirror
respectively. These point clouds were created with the already calibrated parameters.

Fig. 3a depicts an example environment that we used for the calibration procedure. After this data is
collected, the point clouds of the different sources — the downwards facing laser, the beams hitting the left
mirror, and the beams hitting the right mirror — are accumulated given the odometry of the robot and the
current estimate for the demanded calibration parameters. Fig. 3b visualizes the resulting point cloud. The
user is then able to manually change the parameters in a graphical user interface to provide a reasonable
initial guess. Given this guess, the system starts a greedy sampling based method to improve the overlap of
the different point clouds. That means the system changes the parameters of either one of the lasers or one
of the mirrors, recalculates the corresponding point cloud and determines the overlap with the other clouds.
If the overlap was improved, the calibration parameters are replaced with this solution. Else it is discarded.
This process is then repeated. We found that this leads to a much more consistent calibration than what we
achieved by hand-tuning the parameters and takes less time.

4.2 Mapping

We apply a graph-based SLAM formulation (Dellaert and Kaess, 2006; Grisetti et al., 2010) to estimate the
maximum-likelihood (ML) configuration. In this formulation, the vector x = (x1, . . . ,xn)⊤ describes the
poses of the robot where each element corresponds to the pose of the robot at a certain time. zij and Σij

are respectively the mean and the covariance matrix of an observation describing the motion of the robot
between the time indices i and j, whereas we assume Gaussian noise. Let eij(x) be an error function which
computes the difference between the observation zij and the expected value given the current state of node i

and j. Note that the function eij(x) is closely related to cij(·) (see Section 4.1) but it directly employs the
previously found calibration result as known parameters. Additionally, let ei(x) be an error function which
relates the state of node i to its prior x̂i having the covariance matrix Σi. The function ei(x) computing the
difference is defined as

ei(x) = xi ⊖ x̂i. (3)
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Figure 4: Influence of outliers in the set of prior measurements. Left: Our method rejects prior measurements
having a large error. Middle: The map as it is estimated by taking into account all prior measurements. The
outliers in the prior information lead to artifacts in the map. Right: Our method achieves a good estimate
for the map by rejecting priors which are likely to be outliers. Compared to the image in the middle the
walls are straight and the map better captures what the environment looks like.

Assuming the measurements are independent, we obtain the ML configuration of the robot’s trajectory as

x∗ = argmin
x

∑

ij∈C

‖eij(x)‖Σij
+

∑

i∈P

‖ei(x)‖Σi
, (4)

where C and P are a set of constraints and priors, respectively. Eq. (4) corresponds to the negative log-
likelihood of the joint probability of all measurements, see, for example, Dellaert and Kaess (2006) or Grisetti
et al. (2010) for the details. Hence, the minimization in Eq. (4) complies with maximizing the likelihood
of all measurements. Again, we employ our g2o toolkit (Kümmerle et al., 2011) for solving Eq. (4), which
iteratively linearizes and solves the linear approximation until a convergence criterion is matched.

The laser-based front-end generating the set of constraints C is an extension of the approach proposed by
Olson (2008). We apply a correlative scan-matcher to estimate the motion of the robot between successive
time indices. Furthermore, the front-end obtains loop closures by matching the current scan against all scans
which are within the three-sigma uncertainty ellipsoid. If a loop closure hypothesis is found, we additionally
perform a step to reject outliers. To this end, a pairwise consistency test forms rigid loops by combining
two hypotheses along with the odometry of the robot. Each such loop should result in an identity matrix.
By determining the difference between chaining the constraints of the loop and the identity transformation,
we obtain a measure for the consistency for each pair of two hypotheses. For a set of hypotheses we want
to identify the subset that is maximally self-consistent to robustly handle outliers. One way to identify this
subset of hypotheses is to apply spectral clustering, as suggested by Olson (2009). In addition to the loop
closures, we integrate a set of priors P given by the GPS sensor. As GPS signals may be corrupted by
multi-path effects, we apply an outlier rejection method to remove those measurements. Instead of directly
solving Eq. (4), we consider a robust cost function – namely the Pseudo Huber cost function (Hartley and
Zisserman, 2004) – for the prior measurements. After solving Eq. (4), we remove 2 % of the prior edges
having the largest residual. We repeat this process five times. Thus, we keep approximately 90 % of the
original prior information. Using this approach, some good GPS measurements might be rejected. However,
we found in our practical experiments that the effect of outliers in the prior measurements may be severe
(see Fig. 4). Including the prior information has several advantages. First, it improves the accuracy of
the obtained maps (Kümmerle et al., 2011). Second, if the robot extends its map, coordinates are easy to
transform between different maps, because the maps share a common global coordinate frame.



Figure 5: An example map of our campus. The graph nodes are colored red and blue, the edges are colored
blue. The green marked region corresponds to a 40 m × 40 m local map. Since we load only small parts of
the environment into the main memory we use pre-computed low resolution thumbnails for visualization of
the local maps that are not available.

4.3 Map Data Structure

Obtaining a 2D map given the graph-based SLAM solution and the laser data is typically done in a straight-
forward manner, for example, by computing an occupancy grid. However, storing one monolithic occupancy
grid for a large-scale environment may lead to a large memory footprint. For example, a 2 km by 2 km area
at a resolution of 0.1 m and 4 bytes per cell requires around 1.5 GB of main memory. Instead of computing
one large map, we use the information stored in the graph to render maps locally and close to the robot’s
position. Therefore we select a subset of graph nodes from the SLAM solution which has a minimum distance
of 5 m between all neighboring nodes in the subset. Furthermore we transfer the connectivity information of
the SLAM pose graph to the constructed graph. This sparse graph represents the topology of our map and
every node can store local maps (see Fig. 5). A similar approach was recently described by Konolige et al.
(2011).

We generate the local occupancy map as follows. For a node in our map data structure, we apply Dijkstra’s
algorithm to compute the distance to the nodes of the SLAM graph. This allows us to only consider
observations that have been obtained by the robot in the local neighborhood of a given location. We
compute the set of nodes to be used to build the local map as

Vmap = {xi ∈ x | dijkstra(xi,xbase) < δ} , (5)

where Vmap is the set of observations that will be used for obtaining the local map, xbase the closest node to
the robot’s current position, dijkstra(xi,xbase) the distance between the two nodes according to Dijkstra’s
algorithm, and δ the maximal allowed distance for a node to be used in the map rendering process. As
hard-disk space is rather cheap and its usage does not affect the performance of other processes, we store
each local map on the disk after the first access to it by the system.

The localization and path-planning algorithms described in the following sections all operate on these local



maps. The map is expressed in the local frame of xbase and we currently use a local map of 40 m by 40 m.

4.4 Localization

To estimate the pose x of the robot given a map, we maintain a probability density p(xt | z1:t,u0:t−1) of the
location xt of the robot at time t given all observations z1:t and all control inputs u0:t−1.

Our implementation employs a sample-based approach which is commonly known as Monte Carlo localization
(MCL) (Dellaert et al., 1998). MCL is a variant of particle filtering (Doucet et al., 2001) where each particle
corresponds to a possible robot pose and has an assigned weight w[i]. In the prediction step, we draw for
each sample a new particle according to the prediction model p(xt | ut−1,xt−1). Based on the sensor model
p(zt | xt) each particle within the correction step gets assigned a new weight. To focus the finite number
of particles in the regions of high likelihood, we need to re-sample the particles. A particle is drawn with
a probability proportional to its weight. However, re-sampling may drop good particles. To this end, the
decision when to re-sample is based on the number of effective particles (Grisetti et al., 2005; Liu, 1996).
Our current implementation uses 1,000 particles.

A crucial question in the context of localization is the design of the observation model that calculates the
likelihood p(z | x) of a sensor measurement z given the robot is located at the position x. We employ the
so-called endpoint model or likelihood fields (Thrun et al., 2005). Let z′k be the kth range measurement of z
re-projected into the map given the robot pose x. Assuming that the beams are independent and the noise
is Gaussian, the endpoint model evaluates the likelihood p(z | x) as

p(z | x) ∝
∏

i

exp

(

−
‖z′i − d′i‖

2

2σ2

)

, (6)

where d′i is the point in the map which is closest to z′i. As described above and in contrast to most existing
localization approaches, our system does not employ a single grid map to estimate the pose of the robot.
Given our graph-based structure, we need to determine a vertex xbase whose map should be taken into
account for evaluating p(z | x). We determine the base node xbase as the pose-graph vertex that minimizes
the distance to x and furthermore guarantees that the current location of the robot was observed in the map.
This visibility constraint is important to maximize the overlap between the map and the current observation.
Without this constraint, the closest vertex might be outside a building while the robot is actually inside of
it.

Another important design-related question for a robust localization in crowded urban environments is where
to mount a laser scanner. Fig. 6 shows an exemplary scene in downtown Freiburg. The interesting aspect is
the amount of measurements (shown as red points) that match to the map. Fig. 6a depicts the measurements
of a laser mounted at a height of 0.55 m. In comparison, Fig. 6b visualizes a corresponding measurement of
a laser mounted at a height of 1.55 m. The higher mounting position of the laser allows the robot to sense
more of the static parts of the environment. This improves the localization since the robot is able to measure
above small obstacles, e.g., chairs, shopping bags, bikes, and children.

A challenging problem is the pose initialization after starting the system also referred to as global localization.
Since we have a GPS sensor on the robot and a GPS aligned map, we use GPS measurements as initial guess
to localize the robot. In that way, we avoid to distribute a massive amount of particles on a map that
covers several kilometers and save computational resources. Furthermore, we exploit the compass of the
Inertial Measurement Unit (IMU) to constrain the heading of the particles. Based on the GPS and IMU
measurements, we sample a pose for each particle from a Gaussian distribution around the initial guess. As
a standard deviation we apply 5 m for the position and 10 ◦ for the heading. In case the automatic pose
initialization fails because there is no GPS signal, e.g., if the robot is indoors, the user has the possibility to
provide an initial guess manually.
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Figure 6: Example of a crowded scene in downtown Freiburg. (a) An observation of a laser mounted at a
height of 0.55 m. In comparison (b) shows a corresponding observation of a laser acquired mounted at a
height of 1.55 m. The image in (c) shows the scene from the viewpoint of the robot and (d) from behind
the robot. The additional height of the head laser allows the robot to sense more of the static parts of the
environment.
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Figure 7: Range and remission data collected by the robot observing either a concrete surface or vegetation.



4.5 Traversability Analysis

The correct identification of obstacles is a critical component for autonomous navigation with a robot.
Given our robotic platform, we need to identify obstacles having a height just above 3 cm. Such obstacles
are commonly described as positive obstacles, as they stick out of the ground surface the robot travels
upon. In contrast to that, negative obstacles are dips above the maximum traversable height of 3 cm and
such obstacles should also be avoided by the robot. In the following, we describe the module which detects
positive and negative obstacles while at the same time allowing the robot to drive over manhole covers and
grids which might be falsely classified as negative obstacles. Furthermore, while navigating in urban areas
the robot may encounter other undesirable surfaces, such as lawn. Here, considering only the range data is
not sufficient, as the surface appears to be smooth and drivable. Since our platform cannot safely traverse
grass areas, where it might easily get stuck due to the small caster wheels, we also have to identify such
areas to allow the robot to avoid them and thus to reduce the risk of getting stuck while trying to reach a
desired location.

4.5.1 Vegetation Detection

In our implementation, we detect flat vegetation, such as grass, which cannot be reliably identified using
only range measurements, by considering the remission values returned by the laser scanner along with the
range (Wurm et al., 2009, 2012). We exploit the fact that living plants show a different characteristic with
respect to the reflected intensity than the concrete surface found on streets.

In contrast to Wurm et al. (2009), we detect vegetation with a fixed downward looking laser instead of a
tilting laser. This results in an easier classification problem, as the range of a beam hitting the presumably
flat ground surface correlates with the incidence angle. Fig. 7 visualizes the data obtained with our platform.
As can be seen from the image, the two classes can be separated by a non-linear function. We choose to fit
a function to the lower boundary of the vegetation measurements which allows us to identify measurements
which are likely to be vegetation with a high efficiency. The resulting classification accuracy is slightly worse
compared to the original approach but faster and, as can be seen in Fig. 9, still sufficient for identifying regions
covered by vegetation that should be avoided by the robot. This classification allows us to automatically
annotate region in the map that should not be traversed by the robot due to the potential risk of getting
stuck. An example for such a map along with an aerial image can be seen in Fig. 8. As can be seen from
the image, the classification is accurate and allows the robot to avoid the potentially dangerous areas.

4.5.2 Tracking Dynamic Obstacles

To detect moving obstacles in the vicinity of the robot, like pedestrians or bicyclists, we employ a blob
tracker based on the 2D range scanner data and a common coordinate frame defined by the wheel odometry.
This tracker works by first accumulating the 2D laser readings into a 2D grid map for a short time window
(about 100 ms in our current implementation). In addition to that, we keep a history of these maps for a
larger amount of time (about 1 s). To find the dynamic elements in the map, we compare the current map
with the oldest in the history and mark the obstacles that only appear in the newer map as dynamic.

While the robot is moving, new areas become visible that were occluded before. This can lead to false
positives in the detection of dynamic parts in the environment. Hence, we perform an additional step to
filter these out by performing a check on every candidate dynamic obstacle if it was occluded in an earlier
time step. To this end, we inspect the history of preceding scans and analyze the line of sight to the obstacle
in question. If an obstacle was present that blocked the line of sight, we do not consider this part of the
environment to be dynamic.

In the next step, we cluster the dynamic obstacles into blobs using a region growing approach. Then, we
find corresponding blobs in the preceding map using a nearest neighbor approach (rejecting neighbors above



Figure 8: A map of the environment in which areas covered with vegetation are annotated. Areas that have
been classified as vegetation are drawn in green, while concrete is drawn in blue. The trajectory drawn in
red corresponds to a path that the robot travelled autonomously within one of the field tests.

a predefined distance). Based on the mean positions of the corresponding blobs, we estimate velocities and
bounding boxes that are aligned to the movement direction.

While this method is relatively simple (and occasionally creates false positives and sometimes wrongly merges
multiple moving objects into one), it proved to be highly effective for the city navigation task. It can be
calculated in a highly efficient manner and provides a sufficient movement prediction for avoidance purposes,
as can be seen in Fig. 9.

4.5.3 Detection of 3D Obstacles

Unfortunately, not all obstacles that might block the robot’s path are visible in the horizontal laser scans.
For this reason, we implemented a module that analyzes the scan lines captured by the downwards facing
laser and the mirrored laser beams in front of the robot (see Section 3). These lasers provide 3D information
about the environment when the robot is moving.

In a first step, we perform a filtering on the raw scans to get rid of some false measurements. This especially
targets at spurious points typically returned at the borders of objects in the form of interpolated point
positions between the foreground and the background. These points might create false obstacles. To detect
them, we check for sudden changes in depth which are noticeable as very small viewing angles from one point
in the 2D scan to its immediate neighbors. Those border areas are erased from the scans before performing
the obstacle detection procedure.

The main part of the obstacle detection process is done by analyzing only single scan lines, instead of the
point cloud which is accumulated during driving. A similar approach was considered by Pfaff et al. (2007)
for navigating with a car in cities. To decide whether points in these scan lines measure flat ground or an
obstacle the robot cannot traverse, we analyze how straight the scan lines are and if there are significant
discontinuities in there, since a flat ground would lead to straight scan lines. To be robust to noise, we



use polynomial approximations for small segments of the scan lines and analyze their incline. Every point
that lies in a segment which has an incline above a maximum value (10 ◦) and a height difference above a
maximum allowed step height (3 cm) is reported as a potential obstacle. Note that these parameters arise
from the capabilities of the platform.

This heuristic proved to be effective and has the advantage of being efficient for single 2D scans, without
the need of integration over a longer period of time. It also does not require information about position
changes of the robot, which would be a source of considerable noise. In addition to that, there are no strong
requirements regarding the external calibration parameters of the lasers.

Unfortunately, there are rare cases where this procedure fails. The main source of failures are false positives
on manhole covers or gutters in the ground. Example images can be seen in Fig. 10 (top). Since some
laser beams go through the structure and some not, they appear to be negative obstacles. We implemented
a heuristic to detect those cases by identifying areas with small holes. For this purpose, we extended the
method described above and build an elevation map from the accumulated scan points while driving. An
elevation map (Bares et al., 1989; Hebert et al., 1989) is a 2D grid map, where every cell contains the average
z-value of the points falling into it. For every scan point, we check if it lies substantially below the estimated
elevation of the corresponding neighboring cells, both in x- and y-direction. If this is the case, this indicates
a small hole, since most of the measurements in the area were on ground level but a few went through the
hole and lead to much deeper measurements. Obstacles close to such holes are ignored, if they are below a
certain height (10 cm). This approach proved to provide the desired reliability for different settings in which
the naive approach would have reported non-traversable negative obstacles (see Fig. 10, bottom image, for
an example).

For every positive obstacle detected by the approach above, we check if this obstacle also has a corresponding
obstacle in its vicinity in the 2D scans from the horizontal lasers. If not, the corresponding 3D position is
reported as a 3D obstacle. If yes, it is considered to belong to the 2D obstacle and only stored for a short
amount of time. The reason for this is that our sensor setup does typically not allow us to reobserve a 3D
obstacle in regular intervals, since it is just seen once while driving by. Therefore, we have to keep the 3D
obstacles in the map for an indefinite amount of time. In contrast, obstacles observed in the 2D scanners
can be reobserved and therefore do not have to be kept for a long time. This procedure prevents most
dynamic objects (those that are also visible in 2D) from trapping the robot because it does not notice their
disappearance. An example regarding the different obstacle types can be seen in Fig. 9.

4.5.4 Vibration-Based Ground Evaluation

While the approach described above allows the robot to identify objects that need to be avoided, the ground
surface itself needs to be taken into account while driving autonomously. Cobble stone pavement, which can
typically be found in the centers of old European cities, leads to a substantial vibration and shaking of the
platform. Hence, we consider the measurements provided by the IMU to control the maximum velocity of
the platform based on the current vibration. We found that the values provided by the gyroscopes of the
IMU give the most reliable measure for the strength of the vibration, by indicating how much the robot
is shaking back and forth while driving. The accelerometer signal on the other hand proved to be much
noisier and less reliable. For this purpose we calculate the mean angular velocities from the gyros for the
x- and y-axis (corresponding to changes in roll and pitch) over a small amount of time (50 ms). If one of
these values exceeds a certain limit, the maximum allowed velocity of the platform is gradually decreased.
As the accuracy of the laser sensors is not sufficient to classify the smoothness of the surface, the robot has
no means to identify whether the surface allows driving fast again without inducing vibrations. Hence, we
greedily increase the maximum velocity again after a short delay and repeat the entire process. See Fig. 11
for an example.
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Figure 9: (a): This photo shows an example scene. (b): This image visualizes the different kinds of
detected obstacles in the scene shown in (a), whereas four people are walking behind the robot. Blue points
mark obstacles that are visible in the horizontal 2D laser scanners (areas 1© and 2©). Red points mark 3D
obstacles that are visible in the downwards facing laser beams, but not in the 2D laser beams (mainly area
3©). Green points mark the detected vegetation/grass (area 4©). The black boxes with the arrows mark
detected dynamic obstacles (area 2©). The remaining yellow dots visualize the accumulated point cloud from
the laser measurements.



Figure 10: Top: Traversable structures that might be detected as negative obstacles by a naive method,
because some laser beams can go through them. Bottom: Example case for the obstacle detection module.
While the small canals on the robot’s right side are classified as negative obstacles, the gutters are identified
as traversable even though there are laser measurements going through the holes.
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Figure 11: The plot at the top of this figure shows the maximum allowed velocity of the robot during a
3.2 km long autonomous run. This maximum velocity is determined based on the vibration measured while
driving and therefore depends mostly on the ground surface. The pictures at the bottom show example
images captured at the corresponding places of the trajectory. The left-most and right-most images are
examples of rough surfaces that lead to a reduced maximum velocity, whereas the two middle images show
examples of smooth surfaces that allow a high maximum velocity.
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Figure 12: Left: Partial view of the pose-graph with its constraints used for estimating the poses. Right:
The same view of the topology graph generated by the planner shows that this graph typically features a
denser connectivity.

4.6 Planner

Our planner considers different levels of abstraction to compute a feasible path for the robot towards a goal
location. The architecture consists of three levels. The highest level only considers the topology of the
environment, i.e., the graph connecting the local maps. The intermediate level employs Dijkstra’s algorithm
on the local maps to calculate way-points which serve as input for the low-level planner developed by Rufli
et al. (2009). This low-level planner actually computes the velocity commands sent to the robot and deals
with the dynamic objects that are present in the vicinity of the robot. The latter uses the information from
the blob tracker (see Section 4.5.2) and projects this movement into the future to predict where the obstacle
will most probably be at a certain time in the planned trajectory. Note that by using this hierarchy of
planners, we loose the optimality of the computed paths. However, as reported by Konolige et al. (2011),
who developed a similar planning framework, the resulting paths are only approximately 10 % longer while
the time needed to obtain them can actually be several orders of magnitude shorter.

Given the pose estimates of the SLAM module, our planner constructs a topology T represented by a graph.
This graph is constructed as follows: Each node xi of the graph is labeled with its absolute coordinates in the
world. Furthermore, each node comes with its local traversability map describing the drivable environment
in the neighborhood of xi which serves as the background information for the planner. Additionally, each
cell in the map encodes the cost of driving from xi to the cell. In our implementation we assign the cost for
traversing a cell as a weighted sum of the travelled distance and free space around the cell. The idea is to
penalize driving close to obstacles. This cost can be pre-computed for each cell of the map efficiently by a
single execution of Dijkstra’s algorithm starting from xi. We refer to this as the reachability information of
the map.

Two nodes are connected by an edge if there is a path from one node to the other given the information
stored in their local maps. The edge is labeled with the cost for traversing the path which is determined
by planning on the local maps. If such a path cannot be found, we assign a cost of infinity to this edge.
Otherwise, we assign to the edge the cost returned by the intermediate level planner which is typically
proportional to the length of the path. Yet, in contrast to the straight-line distance, the cost better reflects
the local characteristics of the environment. By this procedure, which is carried out once as a pre-processing
step, the planner will consider the real costs for the robot to traverse the edge instead of only considering
the Euclidean distance. Note that the set of edges contained in the topology graph T in general differs from
the set of constraints C generated by the SLAM module (see Eq. (4)). The topology graph exhibits a denser
connectivity as can be seen in Fig. 12 because there exist more paths from one map to the other than links
found by the place recognition part of the mapping algorithm.



While driving autonomously, the robot may encounter unforeseen obstacles, e.g., a passage might be blocked
by a construction site or parked cars. Our planner handles such situations by identifying the edges in the
topology which are not traversable in the current situation. Those edges are temporarily marked with infinite
costs which allows the hierarchical planner framework to determine another path to the goal location.

Planning a path from the current location of the robot towards a desired goal location works as follows.
First, we need to identify the nodes or maps in T which belong to the current position of the robot and
the goal. To this end, we refer to the reachability information of the maps. We select the maps with the
shortest path from the center of the map to the robot and the goal, respectively. Given the robot node and
the goal node, the high level planner carries out an A∗ search on T . Since the cost for traversing an edge
corresponds to the real cost of the robot to traverse the edge, this search provides a fast approximation of
an A∗ on the complete grid map but is orders of magnitude faster. The result is a list of way-points towards
the goal. However, following this list closely may lead to sub-optimal paths. Hence, we perform the Dijkstra
algorithm in the local map starting from the current location of the robot and select as intermediate goal for
the low-level planner the farthest way-point that is still reachable. Note that the local map containing the
current position of the robot is augmented online with the static obstacles found by the obstacle detection.

4.7 Watchdog

For a real-world system it proved to be useful to have a module that monitors the multitude of the other
modules for errors and can restart them if something goes wrong. For this purposes, all our modules perform
frequent consistency checks. For example, the hardware drivers check if they still receive data from the sensors
as well as the platform and broadcasts status messages regularly. The watchdog module receives regular
updates (typically once a second) from every module. If a module reports a failure or if its alive-messages
time out, the watchdog module kills the process and restarts it. Modules that rely on a history, like the
localization, store their current state regularly in a permanent manner, so that they can directly resume
their work from a recent state when being restarted. Should the watchdog not be able to fix a problem by
restarting a module, meaning it repeatedly fails after the restart, the watchdog will report the failure and,
if needed, can enforce an emergency stop. The watchdog communicates with the operator over a graphical
user interface, whose information is also available remotely, and plays sounds when problems appear.

This module does not have an explicit scientific background but serves as a handy solution for robots
in the real world. It would be unnecessary in a system where every module and each of its third party
dependencies work perfectly. But in practice, the watchdog module proved to be essential for long-term
autonomous navigation, especially regarding the robust operation of certain hardware components. Since
we logged whenever a module was reseted during our tests, we were able to carry out long-term experiments
and to analyze the log-files afterwards to identify the faulty software parts.

5 Evaluation

In this section, we describe a set of experiments in which we evaluated the system described in this paper. The
map used to carry out the experiments was obtained by driving the robot along a 7.4 km long trajectory.
The map covers the area between the Faculty of Engineering of the University of Freiburg and the city
center of Freiburg. Using this map, we carried out a series of experiments. Among several smaller tests,
we performed six extensive navigation experiments during which we let the robot navigate from our campus
to the city center and back. Figure 13 depicts an example along with images taken along the trajectory.
In these experiments, the robot traveled an overall distance of around 20 km and for three times required
manual intervention. In addition to a localization failure discussed below in more detail, the robot once got
stuck in front of a little bump and one further time was manually stopped because of an obstacle that we
believed not being perceivable by the robot.



����

Figure 13: This figure shows the driven trajectory of our robot on an aerial image (aerial image c© Google).
On the side are photos of exemplary locations on the trajectory, taken at the places indicated by the arrows.

Note that the final experiment was announced widely to give the public and the press the opportunity to
see whether state-of-the-art robotics navigation technology can lead to a mobile robot that can navigate
autonomously through an urban environment. The event itself attracted journalists from both TV and
newspapers and lead to a nationwide and international coverage in top-media. Video material for the event
itself and one of the test runs can be found on the web1 and is also available as supplementary material to
this paper. During all of our experiments at least one human operator accompanied the robot. The task
of the operator was to control the robot and to stop the robot by triggering the wireless emergency stop in
case of a dangerous situation. Additionally, the robot was not allowed to cross streets without asking for
permission. To this end, the operator had to provide the information that it is safe to cross the street by
pressing a button on the screen of the robot.

5.1 Localization

Whenever a robot navigates within an urban environment, the measurements obtained by the sensors of
the robot are affected by the people surrounding the robot. As the localization algorithm is one of the core
components of our system, we analyzed the occlusions in the range data caused by people partially blocking
the view of the robot.

Fig. 14 depicts the fraction of valid range readings, i.e., readings smaller than the maximum range of the laser
scanner, and the number of beams that match to the map for one of the large experiments mentioned above.
Here, we regard a range reading as matching to the map if the distance between the measurement and the
closest point in the map is below 0.2 m. The plot depicts several interesting aspects. A small fraction of valid
beams indicates that the robot is navigating within open regions where only a small amount of structure is
available to the robot for localizing itself. This can be seen in the examples that correspond to 4 min and

1http://europa.informatik.uni-freiburg.de/videosJFR.html
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Figure 14: This plot shows the fraction of valid beams returned by the range scanner and the fraction of
beams that can be explained by the map of the environment. We regard a beam as valid if it reports a range
reading shorter than the maximum range of the scanner. We classified a range reading as being explained by
the map if the distance between the end point of the range reading and the closest occupied cell in the map
is below 0.2 m. Furthermore, we show four different examples along the trajectory with colored beams on a
distance map. Green beams correspond to maximum range readings. For a better visibility we cropped the
beams after 19 m. Blue beams show valid range measurements that are not well explained by the map and
red beams indicate measurements that can be explained by the map. The first example shows the robot in an
open space where only a few trees are perceivable by the robot. In the second example the laser scan is well
explained. The third example shows a situation a few minutes before the localization failure. Only a small
fraction of the beams is explained by the map due to the open terrain and the presence of humans around the
robot. The remaining observable structure is mainly parallel to the driving direction and does not constrain
the position estimate in that direction. This lead to the localization failure after around 78 minutes. The
last example shows a densely crowded scene in the Freiburg downtown area. Due to the height of the laser,
major parts of the surrounding buildings are visible and enable our robot to successfully localize itself (aerial
image c© Google).
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Figure 15: Background information for the localization failure during an autonomous run to Freiburg down-
town. The 2D distance map is shown on the left. As can be seen, there are only few localization features
(shown in black) around — mostly tree trunks — and nearly all laser observations (red points) mismatch the
provided model. The picture on the right shows that the robot is almost completely surrounded by people.

75 min where most of the laser scans reports maximum range (green). Furthermore, the difference between
the number of valid beams and the number of beams that match to the map indicates that the view of the
robot was partially blocked. In open areas with only few landmarks it becomes critical if most of the visible
landmarks are occluded for a longer time. In contrast, the example around 50 min shows a situation where
most of the laser scan is well explained and only few pedestrians are around the robot. The last example
shows a densely crowded scene in the Freiburg downtown area. Due to the height of the laser, major parts
of the surrounding buildings are visible and enable our robot to successfully localize itself.

In this experiment, the autonomous run was interrupted twice. In the first incident, the robot’s wireless
emergency stop button was pressed unintentionally, thereby being a human mistake. In the second case, a
localization error occurred after around 78 min. As can be seen in Fig. 14 between minutes 70 and 78 the
robot traveled 200 m in an area with a very small amount of features while being surrounded by many people,
as depicted in Fig. 15. This mixture of very few relevant features in the map (shown on the left hand side
in Fig. 15) and the fact that the robot was driving for an extensive distance while receiving mostly spurious
measurements lead to an error in the position estimate of around 2 m. This caused problems in negotiating
a sidewalk after crossing the street. It made the robot stop and required us to re-localize the robot.

In other instances, sharing the same characteristics, for example, around minute 37 and around minute 52 the
robot only drives substantially lower distances of 100 m and 50 m without meaningful sensor measurements.
In both situations, the system is able to overcome the problem because it receives relevant information early
enough again.

We also analyzed a similar trajectory of the robot carried out during night time (see Fig. 16). At night,
typically a smaller number of people are around and less occlusions happen to the measurements. Hence,
the offset between the number of valid beams and the number of beams matching to the map is small all
the time. In this experiment, the robot successfully reached its goal location without any problems and
along a slightly different path of 3.5 km length. Visual inspection of the trajectory on the map revealed that
the localization pose is much more accurate than the GPS solutions we had available. The trajectory was
estimated correctly throughout the whole experiment.



0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

F
ra
ct
io
n
o
f
b
ea
m
s

Time [min]

Beams explained by the map
Valid beams

Figure 16: In this figure we present a similar plot to Fig. 14 for a dataset acquired during an autonomous
run in the night. The environment is almost static and therefore most valid beams are explained by the
model. The robot traversed the same region as shown in the previous Figure around minute 60.

Figure 17: This figure shows an exemplary marking on the ground on an open space close to building 101 on
our campus (left) and the robot standing on the marked position (right). We were able to manually drive
the robot on the marking with a precision of approximately 1.5 cm.

The global accuracy of the localization module is difficult to evaluate since city scale ground truth positions
for a mobile robot are hard to acquire. Note that GPS in general is not accurate enough in urban canyons
and without additional ground stations. Therefore, we decided to evaluate the localization accuracy locally
with respect to two specific real-world positions. While the first position is nearby building 079 on our
campus where the robot can observe a large portion of the building around, the second position on the open
area in front of building 101 result in only a small portion of usable range measurements. We drove the
robot ten times onto each marked position and evaluated the localization estimates. Figure 17 shows an
exemplary marking on the ground and the robot standing on the marked position. After each visit of the
goal location we drove at least 15 m before we approached the location for another pass.

Using the recorded estimates we computed the mean position and the corresponding standard deviation for
the two locations on our campus. The standard deviation is an indicator for the localization accuracy but
also suffers from small position errors since we cannot drive manually to a target location with millimeter
accuracy. Figure 18 shows the collected localization estimates for both locations along with the 3σ confidence
ellipse in blue and the robot footprint in green.

For the location next to building 079 the translational standard deviation was 0.035 m with a rotational
standard deviation of 0.82 ◦. For the other location near building 101 the standard deviations were 0.027 m
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Figure 18: In this figure, we show the localization estimates for several stops at the same location for two
different places on our campus. The left plot shows the localization estimates for the reference pose near
building 079 and the right image illustrates the corresponding plot for the reference pose near building 101.
The green circles show the approximate footprint of the robot and the blue ellipses show the 3σ confidence
ellipse around the mean position. The plotted grid has a cell size of 10 cm.

for the translational error and 0.87 ◦ for rotational error, respectively. The resulting localization accuracy
is more than sufficient to carry out the described navigation experiments. Some of the paths the robot
regularly took during our experiments were only 20 cm wider than the width of the robot, thereby enforcing
a minimum accuracy for the localization pose of 10 cm.

5.2 Global Localization

In this section, we evaluate the success rate of our GPS-based MCL initialization scheme. Therefore, we
recorded one dataset in which we had two different GPS devices mounted on the robot. In addition to the
Trimble GPS Pathfinder Pro GPS device we mounted a low cost consumer GPS, i.e., a standard SiRF III,
as baseline. For both devices, we selected GPS measurements every 15 s on the dataset when available. For
every location we initialized the MCL algorithm 10 times with the corresponding coordinates and let it run
until either the filter converged or the time limit of 15 s was met. As ground truth, we considered the poses
of the localization module running while acquiring the data and considered every pose estimate closer than
1 m as success. The chosen ground truth is not perfect but a small difference to the ground truth indicates
that the particle filter converged close to the true position of the robot. In order to provide insights in
possible failure cases, we also evaluated the GPS accuracy with respect to the ground truth and the number
of beams that match to the map on the ground truth trajectory. Throughout all our experiments, we used
1,000 particles and a standard deviation of 5 m for both GPS devices.

Fig. 19 shows the resulting quantities for both GPS devices. As can be seen in the upper plot, the pose
estimates of the low-cost GPS (green) can be up to 50 m away from the true pose. In comparison the second
GPS device results in errors below 20 m. The localization success per time slot is plotted in red and the
number of beams that match to the map is plotted in blue. The overall localization success was 53.3 %
for the low-cost GPS and 83.9 % for the highly accurate GPS device. Of course the accuracy of the GPS
measurements has a major impact on the localization success but also the amount of information available
at the true pose in the map. As can be seen in the lower plot in Fig. 19, between minutes 5 and 10 the
GPS measurement is around 1 m close to the true pose but the localization success is 0 %. This is mainly
caused by the fact that there is not much laser based information available, as can be seen in the blue plot.
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Figure 19: The upper plot shows the results for initializing the localization algorithm based on the low-cost
GPS device. As can be seen, the pose estimates of the low-cost GPS (green) can be up to 50 m away from
the true pose. The localization success per time slot is plotted in red and the number of beams that match
to the map is plotted in blue. The lower plot shows the results for the highly accurate GPS device. The
maximum GPS measurement error for this device is below 20 m.



Overall, a successful initialization for the localization algorithm highly depends on the accuracy of the GPS
measurement as initial guess and how much information the laser provides in a region.

6 Discussion and Lessons Learned

The navigation system described in this paper has been implemented for and on the robot Obelix charac-
terized in Section 3. The design of a platform typically has a substantial influence on the algorithms needed
for accomplishing the desired task. Given the navigation task of Obelix, his structure definitely influenced
the design of certain software components. For example, its almost circular footprint makes the planning of
paths easier, as only a two-dimensional path needs to be computed (see Fig. 1). Additionally, the specific
mounting of the range scanners, that resulted in the fact that three-dimensional structures could only be
sensed when the robot moves, has an influence on collision avoidance routines. We are still convinced that
these platform-specific design choices are not critical and that the mixture of components we realized is rel-
evant for accomplishing this challenging navigation task and is sufficiently generic to be easily transferable
to other robotic platforms, such as robotic wheelchairs or transportation vehicles in cities.

6.1 Lessons Learned

• Pedestrians, in particular children, in our experiments sometimes intentionally blocked the path of
the robot. While this did not cause any collisions, the robot got stuck in such situations because
it is not as agile as a human. According to our experience with such cases, a planning framework
should actively negotiate a path with the humans around in highly crowded scenarios instead of
solely focusing on collision free trajectories.

• Besides tools for automatic data logging and debugging, we found it handy to have the option to
selectively de-activate various aspects of the autonomous system for testing and to easily change
parameters on-the-fly. One typical example is the adjustment of the maximum allowed velocity
during experiments. Our tools also allowed us to manually control the robot while inspecting the
results of different aspects of the system, e.g., the tracking of dynamic objects and their impact on
the planned path.

• In our system, the modules that have to fuse data over time operate in a local frame, which is given
by the odometry of the robot. Clearly, this frame drifts over time but it is locally smooth, which
cannot be guaranteed for position estimates in a global frame, such as the estimate of the localization
algorithm. The usage of a local frame allowed us to estimate a consistent map that fuses multiple
measurements (see also Moore et al. (2009)).

• Analyzing single range readings for obstacles and fusing these individually detected obstacles in a
local frame proved to be very efficient. Furthermore, compared to analyzing point clouds, which are
accumulated over time, it reduces the risk of detecting non-existing obstacles that may be caused
by inaccurate calibration or imprecise position estimates of the robot.

• We found that specifying goal locations such as the stops of a guided tour as global coordinates
(latitude/longitude) should be preferred compared to storing those location in local map coordinates.
Since our mapping algorithm incorporates the GPS prior, we are able to project between map
coordinates and the GPS frame. Without considering the GPS measurements, the coordinates in a
map frame depend on the initial location of the robot. Consequently, the local map coordinates are
subject to change while the GPS frame remains fixed.

• Throughout the project, we developed a vast set of visualization tools. These tools and the fact
that we recorded all the data (sensor data and messages that got exchanged between the modules)
allowed us to carefully analyze the behavior of the algorithms in practice.



• We furthermore realized that other aspects are rather challenging, as, for example, curly leafs on
the ground look similar to little rocks in the range data. Whereas the robot can easily drive over
leafs, rocks can actually have a substantial effect on the platform itself. This is a general dilemma
which cannot be solved alone with perception algorithms. Therefore we decided to drive around all
potential obstacles. In future systems this could be addressed by designing a robot platform that
can measure forces on the bumpers and that is allowed to use a small force to overcome obstacles.

• In an early test of our system, we encountered a failure before the robot had to cross a traffic light.
The robot was driving on a steep downward facing ramp leading from the sidewalk onto the street.
This lead to laser beams hitting the street surface approximately 4 m in front of the robot that
were wrongly classified as an obstacle. As a consequence, we revised our system to incorporate
the attitude of the robot to identify measurements that are likely to be caused by the laser beams
observing the ground.

6.2 Limitations of our Approach

• The most critical aspect of the entire navigation task was the crossing of roads or all situations in
which the robot potentially had to interact with fast-driving cars. The two dimensional laser sensors
do not allow to reliably sense the cars approaching the robot in all situations. In our demonstration,
we solved this problem by having the robot ask for permission to cross streets or other safety-relevant
areas, which we marked manually in the robot’s map.

• The obstacle detection operates on rigidly mounted laser range finders (see Fig. 2). While this has
the advantage that no moving parts are involved, the rigid mounting of the sensors only allows the
robot to observe objects such as curbs only at a range of approximately 1.5 m. When navigating in
a previously unknown region, the robot has to frequently update its plan to move alongside a curb.

• Dynamic objects that are not visible in the horizontal range data, such as pets or other animals like
pigeons or ducks (see Fig. 20) currently lead to a sub-optimal path execution, because they can only
be observed in the close vicinity by the robot.

• The sensor setup has blind spots, for example, overhanging obstacles above a certain height in front
of the robot are not visible. The only situation we encountered, where this was critical was a bike
handlebar in a unfortunate position. Most likely an update of the platform should incorporate a
revised sensor hardware.

7 Conclusions

In this paper, we presented a navigation system that enables a mobile robot to autonomously navigate
through city centers. This navigation system uses an extended SLAM routine that deals with the outliers
generated by the partially GPS-denied environments, a localization routine that utilizes a special data
structure for large-scale maps, dedicated terrain analysis methods for also dealing with negative obstacles, and
a trajectory planning system that considers dynamic objects. The navigation system has been implemented
and demonstrated in a large-scale public field test, during which the robot Obelix autonomously navigated
over a path of more than three kilometers through the crowded city center of Freiburg thereby negotiating
with several substantial hazards. We believe that the individual techniques provided by the navigation
system of Obelix are fundamental pre-requisites for mobile robots offering services to people in urban city
centers including transportation, guidance, and surveillance.
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Figure 20: Dynamic 3D obstacles which pose substantial challenges for the navigation system.
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Bauer, A., Klasing, K., Lidoris, G., Mühlbauer, Q., Rohrmüller, F., Sosnowski, S., Xu, T., Khnlenz, K., Woll-
herr, D., and Buss, M. (2009). The autonomous city explorer: Towards natural human-robot interaction
in urban environments. International Journal of Social Robotics, 1:127–140.

Brookshire, J. and Teller, S. (2011). Automatic calibration of multiple coplanar sensors. In Proc. of Robotics:
Science and Systems (RSS).

Burgard, W., Cremers, A. B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W., and Thrun,
S. (1998). The interactive museum tour-guide robot. In Proc. of the National Conference on Artificial
Intelligence (AAAI).

Cremean, L. et al. (2006). Alice: An information-rich autonomous vehicle for high-speed desert navigation.
Journal of Field Robotics.

Dellaert, F., Fox, D., Burgard, W., and Thrun, S. (1998). Monte carlo localization for mobile robots. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Leuven, Belgium.

Dellaert, F. and Kaess, M. (2006). Square Root SAM: Simultaneous localization and mapping via square
root information smoothing. Int. Journal of Robotics Research, 25(12):1181–1204.

Doucet, A., de Freitas, N., and Gordan, N., editors (2001). Sequential Monte-Carlo Methods in Practice.
Springer Verlag.

EUROPA (2009). The European robotic pedestrian assistant. http://europa.informatik.uni-freiburg.de.

Fox, D., Burgard, W., and Thrun, S. (1998). Active markov localization for mobile robots. Journal of
Robotics & Autonomous Systems, 25:195–207.

Furgale, P. and Barfoot, T. D. (2010). Visual teach and repeat for long-range rover autonomy. Journal of
Field Robotics, 27(5):534–560.



Georgiev, A. and Allen, P. (2004). Localization methods for a mobile robot in urban environments. IEEE
Trans. on Robotics, 20(5):851–864.

Google Inc. (2012). Google self-driving car project. http://googleblog.blogspot.com.
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Trulls, E., Corominas Murtra, A., Pérez-Ibarz, J., Ferrer, G., Vasquez, D., Mirats-Tur, J. M., and Sanfeliu,
A. (2011). Autonomous navigation for mobile service robots in urban pedestrian environments. Journal
of Field Robotics, 28(3):329–354.

Urmson, C. (2005). Navigation Regimes for Off-Road Autonomy. PhD thesis, Robotics Institute, Carnegie
Mellon University.

Urmson, C. et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal
of Field Robotics, 25(8):425–466.
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